blob: 795c5a64d26b72e44b6b1c2d15dbed318f907b14 [file] [log] [blame]
//! Error Reporting Code for the inference engine
//!
//! Because of the way inference, and in particular region inference,
//! works, it often happens that errors are not detected until far after
//! the relevant line of code has been type-checked. Therefore, there is
//! an elaborate system to track why a particular constraint in the
//! inference graph arose so that we can explain to the user what gave
//! rise to a particular error.
//!
//! The basis of the system are the "origin" types. An "origin" is the
//! reason that a constraint or inference variable arose. There are
//! different "origin" enums for different kinds of constraints/variables
//! (e.g., `TypeOrigin`, `RegionVariableOrigin`). An origin always has
//! a span, but also more information so that we can generate a meaningful
//! error message.
//!
//! Having a catalog of all the different reasons an error can arise is
//! also useful for other reasons, like cross-referencing FAQs etc, though
//! we are not really taking advantage of this yet.
//!
//! # Region Inference
//!
//! Region inference is particularly tricky because it always succeeds "in
//! the moment" and simply registers a constraint. Then, at the end, we
//! can compute the full graph and report errors, so we need to be able to
//! store and later report what gave rise to the conflicting constraints.
//!
//! # Subtype Trace
//!
//! Determining whether `T1 <: T2` often involves a number of subtypes and
//! subconstraints along the way. A "TypeTrace" is an extended version
//! of an origin that traces the types and other values that were being
//! compared. It is not necessarily comprehensive (in fact, at the time of
//! this writing it only tracks the root values being compared) but I'd
//! like to extend it to include significant "waypoints". For example, if
//! you are comparing `(T1, T2) <: (T3, T4)`, and the problem is that `T2
//! <: T4` fails, I'd like the trace to include enough information to say
//! "in the 2nd element of the tuple". Similarly, failures when comparing
//! arguments or return types in fn types should be able to cite the
//! specific position, etc.
//!
//! # Reality vs plan
//!
//! Of course, there is still a LOT of code in typeck that has yet to be
//! ported to this system, and which relies on string concatenation at the
//! time of error detection.
use super::lexical_region_resolve::RegionResolutionError;
use super::region_constraints::GenericKind;
use super::{InferCtxt, RegionVariableOrigin, SubregionOrigin, TypeTrace, ValuePairs};
use crate::infer;
use crate::infer::OriginalQueryValues;
use crate::traits::error_reporting::report_object_safety_error;
use crate::traits::{
IfExpressionCause, MatchExpressionArmCause, ObligationCause, ObligationCauseCode,
};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{pluralize, struct_span_err};
use rustc_errors::{Applicability, DiagnosticBuilder, DiagnosticStyledString};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{Item, ItemKind, Node};
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::ParamEnvAnd;
use rustc_middle::ty::{
self,
subst::{Subst, SubstsRef},
Region, Ty, TyCtxt, TypeFoldable,
};
use rustc_span::{BytePos, DesugaringKind, Pos, Span};
use rustc_target::spec::abi;
use std::{cmp, fmt};
mod note;
mod need_type_info;
pub use need_type_info::TypeAnnotationNeeded;
pub mod nice_region_error;
pub(super) fn note_and_explain_region(
tcx: TyCtxt<'tcx>,
err: &mut DiagnosticBuilder<'_>,
prefix: &str,
region: ty::Region<'tcx>,
suffix: &str,
) {
let (description, span) = match *region {
ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReStatic => {
msg_span_from_free_region(tcx, region)
}
ty::ReEmpty(ty::UniverseIndex::ROOT) => ("the empty lifetime".to_owned(), None),
// uh oh, hope no user ever sees THIS
ty::ReEmpty(ui) => (format!("the empty lifetime in universe {:?}", ui), None),
ty::RePlaceholder(_) => ("any other region".to_string(), None),
// FIXME(#13998) RePlaceholder should probably print like
// ReFree rather than dumping Debug output on the user.
