blob: 9ab13db4b5f9650991e24cd1fd35bb2423ce70b7 [file] [log] [blame]
use super::ty::AllowPlus;
use super::{BlockMode, Parser, PathStyle, SemiColonMode, SeqSep, TokenExpectType, TokenType};
use rustc_ast::ptr::P;
use rustc_ast::token::{self, Lit, LitKind, TokenKind};
use rustc_ast::util::parser::AssocOp;
use rustc_ast::{
self as ast, AngleBracketedArgs, AttrVec, BinOpKind, BindingMode, BlockCheckMode, Expr,
ExprKind, Item, ItemKind, Mutability, Param, Pat, PatKind, PathSegment, QSelf, Ty, TyKind,
};
use rustc_ast_pretty::pprust;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::{pluralize, struct_span_err};
use rustc_errors::{Applicability, DiagnosticBuilder, Handler, PResult};
use rustc_span::source_map::Spanned;
use rustc_span::symbol::{kw, Ident};
use rustc_span::{MultiSpan, Span, SpanSnippetError, DUMMY_SP};
use tracing::{debug, trace};
const TURBOFISH: &str = "use `::<...>` instead of `<...>` to specify type arguments";
/// Creates a placeholder argument.
pub(super) fn dummy_arg(ident: Ident) -> Param {
let pat = P(Pat {
id: ast::DUMMY_NODE_ID,
kind: PatKind::Ident(BindingMode::ByValue(Mutability::Not), ident, None),
span: ident.span,
tokens: None,
});
let ty = Ty { kind: TyKind::Err, span: ident.span, id: ast::DUMMY_NODE_ID, tokens: None };
Param {
attrs: AttrVec::default(),
id: ast::DUMMY_NODE_ID,
pat,
span: ident.span,
ty: P(ty),
is_placeholder: false,
}
}
pub enum Error {
UselessDocComment,
}
impl Error {
fn span_err(self, sp: impl Into<MultiSpan>, handler: &Handler) -> DiagnosticBuilder<'_> {
match self {
Error::UselessDocComment => {
let mut err = struct_span_err!(
handler,
sp,
E0585,
"found a documentation comment that doesn't document anything",
);
err.help(
"doc comments must come before what they document, maybe a comment was \
intended with `//`?",
);
err
}
}
}
}
pub(super) trait RecoverQPath: Sized + 'static {
const PATH_STYLE: PathStyle = PathStyle::Expr;
fn to_ty(&self) -> Option<P<Ty>>;
fn recovered(qself: Option<QSelf>, path: ast::Path) -> Self;
}
impl RecoverQPath for Ty {
const PATH_STYLE: PathStyle = PathStyle::Type;
fn to_ty(&self) -> Option<P<Ty>> {
Some(P(self.clone()))
}
fn recovered(qself: Option<QSelf>, path: ast::Path) -> Self {
Self {
span: path.span,
kind: TyKind::Path(qself, path),
id: ast::DUMMY_NODE_ID,
tokens: None,
}
}
}
impl RecoverQPath for Pat {
fn to_ty(&self) -> Option<P<Ty>> {
self.to_ty()
}
fn recovered(qself: Option<QSelf>, path: ast::Path) -> Self {
Self {
span: path.span,
kind: PatKind::Path(qself, path),
id: ast::DUMMY_NODE_ID,
tokens: None,
}
}
}
impl RecoverQPath for Expr {
fn to_ty(&self) -> Option<P<Ty>> {
self.to_ty()
}
fn recovered(qself: Option<QSelf>, path: ast::Path) -> Self {
Self {
span: path.span,
kind: ExprKind::Path(qself, path),
attrs: AttrVec::new(),
id: ast::DUMMY_NODE_ID,
tokens: None,
}
}
}
/// Control whether the closing delimiter should be consumed when calling `Parser::consume_block`.
crate enum ConsumeClosingDelim {
Yes,
No,
}
impl<'a> Parser<'a> {
pub(super) fn span_fatal_err<S: Into<MultiSpan>>(
&self,
sp: S,
err: Error,
) -> DiagnosticBuilder<'a> {
err.span_err(sp, self.diagnostic())
}
pub fn struct_span_err<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> DiagnosticBuilder<'a> {
self.sess.span_diagnostic.struct_span_err(sp, m)
}
pub fn span_bug<S: Into<MultiSpan>>(&self, sp: S, m: &str) -> ! {
self.sess.span_diagnostic.span_bug(sp, m)
}
pub(super) fn diagnostic(&self) -> &'a Handler {
&self.sess.span_diagnostic
}
pub(super) fn span_to_snippet(&self, span: Span) -> Result<String, SpanSnippetError> {
self.sess.source_map().span_to_snippet(span)
}
pub(super) fn expected_ident_found(&self) -> DiagnosticBuilder<'a> {
let mut err = self.struct_span_err(
self.token.span,
&format!("expected identifier, found {}", super::token_descr(&self.token)),
);
let valid_follow = &[
TokenKind::Eq,
TokenKind::Colon,
TokenKind::Comma,
TokenKind::Semi,
TokenKind::ModSep,
TokenKind::OpenDelim(token::DelimToken::Brace),
TokenKind::OpenDelim(token::DelimToken::Paren),
TokenKind::CloseDelim(token::DelimToken::Brace),
TokenKind::CloseDelim(token::DelimToken::Paren),
];
match self.token.ident() {
Some((ident, false))
if ident.is_raw_guess()
&& self.look_ahead(1, |t| valid_follow.contains(&t.kind)) =>
{
err.span_suggestion(
ident.span,
"you can escape reserved keywords to use them as identifiers",
format!("r#{}", ident.name),
Applicability::MaybeIncorrect,
);
}
_ => {}
}
if let Some(token_descr) = super::token_descr_opt(&self.token) {
err.span_label(self.token.span, format!("expected identifier, found {}", token_descr));
} else {
err.span_label(self.token.span, "expected identifier");
if self.token == token::Comma && self.look_ahead(1, |t| t.is_ident()) {
err.span_suggestion(
self.token.span,
"remove this comma",
String::new(),
Applicability::MachineApplicable,
);
}
}
err
}
pub(super) fn expected_one_of_not_found(
&mut self,
edible: &[TokenKind],
inedible: &[TokenKind],
) -> PResult<'a, bool /* recovered */> {
fn tokens_to_string(tokens: &[TokenType]) -> String {
let mut i = tokens.iter();
// This might be a sign we need a connect method on `Iterator`.