//
// We shouldn't really be having unification failures with ReVar
// and ReLateBound though.
ty::ReVar(_) | ty::ReLateBound(..) | ty::ReErased => {
(format!("lifetime {:?}", region), None)
}
};
emit_msg_span(err, prefix, description, span, suffix);
}
pub(super) fn note_and_explain_free_region(
tcx: TyCtxt<'tcx>,
err: &mut DiagnosticBuilder<'_>,
prefix: &str,
region: ty::Region<'tcx>,
suffix: &str,
) {
let (description, span) = msg_span_from_free_region(tcx, region);
emit_msg_span(err, prefix, description, span, suffix);
}
fn msg_span_from_free_region(
tcx: TyCtxt<'tcx>,
region: ty::Region<'tcx>,
) -> (String, Option<Span>) {
match *region {
ty::ReEarlyBound(_) | ty::ReFree(_) => {
msg_span_from_early_bound_and_free_regions(tcx, region)
}
ty::ReStatic => ("the static lifetime".to_owned(), None),
ty::ReEmpty(ty::UniverseIndex::ROOT) => ("an empty lifetime".to_owned(), None),
ty::ReEmpty(ui) => (format!("an empty lifetime in universe {:?}", ui), None),
_ => bug!("{:?}", region),
}
}
fn msg_span_from_early_bound_and_free_regions(
tcx: TyCtxt<'tcx>,
region: ty::Region<'tcx>,
) -> (String, Option<Span>) {
let sm = tcx.sess.source_map();
let scope = region.free_region_binding_scope(tcx);
let node = tcx.hir().local_def_id_to_hir_id(scope.expect_local());
let tag = match tcx.hir().find(node) {
Some(Node::Block(_) | Node::Expr(_)) => "body",
Some(Node::Item(it)) => item_scope_tag(&it),
Some(Node::TraitItem(it)) => trait_item_scope_tag(&it),
Some(Node::ImplItem(it)) => impl_item_scope_tag(&it),
_ => unreachable!(),
};
let (prefix, span) = match *region {
ty::ReEarlyBound(ref br) => {
let mut sp = sm.guess_head_span(tcx.hir().span(node));
if let Some(param) =
tcx.hir().get_generics(scope).and_then(|generics| generics.get_named(br.name))
{
sp = param.span;
}
(format!("the lifetime `{}` as defined on", br.name), sp)
}
ty::ReFree(ty::FreeRegion { bound_region: ty::BoundRegion::BrNamed(_, name), .. }) => {
let mut sp = sm.guess_head_span(tcx.hir().span(node));
if let Some(param) =
tcx.hir().get_generics(scope).and_then(|generics| generics.get_named(name))
{
sp = param.span;
}
(format!("the lifetime `{}` as defined on", name), sp)
}
ty::ReFree(ref fr) => match fr.bound_region {
ty::BrAnon(idx) => {
(format!("the anonymous lifetime #{} defined on", idx + 1), tcx.hir().span(node))
}
_ => (
format!("the lifetime `{}` as defined on", region),
sm.guess_head_span(tcx.hir().span(node)),
),
},
_ => bug!(),
};
let (msg, opt_span) = explain_span(tcx, tag, span);
(format!("{} {}", prefix, msg), opt_span)
}
fn emit_msg_span(
err: &mut DiagnosticBuilder<'_>,
prefix: &str,
description: String,
span: Option<Span>,
suffix: &str,
) {
let message = format!("{}{}{}", prefix, description, suffix);
if let Some(span) = span {
err.span_note(span, &message);
} else {
err.note(&message);
}
}
fn item_scope_tag(item: &hir::Item<'_>) -> &'static str {
match item.kind {
hir::ItemKind::Impl { .. } => "impl",
hir::ItemKind::Struct(..) => "struct",
hir::ItemKind::Union(..) => "union",
hir::ItemKind::Enum(..) => "enum",
hir::ItemKind::Trait(..) => "trait",
hir::ItemKind::Fn(..) => "function body",
_ => "item",
}
}
fn trait_item_scope_tag(item: &hir::TraitItem<'_>) -> &'static str {
match item.kind {
hir::TraitItemKind::Fn(..) => "method body",
hir::TraitItemKind::Const(..) | hir::TraitItemKind::Type(..) => "associated item",
}
}
fn impl_item_scope_tag(item: &hir::ImplItem<'_>) -> &'static str {
match item.kind {
hir::ImplItemKind::Fn(..) => "method body",
hir::ImplItemKind::Const(..) | hir::ImplItemKind::TyAlias(..) => "associated item",
}
}
fn explain_span(tcx: TyCtxt<'tcx>, heading: &str, span: Span) -> (String, Option<Span>) {
let lo = tcx.sess.source_map().lookup_char_pos(span.lo());
(format!("the {} at {}:{}", heading, lo.line, lo.col.to_usize() + 1), Some(span))
}
pub fn unexpected_hidden_region_diagnostic(
tcx: TyCtxt<'tcx>,
span: Span,
hidden_ty: Ty<'tcx>,
hidden_region: ty::Region<'tcx>,
) -> DiagnosticBuilder<'tcx> {
let mut err = struct_span_err!(
tcx.sess,
span,
E0700,
"hidden type for `impl Trait` captures lifetime that does not appear in bounds",
);
// Explain the region we are capturing.
match hidden_region {
ty::ReEmpty(ty::UniverseIndex::ROOT) => {
// All lifetimes shorter than the function body are `empty` in
// lexical region resolution. The default explanation of "an empty
// lifetime" isn't really accurate here.
let message = format!(
"hidden type `{}` captures lifetime smaller than the function body",
hidden_ty
);
err.span_note(span, &message);
}
ty::ReEarlyBound(_) | ty::ReFree(_) | ty::ReStatic | ty::ReEmpty(_) => {
// Assuming regionck succeeded (*), we ought to always be
// capturing *some* region from the fn header, and hence it
// ought to be free. So under normal circumstances, we will go
// down this path which gives a decent human readable
// explanation.
//
// (*) if not, the `tainted_by_errors` field would be set to
// `Some(ErrorReported)` in any case, so we wouldn't be here at all.
note_and_explain_free_region(
tcx,
&mut err,
&format!("hidden type `{}` captures ", hidden_ty),
hidden_region,
"",
);
}
_ => {
// Ugh. This is a painful case: the hidden region is not one
// that we can easily summarize or explain. This can happen
// in a case like
// `src/test/ui/multiple-lifetimes/ordinary-bounds-unsuited.rs`:
//
// ```
// fn upper_bounds<'a, 'b>(a: Ordinary<'a>, b: Ordinary<'b>) -> impl Trait<'a, 'b> {
// if condition() { a } else { b }
// }
// ```
//
// Here the captured lifetime is the intersection of `'a` and
// `'b`, which we can't quite express.
// We can at least report a really cryptic error for now.
note_and_explain_region(
tcx,
&mut err,
&format!("hidden type `{}` captures ", hidden_ty),
hidden_region,
"",
);
}
}
err
}
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
pub fn report_region_errors(&self, errors: &Vec<RegionResolutionError<'tcx>>) {
debug!("report_region_errors(): {} errors to start", errors.len());
// try to pre-process the errors, which will group some of them
// together into a `ProcessedErrors` group:
let errors = self.process_errors(errors);
debug!("report_region_errors: {} errors after preprocessing", errors.len());
for error in errors {
debug!("report_region_errors: error = {:?}", error);
if !self.try_report_nice_region_error(&error) {
match error.clone() {
// These errors could indicate all manner of different
// problems with many different solutions. Rather
// than generate a "one size fits all" error, what we
// attempt to do is go through a number of specific
// scenarios and try to find the best way to present
// the error. If all of these fails, we fall back to a rather
// general bit of code that displays the error information
RegionResolutionError::ConcreteFailure(origin, sub, sup) => {
if sub.is_placeholder() || sup.is_placeholder() {
self.report_placeholder_failure(origin, sub, sup).emit();
} else {
self.report_concrete_failure(origin, sub, sup).emit();
}
}
RegionResolutionError::GenericBoundFailure(origin, param_ty, sub) => {
self.report_generic_bound_failure(
origin.span(),
Some(origin),
param_ty,
sub,
);
}
RegionResolutionError::SubSupConflict(
_,
var_origin,
sub_origin,
sub_r,
sup_origin,
sup_r,
) => {
if sub_r.is_placeholder() {
self.report_placeholder_failure(sub_origin, sub_r, sup_r).emit();
} else if sup_r.is_placeholder() {
self.report_placeholder_failure(sup_origin, sub_r, sup_r).emit();
} else {
self.report_sub_sup_conflict(
var_origin, sub_origin, sub_r, sup_origin, sup_r,
);
}
}
RegionResolutionError::UpperBoundUniverseConflict(
_,
_,
var_universe,
sup_origin,
sup_r,
) => {
assert!(sup_r.is_placeholder());
// Make a dummy value for the "sub region" --
// this is the initial value of the
// placeholder. In practice, we expect more
// tailored errors that don't really use this
// value.