let b = i.next().map_or(String::new(), |t| t.to_string());
i.enumerate().fold(b, |mut b, (i, a)| {
if tokens.len() > 2 && i == tokens.len() - 2 {
b.push_str(", or ");
} else if tokens.len() == 2 && i == tokens.len() - 2 {
b.push_str(" or ");
} else {
b.push_str(", ");
}
b.push_str(&a.to_string());
b
})
}
let mut expected = edible
.iter()
.map(|x| TokenType::Token(x.clone()))
.chain(inedible.iter().map(|x| TokenType::Token(x.clone())))
.chain(self.expected_tokens.iter().cloned())
.collect::<Vec<_>>();
expected.sort_by_cached_key(|x| x.to_string());
expected.dedup();
let expect = tokens_to_string(&expected[..]);
let actual = super::token_descr(&self.token);
let (msg_exp, (label_sp, label_exp)) = if expected.len() > 1 {
let short_expect = if expected.len() > 6 {
format!("{} possible tokens", expected.len())
} else {
expect.clone()
};
(
format!("expected one of {}, found {}", expect, actual),
(self.prev_token.span.shrink_to_hi(), format!("expected one of {}", short_expect)),
)
} else if expected.is_empty() {
(
format!("unexpected token: {}", actual),
(self.prev_token.span, "unexpected token after this".to_string()),
)
} else {
(
format!("expected {}, found {}", expect, actual),
(self.prev_token.span.shrink_to_hi(), format!("expected {}", expect)),
)
};
self.last_unexpected_token_span = Some(self.token.span);
let mut err = self.struct_span_err(self.token.span, &msg_exp);
let sp = if self.token == token::Eof {
// This is EOF; don't want to point at the following char, but rather the last token.
self.prev_token.span
} else {
label_sp
};
match self.recover_closing_delimiter(
&expected
.iter()
.filter_map(|tt| match tt {
TokenType::Token(t) => Some(t.clone()),
_ => None,
})
.collect::<Vec<_>>(),
err,
) {
Err(e) => err = e,
Ok(recovered) => {
return Ok(recovered);
}
}
if self.check_too_many_raw_str_terminators(&mut err) {
return Err(err);
}
let sm = self.sess.source_map();
if self.prev_token.span == DUMMY_SP {
// Account for macro context where the previous span might not be
// available to avoid incorrect output (#54841).
err.span_label(self.token.span, label_exp);
} else if !sm.is_multiline(self.token.span.shrink_to_hi().until(sp.shrink_to_lo())) {
// When the spans are in the same line, it means that the only content between
// them is whitespace, point at the found token in that case:
//
// X | () => { syntax error };
// | ^^^^^ expected one of 8 possible tokens here
//
// instead of having:
//
// X | () => { syntax error };
// | -^^^^^ unexpected token
// | |
// | expected one of 8 possible tokens here
err.span_label(self.token.span, label_exp);
} else {
err.span_label(sp, label_exp);
err.span_label(self.token.span, "unexpected token");
}
self.maybe_annotate_with_ascription(&mut err, false);
Err(err)
}
fn check_too_many_raw_str_terminators(&mut self, err: &mut DiagnosticBuilder<'_>) -> bool {
match (&self.prev_token.kind, &self.token.kind) {
(
TokenKind::Literal(Lit {
kind: LitKind::StrRaw(n_hashes) | LitKind::ByteStrRaw(n_hashes),
..
}),
TokenKind::Pound,
) => {
err.set_primary_message("too many `#` when terminating raw string");
err.span_suggestion(
self.token.span,
"remove the extra `#`",
String::new(),
Applicability::MachineApplicable,
);
err.note(&format!("the raw string started with {} `#`s", n_hashes));
true
}
_ => false,
}
}
pub fn maybe_annotate_with_ascription(
&mut self,
err: &mut DiagnosticBuilder<'_>,
maybe_expected_semicolon: bool,
) {
if let Some((sp, likely_path)) = self.last_type_ascription.take() {
let sm = self.sess.source_map();
let next_pos = sm.lookup_char_pos(self.token.span.lo());
let op_pos = sm.lookup_char_pos(sp.hi());
let allow_unstable = self.sess.unstable_features.is_nightly_build();
if likely_path {
err.span_suggestion(
sp,
"maybe write a path separator here",
"::".to_string(),
if allow_unstable {
Applicability::MaybeIncorrect
} else {
Applicability::MachineApplicable
},
);
self.sess.type_ascription_path_suggestions.borrow_mut().insert(sp);
} else if op_pos.line != next_pos.line && maybe_expected_semicolon {
err.span_suggestion(
sp,
"try using a semicolon",
";".to_string(),
Applicability::MaybeIncorrect,
);
} else if allow_unstable {
err.span_label(sp, "tried to parse a type due to this type ascription");
} else {
err.span_label(sp, "tried to parse a type due to this");
}
if allow_unstable {
// Give extra information about type ascription only if it's a nightly compiler.
err.note(
"`#![feature(type_ascription)]` lets you annotate an expression with a type: \
`<expr>: <type>`",
);
if !likely_path {
// Avoid giving too much info when it was likely an unrelated typo.
err.note(
"see issue #23416 <https://github.com/rust-lang/rust/issues/23416> \
for more information",
);
}
}
}
}
/// Eats and discards tokens until one of `kets` is encountered. Respects token trees,
/// passes through any errors encountered. Used for error recovery.
pub(super) fn eat_to_tokens(&mut self, kets: &[&TokenKind]) {
if let Err(ref mut err) =
self.parse_seq_to_before_tokens(kets, SeqSep::none(), TokenExpectType::Expect, |p| {
Ok(p.parse_token_tree())
})
{
err.cancel();
}
}
/// This function checks if there are trailing angle brackets and produces
/// a diagnostic to suggest removing them.
///
/// ```ignore (diagnostic)
/// let _ = vec![1, 2, 3].into_iter().collect::<Vec<usize>>>>();
/// ^^ help: remove extra angle brackets
/// ```
///
/// If `true` is returned, then trailing brackets were recovered, tokens were consumed
/// up until one of the tokens in 'end' was encountered, and an error was emitted.
pub(super) fn check_trailing_angle_brackets(
&mut self,
segment: &PathSegment,
end: &[&TokenKind],
) -> bool {
// This function is intended to be invoked after parsing a path segment where there are two
// cases:
//
// 1. A specific token is expected after the path segment.
// eg. `x.foo(`, `x.foo::<u32>(` (parenthesis - method call),
// `Foo::`, or `Foo::<Bar>::` (mod sep - continued path).
// 2. No specific token is expected after the path segment.
// eg. `x.foo` (field access)
//
// This function is called after parsing `.foo` and before parsing the token `end` (if
// present). This includes any angle bracket arguments, such as `.foo::<u32>` or
// `Foo::<Bar>`.
// We only care about trailing angle brackets if we previously parsed angle bracket
// arguments. This helps stop us incorrectly suggesting that extra angle brackets be
// removed in this case:
//
// `x.foo >> (3)` (where `x.foo` is a `u32` for example)
//
// This case is particularly tricky as we won't notice it just looking at the tokens -
// it will appear the same (in terms of upcoming tokens) as below (since the `::<u32>` will
// have already been parsed):
//
// `x.foo::<u32>>>(3)`
let parsed_angle_bracket_args =
segment.args.as_ref().map(|args| args.is_angle_bracketed()).unwrap_or(false);
debug!(
"check_trailing_angle_brackets: parsed_angle_bracket_args={:?}",
parsed_angle_bracket_args,
);
if !parsed_angle_bracket_args {
return false;
}
// Keep the span at the start so we can highlight the sequence of `>` characters to be
// removed.
let lo = self.token.span;
// We need to look-ahead to see if we have `>` characters without moving the cursor forward
// (since we might have the field access case and the characters we're eating are
// actual operators and not trailing characters - ie `x.foo >> 3`).
let mut position = 0;
// We can encounter `>` or `>>` tokens in any order, so we need to keep track of how
// many of each (so we can correctly pluralize our error messages) and continue to
// advance.
let mut number_of_shr = 0;
let mut number_of_gt = 0;
while self.look_ahead(position, |t| {
trace!("check_trailing_angle_brackets: t={:?}", t);
if *t == token::BinOp(token::BinOpToken::Shr) {
number_of_shr += 1;
true
} else if *t == token::Gt {
number_of_gt += 1;
true
} else {
false
}
}) {
position += 1;
}
// If we didn't find any trailing `>` characters, then we have nothing to error about.
debug!(
"check_trailing_angle_brackets: number_of_gt={:?} number_of_shr={:?}",
number_of_gt, number_of_shr,
);
if number_of_gt < 1 && number_of_shr < 1 {
return false;
}
// Finally, double check that we have our end token as otherwise this is the
// second case.
if self.look_ahead(position, |t| {
trace!("check_trailing_angle_brackets: t={:?}", t);
end.contains(&&t.kind)
}) {
// Eat from where we started until the end token so that parsing can continue
// as if we didn't have those extra angle brackets.
self.eat_to_tokens(end);
let span = lo.until(self.token.span);
let total_num_of_gt = number_of_gt + number_of_shr * 2;
self.struct_span_err(
span,
&format!("unmatched angle bracket{}", pluralize!(total_num_of_gt)),
)
.span_suggestion(
span,
&format!("remove extra angle bracket{}", pluralize!(total_num_of_gt)),
String::new(),
Applicability::MachineApplicable,
)
.emit();
return true;
}
false
}
/// Check if a method call with an intended turbofish has been written without surrounding
/// angle brackets.
pub(super) fn check_turbofish_missing_angle_brackets(&mut self, segment: &mut PathSegment) {
if token::ModSep == self.token.kind && segment.args.is_none() {
let snapshot = self.clone();
self.bump();
let lo = self.token.span;
match self.parse_angle_args() {
Ok(args) => {
let span = lo.to(self.prev_token.span);
// Detect trailing `>` like in `x.collect::Vec<_>>()`.
let mut trailing_span = self.prev_token.span.shrink_to_hi();
while self.token.kind == token::BinOp(token::Shr)
|| self.token.kind == token::Gt
{
trailing_span = trailing_span.to(self.token.span);
self.bump();
}
if self.token.kind == token::OpenDelim(token::Paren) {
// Recover from bad turbofish: `foo.collect::Vec<_>()`.
let args = AngleBracketedArgs { args, span }.into();
segment.args = args;
self.struct_span_err(
span,
"generic parameters without surrounding angle brackets",
)
.multipart_suggestion(
"surround the type parameters with angle brackets",
vec![
(span.shrink_to_lo(), "<".to_string()),
(trailing_span, ">".to_string()),
],
Applicability::MachineApplicable,
)
.emit();
} else {
// This doesn't look like an invalid turbofish, can't recover parse state.
*self = snapshot;
}
}
Err(mut err) => {
// We could't parse generic parameters, unlikely to be a turbofish. Rely on
// generic parse error instead.
err.cancel();
*self = snapshot;
}
}
}
}
/// When writing a turbofish with multiple type parameters missing the leading `::`, we will
/// encounter a parse error when encountering the first `,`.
pub(super) fn check_mistyped_turbofish_with_multiple_type_params(
&mut self,
mut e: DiagnosticBuilder<'a>,
expr: &mut P<Expr>,
) -> PResult<'a, ()> {
if let ExprKind::Binary(binop, _, _) = &expr.kind {
if let ast::BinOpKind::Lt = binop.node {
if self.eat(&token::Comma) {
let x = self.parse_seq_to_before_end(
&token::Gt,
SeqSep::trailing_allowed(token::Comma),
|p| p.parse_ty(),
);
match x {
Ok((_, _, false)) => {
self.bump(); // `>`
match self.parse_expr() {
Ok(_) => {
e.span_suggestion_verbose(
binop.span.shrink_to_lo(),
"use `::<...>` instead of `<...>` to specify type arguments",
"::".to_string(),
Applicability::MaybeIncorrect,
);
e.emit();
*expr = self.mk_expr_err(expr.span.to(self.prev_token.span));
return Ok(());
}
Err(mut err) => {
err.cancel();
}
}
}
Err(mut err) => {
err.cancel();
}
_ => {}
}
}
}
}
Err(e)
}
/// Check to see if a pair of chained operators looks like an attempt at chained comparison,
/// e.g. `1 < x <= 3`. If so, suggest either splitting the comparison into two, or
/// parenthesising the leftmost comparison.
fn attempt_chained_comparison_suggestion(
&mut self,
err: &mut DiagnosticBuilder<'_>,
inner_op: &Expr,
outer_op: &Spanned<AssocOp>,
) -> bool /* advanced the cursor */ {
if let ExprKind::Binary(op, ref l1, ref r1) = inner_op.kind {
if let ExprKind::Field(_, ident) = l1.kind {
if ident.as_str().parse::<i32>().is_err() && !matches!(r1.kind, ExprKind::Lit(_)) {
// The parser has encountered `foo.bar<baz`, the likelihood of the turbofish
// suggestion being the only one to apply is high.
return false;
}
}
let mut enclose = |left: Span, right: Span| {
err.multipart_suggestion(
"parenthesize the comparison",
vec![
(left.shrink_to_lo(), "(".to_string()),
(right.shrink_to_hi(), ")".to_string()),
],
Applicability::MaybeIncorrect,
);
};
return match (op.node, &outer_op.node) {
// `x == y == z`
(BinOpKind::Eq, AssocOp::Equal) |
// `x < y < z` and friends.
(BinOpKind::Lt, AssocOp::Less | AssocOp::LessEqual) |
(BinOpKind::Le, AssocOp::LessEqual | AssocOp::Less) |
// `x > y > z` and friends.
(BinOpKind::Gt, AssocOp::Greater | AssocOp::GreaterEqual) |
(BinOpKind::Ge, AssocOp::GreaterEqual | AssocOp::Greater) => {
let expr_to_str = |e: &Expr| {
self.span_to_snippet(e.span)
.unwrap_or_else(|_| pprust::expr_to_string(&e))
};
err.span_suggestion_verbose(
inner_op.span.shrink_to_hi(),
"split the comparison into two",
format!(" && {}", expr_to_str(&r1)),
Applicability::MaybeIncorrect,
);
false // Keep the current parse behavior, where the AST is `(x < y) < z`.