let sub_r = self.tcx.mk_region(ty::ReEmpty(var_universe));
self.report_placeholder_failure(sup_origin, sub_r, sup_r).emit();
}
RegionResolutionError::MemberConstraintFailure {
hidden_ty,
member_region,
span,
} => {
let hidden_ty = self.resolve_vars_if_possible(&hidden_ty);
unexpected_hidden_region_diagnostic(
self.tcx,
span,
hidden_ty,
member_region,
)
.emit();
}
}
}
}
}
// This method goes through all the errors and try to group certain types
// of error together, for the purpose of suggesting explicit lifetime
// parameters to the user. This is done so that we can have a more
// complete view of what lifetimes should be the same.
// If the return value is an empty vector, it means that processing
// failed (so the return value of this method should not be used).
//
// The method also attempts to weed out messages that seem like
// duplicates that will be unhelpful to the end-user. But
// obviously it never weeds out ALL errors.
fn process_errors(
&self,
errors: &Vec<RegionResolutionError<'tcx>>,
) -> Vec<RegionResolutionError<'tcx>> {
debug!("process_errors()");
// We want to avoid reporting generic-bound failures if we can
// avoid it: these have a very high rate of being unhelpful in
// practice. This is because they are basically secondary
// checks that test the state of the region graph after the
// rest of inference is done, and the other kinds of errors
// indicate that the region constraint graph is internally
// inconsistent, so these test results are likely to be
// meaningless.
//
// Therefore, we filter them out of the list unless they are
// the only thing in the list.
let is_bound_failure = |e: &RegionResolutionError<'tcx>| match *e {
RegionResolutionError::GenericBoundFailure(..) => true,
RegionResolutionError::ConcreteFailure(..)
| RegionResolutionError::SubSupConflict(..)
| RegionResolutionError::UpperBoundUniverseConflict(..)
| RegionResolutionError::MemberConstraintFailure { .. } => false,
};
let mut errors = if errors.iter().all(|e| is_bound_failure(e)) {
errors.clone()
} else {
errors.iter().filter(|&e| !is_bound_failure(e)).cloned().collect()
};
// sort the errors by span, for better error message stability.
errors.sort_by_key(|u| match *u {
RegionResolutionError::ConcreteFailure(ref sro, _, _) => sro.span(),
RegionResolutionError::GenericBoundFailure(ref sro, _, _) => sro.span(),
RegionResolutionError::SubSupConflict(_, ref rvo, _, _, _, _) => rvo.span(),
RegionResolutionError::UpperBoundUniverseConflict(_, ref rvo, _, _, _) => rvo.span(),
RegionResolutionError::MemberConstraintFailure { span, .. } => span,
});
errors
}
/// Adds a note if the types come from similarly named crates
fn check_and_note_conflicting_crates(
&self,
err: &mut DiagnosticBuilder<'_>,
terr: &TypeError<'tcx>,
) {
use hir::def_id::CrateNum;
use rustc_hir::definitions::DisambiguatedDefPathData;
use ty::print::Printer;
use ty::subst::GenericArg;
struct AbsolutePathPrinter<'tcx> {
tcx: TyCtxt<'tcx>,
}
struct NonTrivialPath;
impl<'tcx> Printer<'tcx> for AbsolutePathPrinter<'tcx> {
type Error = NonTrivialPath;
type Path = Vec<String>;
type Region = !;
type Type = !;
type DynExistential = !;
type Const = !;
fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
self.tcx
}
fn print_region(self, _region: ty::Region<'_>) -> Result<Self::Region, Self::Error> {
Err(NonTrivialPath)
}
fn print_type(self, _ty: Ty<'tcx>) -> Result<Self::Type, Self::Error> {
Err(NonTrivialPath)
}
fn print_dyn_existential(
self,