}
// `x == y < z`
(BinOpKind::Eq, AssocOp::Less | AssocOp::LessEqual | AssocOp::Greater | AssocOp::GreaterEqual) => {
// Consume `z`/outer-op-rhs.
let snapshot = self.clone();
match self.parse_expr() {
Ok(r2) => {
// We are sure that outer-op-rhs could be consumed, the suggestion is
// likely correct.
enclose(r1.span, r2.span);
true
}
Err(mut expr_err) => {
expr_err.cancel();
*self = snapshot;
false
}
}
}
// `x > y == z`
(BinOpKind::Lt | BinOpKind::Le | BinOpKind::Gt | BinOpKind::Ge, AssocOp::Equal) => {
let snapshot = self.clone();
// At this point it is always valid to enclose the lhs in parentheses, no
// further checks are necessary.
match self.parse_expr() {
Ok(_) => {
enclose(l1.span, r1.span);
true
}
Err(mut expr_err) => {
expr_err.cancel();
*self = snapshot;
false
}
}
}
_ => false,
};
}
false
}
/// Produces an error if comparison operators are chained (RFC #558).
/// We only need to check the LHS, not the RHS, because all comparison ops have same
/// precedence (see `fn precedence`) and are left-associative (see `fn fixity`).
///
/// This can also be hit if someone incorrectly writes `foo<bar>()` when they should have used
/// the turbofish (`foo::<bar>()`) syntax. We attempt some heuristic recovery if that is the
/// case.
///
/// Keep in mind that given that `outer_op.is_comparison()` holds and comparison ops are left
/// associative we can infer that we have:
///
/// ```text
/// outer_op
/// / \
/// inner_op r2
/// / \
/// l1 r1
/// ```
pub(super) fn check_no_chained_comparison(
&mut self,
inner_op: &Expr,
outer_op: &Spanned<AssocOp>,
) -> PResult<'a, Option<P<Expr>>> {
debug_assert!(
outer_op.node.is_comparison(),
"check_no_chained_comparison: {:?} is not comparison",
outer_op.node,
);
let mk_err_expr =
|this: &Self, span| Ok(Some(this.mk_expr(span, ExprKind::Err, AttrVec::new())));
match inner_op.kind {
ExprKind::Binary(op, ref l1, ref r1) if op.node.is_comparison() => {
let mut err = self.struct_span_err(
vec![op.span, self.prev_token.span],
"comparison operators cannot be chained",
);
let suggest = |err: &mut DiagnosticBuilder<'_>| {
err.span_suggestion_verbose(
op.span.shrink_to_lo(),
TURBOFISH,
"::".to_string(),
Applicability::MaybeIncorrect,
);
};
// Include `<` to provide this recommendation even in a case like
// `Foo<Bar<Baz<Qux, ()>>>`
if op.node == BinOpKind::Lt && outer_op.node == AssocOp::Less
|| outer_op.node == AssocOp::Greater
{
if outer_op.node == AssocOp::Less {
let snapshot = self.clone();
self.bump();
// So far we have parsed `foo<bar<`, consume the rest of the type args.
let modifiers =
[(token::Lt, 1), (token::Gt, -1), (token::BinOp(token::Shr), -2)];
self.consume_tts(1, &modifiers[..]);
if !&[token::OpenDelim(token::Paren), token::ModSep]
.contains(&self.token.kind)
{
// We don't have `foo< bar >(` or `foo< bar >::`, so we rewind the
// parser and bail out.
*self = snapshot.clone();
}
}
return if token::ModSep == self.token.kind {
// We have some certainty that this was a bad turbofish at this point.
// `foo< bar >::`
suggest(&mut err);
let snapshot = self.clone();
self.bump(); // `::`
// Consume the rest of the likely `foo<bar>::new()` or return at `foo<bar>`.
match self.parse_expr() {
Ok(_) => {
// 99% certain that the suggestion is correct, continue parsing.
err.emit();
// FIXME: actually check that the two expressions in the binop are
// paths and resynthesize new fn call expression instead of using
// `ExprKind::Err` placeholder.
mk_err_expr(self, inner_op.span.to(self.prev_token.span))
}
Err(mut expr_err) => {
expr_err.cancel();
// Not entirely sure now, but we bubble the error up with the
// suggestion.
*self = snapshot;
Err(err)
}
}
} else if token::OpenDelim(token::Paren) == self.token.kind {
// We have high certainty that this was a bad turbofish at this point.
// `foo< bar >(`
suggest(&mut err);
// Consume the fn call arguments.
match self.consume_fn_args() {
Err(()) => Err(err),
Ok(()) => {
err.emit();
// FIXME: actually check that the two expressions in the binop are
// paths and resynthesize new fn call expression instead of using
// `ExprKind::Err` placeholder.
mk_err_expr(self, inner_op.span.to(self.prev_token.span))
}
}
} else {
if !matches!(l1.kind, ExprKind::Lit(_))
&& !matches!(r1.kind, ExprKind::Lit(_))
{
// All we know is that this is `foo < bar >` and *nothing* else. Try to
// be helpful, but don't attempt to recover.
err.help(TURBOFISH);
err.help("or use `(...)` if you meant to specify fn arguments");
}
// If it looks like a genuine attempt to chain operators (as opposed to a
// misformatted turbofish, for instance), suggest a correct form.
if self.attempt_chained_comparison_suggestion(&mut err, inner_op, outer_op)
{
err.emit();
mk_err_expr(self, inner_op.span.to(self.prev_token.span))
} else {
// These cases cause too many knock-down errors, bail out (#61329).
Err(err)
}
};
}
let recover =
self.attempt_chained_comparison_suggestion(&mut err, inner_op, outer_op);
err.emit();
if recover {
return mk_err_expr(self, inner_op.span.to(self.prev_token.span));
}
}
_ => {}
}
Ok(None)
}
fn consume_fn_args(&mut self) -> Result<(), ()> {
let snapshot = self.clone();
self.bump(); // `(`
// Consume the fn call arguments.
let modifiers =
[(token::OpenDelim(token::Paren), 1), (token::CloseDelim(token::Paren), -1)];
self.consume_tts(1, &modifiers[..]);
if self.token.kind == token::Eof {
// Not entirely sure that what we consumed were fn arguments, rollback.
*self = snapshot;
Err(())
} else {
// 99% certain that the suggestion is correct, continue parsing.
Ok(())
}
}
pub(super) fn maybe_report_ambiguous_plus(
&mut self,
allow_plus: AllowPlus,
impl_dyn_multi: bool,
ty: &Ty,
) {
if matches!(allow_plus, AllowPlus::No) && impl_dyn_multi {
let sum_with_parens = format!("({})", pprust::ty_to_string(&ty));
self.struct_span_err(ty.span, "ambiguous `+` in a type")
.span_suggestion(
ty.span,
"use parentheses to disambiguate",
sum_with_parens,
Applicability::MachineApplicable,
)
.emit();
}
}
pub(super) fn maybe_recover_from_bad_type_plus(
&mut self,
allow_plus: AllowPlus,
ty: &Ty,
) -> PResult<'a, ()> {
// Do not add `+` to expected tokens.
if matches!(allow_plus, AllowPlus::No) || !self.token.is_like_plus() {
return Ok(());
}
self.bump(); // `+`
let bounds = self.parse_generic_bounds(None)?;
let sum_span = ty.span.to(self.prev_token.span);
let mut err = struct_span_err!(
self.sess.span_diagnostic,
sum_span,
E0178,
"expected a path on the left-hand side of `+`, not `{}`",
pprust::ty_to_string(ty)
);
match ty.kind {
TyKind::Rptr(ref lifetime, ref mut_ty) => {
let sum_with_parens = pprust::to_string(|s| {
s.s.word("&");
s.print_opt_lifetime(lifetime);
s.print_mutability(mut_ty.mutbl, false);
s.popen();
s.print_type(&mut_ty.ty);
s.print_type_bounds(" +", &bounds);
s.pclose()
});
err.span_suggestion(
sum_span,
"try adding parentheses",
sum_with_parens,
Applicability::MachineApplicable,
);
}
TyKind::Ptr(..) | TyKind::BareFn(..) => {
err.span_label(sum_span, "perhaps you forgot parentheses?");
}
_ => {
err.span_label(sum_span, "expected a path");
}
}
err.emit();
Ok(())
}
/// Tries to recover from associated item paths like `[T]::AssocItem` / `(T, U)::AssocItem`.
/// Attempts to convert the base expression/pattern/type into a type, parses the `::AssocItem`
/// tail, and combines them into a `<Ty>::AssocItem` expression/pattern/type.
pub(super) fn maybe_recover_from_bad_qpath<T: RecoverQPath>(
&mut self,
base: P<T>,
allow_recovery: bool,
) -> PResult<'a, P<T>> {
// Do not add `::` to expected tokens.
if allow_recovery && self.token == token::ModSep {
if let Some(ty) = base.to_ty() {
return self.maybe_recover_from_bad_qpath_stage_2(ty.span, ty);
}
}
Ok(base)
}
/// Given an already parsed `Ty`, parses the `::AssocItem` tail and
/// combines them into a `<Ty>::AssocItem` expression/pattern/type.
pub(super) fn maybe_recover_from_bad_qpath_stage_2<T: RecoverQPath>(
&mut self,
ty_span: Span,
ty: P<Ty>,
) -> PResult<'a, P<T>> {
self.expect(&token::ModSep)?;
let mut path = ast::Path { segments: Vec::new(), span: DUMMY_SP, tokens: None };
self.parse_path_segments(&mut path.segments, T::PATH_STYLE)?;
path.span = ty_span.to(self.prev_token.span);
let ty_str = self.span_to_snippet(ty_span).unwrap_or_else(|_| pprust::ty_to_string(&ty));
self.struct_span_err(path.span, "missing angle brackets in associated item path")
.span_suggestion(
// This is a best-effort recovery.
path.span,
"try",
format!("<{}>::{}", ty_str, pprust::path_to_string(&path)),
Applicability::MaybeIncorrect,
)
.emit();
let path_span = ty_span.shrink_to_hi(); // Use an empty path since `position == 0`.
Ok(P(T::recovered(Some(QSelf { ty, path_span, position: 0 }), path)))
}
pub(super) fn maybe_consume_incorrect_semicolon(&mut self, items: &[P<Item>]) -> bool {
if self.eat(&token::Semi) {
let mut err = self.struct_span_err(self.prev_token.span, "expected item, found `;`");
err.span_suggestion_short(
self.prev_token.span,
"remove this semicolon",
String::new(),
Applicability::MachineApplicable,
);
if !items.is_empty() {
let previous_item = &items[items.len() - 1];
let previous_item_kind_name = match previous_item.kind {
// Say "braced struct" because tuple-structs and
// braceless-empty-struct declarations do take a semicolon.
ItemKind::Struct(..) => Some("braced struct"),
ItemKind::Enum(..) => Some("enum"),
ItemKind::Trait(..) => Some("trait"),
ItemKind::Union(..) => Some("union"),
_ => None,
};
if let Some(name) = previous_item_kind_name {
err.help(&format!("{} declarations are not followed by a semicolon", name));
}
}
err.emit();
true
} else {
false
}
}
/// Creates a `DiagnosticBuilder` for an unexpected token `t` and tries to recover if it is a
/// closing delimiter.
pub(super) fn unexpected_try_recover(
&mut self,
t: &TokenKind,
) -> PResult<'a, bool /* recovered */> {
let token_str = pprust::token_kind_to_string(t);
let this_token_str = super::token_descr(&self.token);
let (prev_sp, sp) = match (&self.token.kind, self.subparser_name) {
// Point at the end of the macro call when reaching end of macro arguments.
(token::Eof, Some(_)) => {
let sp = self.sess.source_map().next_point(self.token.span);
(sp, sp)
}
// We don't want to point at the following span after DUMMY_SP.
// This happens when the parser finds an empty TokenStream.
_ if self.prev_token.span == DUMMY_SP => (self.token.span, self.token.span),
// EOF, don't want to point at the following char, but rather the last token.
(token::Eof, None) => (self.prev_token.span, self.token.span),
_ => (self.prev_token.span.shrink_to_hi(), self.token.span),
};
let msg = format!(
"expected `{}`, found {}",
token_str,
match (&self.token.kind, self.subparser_name) {
(token::Eof, Some(origin)) => format!("end of {}", origin),
_ => this_token_str,
},
);
let mut err = self.struct_span_err(sp, &msg);
let label_exp = format!("expected `{}`", token_str);
match self.recover_closing_delimiter(&[t.clone()], err) {
Err(e) => err = e,
Ok(recovered) => {
return Ok(recovered);
}
}
let sm = self.sess.source_map();
if !sm.is_multiline(prev_sp.until(sp)) {
// When the spans are in the same line, it means that the only content
// between them is whitespace, point only at the found token.
err.span_label(sp, label_exp);
} else {
err.span_label(prev_sp, label_exp);
err.span_label(sp, "unexpected token");
}
Err(err)
}
pub(super) fn expect_semi(&mut self) -> PResult<'a, ()> {
if self.eat(&token::Semi) {
return Ok(());
}
let sm = self.sess.source_map();
let msg = format!("expected `;`, found {}", super::token_descr(&self.token));
let appl = Applicability::MachineApplicable;
if self.token.span == DUMMY_SP || self.prev_token.span == DUMMY_SP {
// Likely inside a macro, can't provide meaningful suggestions.
return self.expect(&token::Semi).map(drop);
} else if !sm.is_multiline(self.prev_token.span.until(self.token.span)) {
// The current token is in the same line as the prior token, not recoverable.
} else if [token::Comma, token::Colon].contains(&self.token.kind)
&& self.prev_token.kind == token::CloseDelim(token::Paren)
{
// Likely typo: The current token is on a new line and is expected to be
// `.`, `;`, `?`, or an operator after a close delimiter token.
//
// let a = std::process::Command::new("echo")
// .arg("1")
// ,arg("2")
// ^
// https://github.com/rust-lang/rust/issues/72253
self.expect(&token::Semi)?;
return Ok(());
} else if self.look_ahead(1, |t| {
t == &token::CloseDelim(token::Brace) || t.can_begin_expr() && t.kind != token::Colon
}) && [token::Comma, token::Colon].contains(&self.token.kind)
{
// Likely typo: `,` → `;` or `:` → `;`. This is triggered if the current token is
// either `,` or `:`, and the next token could either start a new statement or is a
// block close. For example:
//
// let x = 32:
// let y = 42;
self.bump();
let sp = self.prev_token.span;
self.struct_span_err(sp, &msg)
.span_suggestion_short(sp, "change this to `;`", ";".to_string(), appl)
.emit();
return Ok(());
} else if self.look_ahead(0, |t| {
t == &token::CloseDelim(token::Brace)
|| (
t.can_begin_expr() && t != &token::Semi && t != &token::Pound
// Avoid triggering with too many trailing `#` in raw string.