_predicates: &'tcx ty::List<ty::ExistentialPredicate<'tcx>>,
) -> Result<Self::DynExistential, Self::Error> {
Err(NonTrivialPath)
}
fn print_const(self, _ct: &'tcx ty::Const<'tcx>) -> Result<Self::Const, Self::Error> {
Err(NonTrivialPath)
}
fn path_crate(self, cnum: CrateNum) -> Result<Self::Path, Self::Error> {
Ok(vec![self.tcx.original_crate_name(cnum).to_string()])
}
fn path_qualified(
self,
_self_ty: Ty<'tcx>,
_trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<Self::Path, Self::Error> {
Err(NonTrivialPath)
}
fn path_append_impl(
self,
_print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
_disambiguated_data: &DisambiguatedDefPathData,
_self_ty: Ty<'tcx>,
_trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<Self::Path, Self::Error> {
Err(NonTrivialPath)
}
fn path_append(
self,
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
disambiguated_data: &DisambiguatedDefPathData,
) -> Result<Self::Path, Self::Error> {
let mut path = print_prefix(self)?;
path.push(disambiguated_data.to_string());
Ok(path)
}
fn path_generic_args(
self,
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
_args: &[GenericArg<'tcx>],
) -> Result<Self::Path, Self::Error> {
print_prefix(self)
}
}
let report_path_match = |err: &mut DiagnosticBuilder<'_>, did1: DefId, did2: DefId| {
// Only external crates, if either is from a local
// module we could have false positives
if !(did1.is_local() || did2.is_local()) && did1.krate != did2.krate {
let abs_path =
|def_id| AbsolutePathPrinter { tcx: self.tcx }.print_def_path(def_id, &[]);
// We compare strings because DefPath can be different
// for imported and non-imported crates
let same_path = || -> Result<_, NonTrivialPath> {
Ok(self.tcx.def_path_str(did1) == self.tcx.def_path_str(did2)
|| abs_path(did1)? == abs_path(did2)?)
};
if same_path().unwrap_or(false) {
let crate_name = self.tcx.crate_name(did1.krate);
err.note(&format!(
"perhaps two different versions of crate `{}` are being used?",
crate_name
));
}
}
};
match *terr {
TypeError::Sorts(ref exp_found) => {
// if they are both "path types", there's a chance of ambiguity
// due to different versions of the same crate
if let (&ty::Adt(exp_adt, _), &ty::Adt(found_adt, _)) =
(exp_found.expected.kind(), exp_found.found.kind())
{
report_path_match(err, exp_adt.did, found_adt.did);
}
}
TypeError::Traits(ref exp_found) => {
report_path_match(err, exp_found.expected, exp_found.found);
}
_ => (), // FIXME(#22750) handle traits and stuff
}
}
fn note_error_origin(
&self,
err: &mut DiagnosticBuilder<'tcx>,
cause: &ObligationCause<'tcx>,
exp_found: Option<ty::error::ExpectedFound<Ty<'tcx>>>,
) {
match cause.code {
ObligationCauseCode::Pattern { origin_expr: true, span: Some(span), root_ty } => {
let ty = self.resolve_vars_if_possible(&root_ty);
if ty.is_suggestable() {
// don't show type `_`
err.span_label(span, format!("this expression has type `{}`", ty));
}
if let Some(ty::error::ExpectedFound { found, .. }) = exp_found {
if ty.is_box() && ty.boxed_ty() == found {
if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
err.span_suggestion(
span,
"consider dereferencing the boxed value",
format!("*{}", snippet),
Applicability::MachineApplicable,
);
}
}
}
}
ObligationCauseCode::Pattern { origin_expr: false, span: Some(span), .. } => {
err.span_label(span, "expected due to this");
}
ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
semi_span,
source,
ref prior_arms,
last_ty,
scrut_hir_id,
opt_suggest_box_span,
arm_span,
..