)
}) {
// Missing semicolon typo. This is triggered if the next token could either start a
// new statement or is a block close. For example:
//
// let x = 32
// let y = 42;
let sp = self.prev_token.span.shrink_to_hi();
self.struct_span_err(sp, &msg)
.span_label(self.token.span, "unexpected token")
.span_suggestion_short(sp, "add `;` here", ";".to_string(), appl)
.emit();
return Ok(());
}
self.expect(&token::Semi).map(drop) // Error unconditionally
}
/// Consumes alternative await syntaxes like `await!(<expr>)`, `await <expr>`,
/// `await? <expr>`, `await(<expr>)`, and `await { <expr> }`.
pub(super) fn recover_incorrect_await_syntax(
&mut self,
lo: Span,
await_sp: Span,
attrs: AttrVec,
) -> PResult<'a, P<Expr>> {
let (hi, expr, is_question) = if self.token == token::Not {
// Handle `await!(<expr>)`.
self.recover_await_macro()?
} else {
self.recover_await_prefix(await_sp)?
};
let sp = self.error_on_incorrect_await(lo, hi, &expr, is_question);
let expr = self.mk_expr(lo.to(sp), ExprKind::Await(expr), attrs);
self.maybe_recover_from_bad_qpath(expr, true)
}
fn recover_await_macro(&mut self) -> PResult<'a, (Span, P<Expr>, bool)> {
self.expect(&token::Not)?;
self.expect(&token::OpenDelim(token::Paren))?;
let expr = self.parse_expr()?;
self.expect(&token::CloseDelim(token::Paren))?;
Ok((self.prev_token.span, expr, false))
}
fn recover_await_prefix(&mut self, await_sp: Span) -> PResult<'a, (Span, P<Expr>, bool)> {
let is_question = self.eat(&token::Question); // Handle `await? <expr>`.
let expr = if self.token == token::OpenDelim(token::Brace) {
// Handle `await { <expr> }`.
// This needs to be handled separatedly from the next arm to avoid
// interpreting `await { <expr> }?` as `<expr>?.await`.
self.parse_block_expr(None, self.token.span, BlockCheckMode::Default, AttrVec::new())
} else {
self.parse_expr()
}
.map_err(|mut err| {
err.span_label(await_sp, "while parsing this incorrect await expression");
err
})?;
Ok((expr.span, expr, is_question))
}
fn error_on_incorrect_await(&self, lo: Span, hi: Span, expr: &Expr, is_question: bool) -> Span {
let expr_str =
self.span_to_snippet(expr.span).unwrap_or_else(|_| pprust::expr_to_string(&expr));
let suggestion = format!("{}.await{}", expr_str, if is_question { "?" } else { "" });
let sp = lo.to(hi);
let app = match expr.kind {
ExprKind::Try(_) => Applicability::MaybeIncorrect, // `await <expr>?`
_ => Applicability::MachineApplicable,
};
self.struct_span_err(sp, "incorrect use of `await`")
.span_suggestion(sp, "`await` is a postfix operation", suggestion, app)
.emit();
sp
}
/// If encountering `future.await()`, consumes and emits an error.
pub(super) fn recover_from_await_method_call(&mut self) {
if self.token == token::OpenDelim(token::Paren)
&& self.look_ahead(1, |t| t == &token::CloseDelim(token::Paren))
{
// future.await()
let lo = self.token.span;
self.bump(); // (
let sp = lo.to(self.token.span);
self.bump(); // )
self.struct_span_err(sp, "incorrect use of `await`")
.span_suggestion(
sp,
"`await` is not a method call, remove the parentheses",
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
}
pub(super) fn try_macro_suggestion(&mut self) -> PResult<'a, P<Expr>> {
let is_try = self.token.is_keyword(kw::Try);
let is_questionmark = self.look_ahead(1, |t| t == &token::Not); //check for !
let is_open = self.look_ahead(2, |t| t == &token::OpenDelim(token::Paren)); //check for (
if is_try && is_questionmark && is_open {
let lo = self.token.span;
self.bump(); //remove try
self.bump(); //remove !
let try_span = lo.to(self.token.span); //we take the try!( span
self.bump(); //remove (
let is_empty = self.token == token::CloseDelim(token::Paren); //check if the block is empty
self.consume_block(token::Paren, ConsumeClosingDelim::No); //eat the block
let hi = self.token.span;
self.bump(); //remove )
let mut err = self.struct_span_err(lo.to(hi), "use of deprecated `try` macro");
err.note("in the 2018 edition `try` is a reserved keyword, and the `try!()` macro is deprecated");
let prefix = if is_empty { "" } else { "alternatively, " };
if !is_empty {
err.multipart_suggestion(
"you can use the `?` operator instead",
vec![(try_span, "".to_owned()), (hi, "?".to_owned())],
Applicability::MachineApplicable,
);
}
err.span_suggestion(lo.shrink_to_lo(), &format!("{}you can still access the deprecated `try!()` macro using the \"raw identifier\" syntax", prefix), "r#".to_string(), Applicability::MachineApplicable);
err.emit();
Ok(self.mk_expr_err(lo.to(hi)))
} else {
Err(self.expected_expression_found()) // The user isn't trying to invoke the try! macro
}
}
/// Recovers a situation like `for ( $pat in $expr )`
/// and suggest writing `for $pat in $expr` instead.
///
/// This should be called before parsing the `$block`.
pub(super) fn recover_parens_around_for_head(
&mut self,
pat: P<Pat>,
expr: &Expr,
begin_paren: Option<Span>,
) -> P<Pat> {
match (&self.token.kind, begin_paren) {
(token::CloseDelim(token::Paren), Some(begin_par_sp)) => {
self.bump();
let pat_str = self
// Remove the `(` from the span of the pattern:
.span_to_snippet(pat.span.trim_start(begin_par_sp).unwrap())
.unwrap_or_else(|_| pprust::pat_to_string(&pat));
self.struct_span_err(self.prev_token.span, "unexpected closing `)`")
.span_label(begin_par_sp, "opening `(`")
.span_suggestion(
begin_par_sp.to(self.prev_token.span),
"remove parenthesis in `for` loop",
format!("{} in {}", pat_str, pprust::expr_to_string(&expr)),
// With e.g. `for (x) in y)` this would replace `(x) in y)`
// with `x) in y)` which is syntactically invalid.
// However, this is prevented before we get here.
Applicability::MachineApplicable,
)
.emit();
// Unwrap `(pat)` into `pat` to avoid the `unused_parens` lint.
pat.and_then(|pat| match pat.kind {
PatKind::Paren(pat) => pat,
_ => P(pat),
})
}
_ => pat,
}
}
pub(super) fn could_ascription_be_path(&self, node: &ast::ExprKind) -> bool {
(self.token == token::Lt && // `foo:<bar`, likely a typoed turbofish.
self.look_ahead(1, |t| t.is_ident() && !t.is_reserved_ident()))
|| self.token.is_ident() &&
match node {
// `foo::` → `foo:` or `foo.bar::` → `foo.bar:`
ast::ExprKind::Path(..) | ast::ExprKind::Field(..) => true,
_ => false,
} &&
!self.token.is_reserved_ident() && // v `foo:bar(baz)`
self.look_ahead(1, |t| t == &token::OpenDelim(token::Paren))
|| self.look_ahead(1, |t| t == &token::OpenDelim(token::Brace)) // `foo:bar {`
|| self.look_ahead(1, |t| t == &token::Colon) && // `foo:bar::<baz`
self.look_ahead(2, |t| t == &token::Lt) &&
self.look_ahead(3, |t| t.is_ident())
|| self.look_ahead(1, |t| t == &token::Colon) && // `foo:bar:baz`
self.look_ahead(2, |t| t.is_ident())
|| self.look_ahead(1, |t| t == &token::ModSep)
&& (self.look_ahead(2, |t| t.is_ident()) || // `foo:bar::baz`
self.look_ahead(2, |t| t == &token::Lt)) // `foo:bar::<baz>`
}
pub(super) fn recover_seq_parse_error(
&mut self,
delim: token::DelimToken,
lo: Span,
result: PResult<'a, P<Expr>>,
) -> P<Expr> {
match result {
Ok(x) => x,
Err(mut err) => {
err.emit();
// Recover from parse error, callers expect the closing delim to be consumed.
self.consume_block(delim, ConsumeClosingDelim::Yes);
self.mk_expr(lo.to(self.prev_token.span), ExprKind::Err, AttrVec::new())
}
}
}
pub(super) fn recover_closing_delimiter(
&mut self,
tokens: &[TokenKind],
mut err: DiagnosticBuilder<'a>,
) -> PResult<'a, bool> {
let mut pos = None;
// We want to use the last closing delim that would apply.
for (i, unmatched) in self.unclosed_delims.iter().enumerate().rev() {
if tokens.contains(&token::CloseDelim(unmatched.expected_delim))
&& Some(self.token.span) > unmatched.unclosed_span
{
pos = Some(i);
}
}
match pos {
Some(pos) => {
// Recover and assume that the detected unclosed delimiter was meant for
// this location. Emit the diagnostic and act as if the delimiter was
// present for the parser's sake.
// Don't attempt to recover from this unclosed delimiter more than once.
let unmatched = self.unclosed_delims.remove(pos);
let delim = TokenType::Token(token::CloseDelim(unmatched.expected_delim));
if unmatched.found_delim.is_none() {
// We encountered `Eof`, set this fact here to avoid complaining about missing
// `fn main()` when we found place to suggest the closing brace.
*self.sess.reached_eof.borrow_mut() = true;
}
// We want to suggest the inclusion of the closing delimiter where it makes
// the most sense, which is immediately after the last token:
//
// {foo(bar {}}
// - ^
// | |
// | help: `)` may belong here
// |
// unclosed delimiter
if let Some(sp) = unmatched.unclosed_span {
err.span_label(sp, "unclosed delimiter");
}
// Backticks should be removed to apply suggestions.
let mut delim = delim.to_string();
delim.retain(|c| c != '`');
err.span_suggestion_short(
self.prev_token.span.shrink_to_hi(),
&format!("`{}` may belong here", delim),
delim,
Applicability::MaybeIncorrect,
);
if unmatched.found_delim.is_none() {
// Encountered `Eof` when lexing blocks. Do not recover here to avoid knockdown
// errors which would be emitted elsewhere in the parser and let other error
// recovery consume the rest of the file.
Err(err)
} else {
err.emit();
self.expected_tokens.clear(); // Reduce the number of errors.
Ok(true)
}
}
_ => Err(err),
}
}
/// Eats tokens until we can be relatively sure we reached the end of the
/// statement. This is something of a best-effort heuristic.
///
/// We terminate when we find an unmatched `}` (without consuming it).
pub(super) fn recover_stmt(&mut self) {
self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore)
}
/// If `break_on_semi` is `Break`, then we will stop consuming tokens after
/// finding (and consuming) a `;` outside of `{}` or `[]` (note that this is
/// approximate -- it can mean we break too early due to macros, but that
/// should only lead to sub-optimal recovery, not inaccurate parsing).
///
/// If `break_on_block` is `Break`, then we will stop consuming tokens
/// after finding (and consuming) a brace-delimited block.
pub(super) fn recover_stmt_(
&mut self,
break_on_semi: SemiColonMode,
break_on_block: BlockMode,
) {
let mut brace_depth = 0;
let mut bracket_depth = 0;
let mut in_block = false;
debug!("recover_stmt_ enter loop (semi={:?}, block={:?})", break_on_semi, break_on_block);
loop {
debug!("recover_stmt_ loop {:?}", self.token);
match self.token.kind {
token::OpenDelim(token::DelimToken::Brace) => {
brace_depth += 1;
self.bump();
if break_on_block == BlockMode::Break && brace_depth == 1 && bracket_depth == 0
{
in_block = true;
}
}
token::OpenDelim(token::DelimToken::Bracket) => {
bracket_depth += 1;
self.bump();
}
token::CloseDelim(token::DelimToken::Brace) => {
if brace_depth == 0 {
debug!("recover_stmt_ return - close delim {:?}", self.token);
break;
}
brace_depth -= 1;
self.bump();
if in_block && bracket_depth == 0 && brace_depth == 0 {
debug!("recover_stmt_ return - block end {:?}", self.token);
break;
}
}
token::CloseDelim(token::DelimToken::Bracket) => {
bracket_depth -= 1;
if bracket_depth < 0 {
bracket_depth = 0;
}
self.bump();
}
token::Eof => {
debug!("recover_stmt_ return - Eof");
break;
}
token::Semi => {
self.bump();
if break_on_semi == SemiColonMode::Break
&& brace_depth == 0
&& bracket_depth == 0
{
debug!("recover_stmt_ return - Semi");
break;
}
}
token::Comma
if break_on_semi == SemiColonMode::Comma
&& brace_depth == 0
&& bracket_depth == 0 =>
{
debug!("recover_stmt_ return - Semi");
break;
}
_ => self.bump(),
}
}
}
pub(super) fn check_for_for_in_in_typo(&mut self, in_span: Span) {
if self.eat_keyword(kw::In) {
// a common typo: `for _ in in bar {}`
self.struct_span_err(self.prev_token.span, "expected iterable, found keyword `in`")
.span_suggestion_short(
in_span.until(self.prev_token.span),
"remove the duplicated `in`",
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
}
pub(super) fn expected_semi_or_open_brace<T>(&mut self) -> PResult<'a, T> {
let token_str = super::token_descr(&self.token);
let msg = &format!("expected `;` or `{{`, found {}", token_str);
let mut err = self.struct_span_err(self.token.span, msg);
err.span_label(self.token.span, "expected `;` or `{`");
Err(err)
}
pub(super) fn eat_incorrect_doc_comment_for_param_type(&mut self) {
if let token::DocComment(..) = self.token.kind {
self.struct_span_err(
self.token.span,
"documentation comments cannot be applied to a function parameter's type",
)
.span_label(self.token.span, "doc comments are not allowed here")
.emit();
self.bump();
} else if self.token == token::Pound
&& self.look_ahead(1, |t| *t == token::OpenDelim(token::Bracket))
{
let lo = self.token.span;
// Skip every token until next possible arg.
while self.token != token::CloseDelim(token::Bracket) {
self.bump();
}
let sp = lo.to(self.token.span);
self.bump();
self.struct_span_err(sp, "attributes cannot be applied to a function parameter's type")
.span_label(sp, "attributes are not allowed here")
.emit();
}
}
pub(super) fn parameter_without_type(
&mut self,
err: &mut DiagnosticBuilder<'_>,
pat: P<ast::Pat>,
require_name: bool,
first_param: bool,
) -> Option<Ident> {
// If we find a pattern followed by an identifier, it could be an (incorrect)
// C-style parameter declaration.
if self.check_ident()
&& self.look_ahead(1, |t| *t == token::Comma || *t == token::CloseDelim(token::Paren))
{
// `fn foo(String s) {}`
let ident = self.parse_ident().unwrap();
let span = pat.span.with_hi(ident.span.hi());
err.span_suggestion(
span,
"declare the type after the parameter binding",
String::from("<identifier>: <type>"),
Applicability::HasPlaceholders,
);
return Some(ident);
} else if let PatKind::Ident(_, ident, _) = pat.kind {
if require_name
&& (self.token == token::Comma
|| self.token == token::Lt
|| self.token == token::CloseDelim(token::Paren))
{
// `fn foo(a, b) {}`, `fn foo(a<x>, b<y>) {}` or `fn foo(usize, usize) {}`
if first_param {
err.span_suggestion(
pat.span,
"if this is a `self` type, give it a parameter name",
format!("self: {}", ident),
Applicability::MaybeIncorrect,
);
}
// Avoid suggesting that `fn foo(HashMap<u32>)` is fixed with a change to
// `fn foo(HashMap: TypeName<u32>)`.
if self.token != token::Lt {
err.span_suggestion(
pat.span,
"if this is a parameter name, give it a type",
format!("{}: TypeName", ident),
Applicability::HasPlaceholders,
);
}
err.span_suggestion(
pat.span,
"if this is a type, explicitly ignore the parameter name",
format!("_: {}", ident),
Applicability::MachineApplicable,
);
err.note("anonymous parameters are removed in the 2018 edition (see RFC 1685)");
// Don't attempt to recover by using the `X` in `X<Y>` as the parameter name.
return if self.token == token::Lt { None } else { Some(ident) };
}
}
None
}
pub(super) fn recover_arg_parse(&mut self) -> PResult<'a, (P<ast::Pat>, P<ast::Ty>)> {
let pat = self.parse_pat(Some("argument name"))?;
self.expect(&token::Colon)?;
let ty = self.parse_ty()?;
struct_span_err!(
self.diagnostic(),
pat.span,
E0642,
"patterns aren't allowed in methods without bodies",
)
.span_suggestion_short(
pat.span,
"give this argument a name or use an underscore to ignore it",
"_".to_owned(),
Applicability::MachineApplicable,
)
.emit();
// Pretend the pattern is `_`, to avoid duplicate errors from AST validation.
let pat =
P(Pat { kind: PatKind::Wild, span: pat.span, id: ast::DUMMY_NODE_ID, tokens: None });
Ok((pat, ty))
}
pub(super) fn recover_bad_self_param(&mut self, mut param: Param) -> PResult<'a, Param> {
let sp = param.pat.span;
param.ty.kind = TyKind::Err;
self.struct_span_err(sp, "unexpected `self` parameter in function")
.span_label(sp, "must be the first parameter of an associated function")
.emit();
Ok(param)
}
pub(super) fn consume_block(
&mut self,
delim: token::DelimToken,
consume_close: ConsumeClosingDelim,
) {
let mut brace_depth = 0;
loop {
if self.eat(&token::OpenDelim(delim)) {
brace_depth += 1;
} else if self.check(&token::CloseDelim(delim)) {
if brace_depth == 0 {
if let ConsumeClosingDelim::Yes = consume_close {
// Some of the callers of this method expect to be able to parse the
// closing delimiter themselves, so we leave it alone. Otherwise we advance
// the parser.
self.bump();
}
return;
} else {
self.bump();
brace_depth -= 1;
continue;
}
} else if self.token == token::Eof || self.eat(&token::CloseDelim(token::NoDelim)) {
return;
} else {
self.bump();
}
}
}
pub(super) fn expected_expression_found(&self) -> DiagnosticBuilder<'a> {
let (span, msg) = match (&self.token.kind, self.subparser_name) {
(&token::Eof, Some(origin)) => {
let sp = self.sess.source_map().next_point(self.token.span);
(sp, format!("expected expression, found end of {}", origin))
}
_ => (
self.token.span,
format!("expected expression, found {}", super::token_descr(&self.token),),
),
};
let mut err = self.struct_span_err(span, &msg);
let sp = self.sess.source_map().start_point(self.token.span);
if let Some(sp) = self.sess.ambiguous_block_expr_parse.borrow().get(&sp) {
self.sess.expr_parentheses_needed(&mut err, *sp, None);
}
err.span_label(span, "expected expression");
err
}
fn consume_tts(
&mut self,
mut acc: i64, // `i64` because malformed code can have more closing delims than opening.
// Not using `FxHashMap` due to `token::TokenKind: !Eq + !Hash`.
modifier: &[(token::TokenKind, i64)],
) {
while acc > 0 {
if let Some((_, val)) = modifier.iter().find(|(t, _)| *t == self.token.kind) {
acc += *val;
}
if self.token.kind == token::Eof {
break;
}
self.bump();
}
}
/// Replace duplicated recovered parameters with `_` pattern to avoid unnecessary errors.
///
/// This is necessary because at this point we don't know whether we parsed a function with
/// anonymous parameters or a function with names but no types. In order to minimize
/// unnecessary errors, we assume the parameters are in the shape of `fn foo(a, b, c)` where
/// the parameters are *names* (so we don't emit errors about not being able to find `b` in
/// the local scope), but if we find the same name multiple times, like in `fn foo(i8, i8)`,
/// we deduplicate them to not complain about duplicated parameter names.
pub(super) fn deduplicate_recovered_params_names(&self, fn_inputs: &mut Vec<Param>) {
let mut seen_inputs = FxHashSet::default();
for input in fn_inputs.iter_mut() {
let opt_ident = if let (PatKind::Ident(_, ident, _), TyKind::Err) =
(&input.pat.kind, &input.ty.kind)
{
Some(*ident)
} else {
None
};
if let Some(ident) = opt_ident {
if seen_inputs.contains(&ident) {
input.pat.kind = PatKind::Wild;
}
seen_inputs.insert(ident);
}
}
}
}