}) => match source {
hir::MatchSource::IfLetDesugar { .. } => {
let msg = "`if let` arms have incompatible types";
err.span_label(cause.span, msg);
if let Some(ret_sp) = opt_suggest_box_span {
self.suggest_boxing_for_return_impl_trait(
err,
ret_sp,
prior_arms.iter().chain(std::iter::once(&arm_span)).map(|s| *s),
);
}
}
hir::MatchSource::TryDesugar => {
if let Some(ty::error::ExpectedFound { expected, .. }) = exp_found {
let scrut_expr = self.tcx.hir().expect_expr(scrut_hir_id);
let scrut_ty = if let hir::ExprKind::Call(_, args) = &scrut_expr.kind {
let arg_expr = args.first().expect("try desugaring call w/out arg");
self.in_progress_typeck_results.and_then(|typeck_results| {
typeck_results.borrow().expr_ty_opt(arg_expr)
})
} else {
bug!("try desugaring w/out call expr as scrutinee");
};
match scrut_ty {
Some(ty) if expected == ty => {
let source_map = self.tcx.sess.source_map();
err.span_suggestion(
source_map.end_point(cause.span),
"try removing this `?`",
"".to_string(),
Applicability::MachineApplicable,
);
}
_ => {}
}
}
}
_ => {
// `last_ty` can be `!`, `expected` will have better info when present.
let t = self.resolve_vars_if_possible(&match exp_found {
Some(ty::error::ExpectedFound { expected, .. }) => expected,
_ => last_ty,
});
let msg = "`match` arms have incompatible types";
err.span_label(cause.span, msg);
if prior_arms.len() <= 4 {
for sp in prior_arms {
err.span_label(*sp, format!("this is found to be of type `{}`", t));
}
} else if let Some(sp) = prior_arms.last() {
err.span_label(
*sp,
format!("this and all prior arms are found to be of type `{}`", t),
);
}
if let Some(sp) = semi_span {
err.span_suggestion_short(
sp,
"consider removing this semicolon",
String::new(),
Applicability::MachineApplicable,
);
}
if let Some(ret_sp) = opt_suggest_box_span {
// Get return type span and point to it.
self.suggest_boxing_for_return_impl_trait(
err,
ret_sp,
prior_arms.iter().chain(std::iter::once(&arm_span)).map(|s| *s),
);
}
}
},
ObligationCauseCode::IfExpression(box IfExpressionCause {
then,
else_sp,
outer,
semicolon,
opt_suggest_box_span,
}) => {
err.span_label(then, "expected because of this");
if let Some(sp) = outer {
err.span_label(sp, "`if` and `else` have incompatible types");
}
if let Some(sp) = semicolon {
err.span_suggestion_short(
sp,
"consider removing this semicolon",
String::new(),
Applicability::MachineApplicable,
);
}
if let Some(ret_sp) = opt_suggest_box_span {
self.suggest_boxing_for_return_impl_trait(
err,
ret_sp,
vec![then, else_sp].into_iter(),
);
}
}
_ => (),
}
}
fn suggest_boxing_for_return_impl_trait(
&self,
err: &mut DiagnosticBuilder<'tcx>,
return_sp: Span,
arm_spans: impl Iterator<Item = Span>,
) {
err.multipart_suggestion(
"you could change the return type to be a boxed trait object",
vec![
(return_sp.with_hi(return_sp.lo() + BytePos(4)), "Box<dyn".to_string()),
(return_sp.shrink_to_hi(), ">".to_string()),
],
Applicability::MaybeIncorrect,
);
let sugg = arm_spans
.flat_map(|sp| {
vec![
(sp.shrink_to_lo(), "Box::new(".to_string()),
(sp.shrink_to_hi(), ")".to_string()),
]
.into_iter()
})
.collect::<Vec<_>>();
err.multipart_suggestion(
"if you change the return type to expect trait objects, box the returned expressions",
sugg,
Applicability::MaybeIncorrect,
);
}
/// Given that `other_ty` is the same as a type argument for `name` in `sub`, populate `value`
/// highlighting `name` and every type argument that isn't at `pos` (which is `other_ty`), and
/// populate `other_value` with `other_ty`.
///
/// ```text
/// Foo<Bar<Qux>>
/// ^^^^--------^ this is highlighted
/// | |
/// | this type argument is exactly the same as the other type, not highlighted
/// this is highlighted
/// Bar<Qux>
/// -------- this type is the same as a type argument in the other type, not highlighted
/// ```
fn highlight_outer(
&self,
value: &mut DiagnosticStyledString,
other_value: &mut DiagnosticStyledString,
name: String,
sub: ty::subst::SubstsRef<'tcx>,
pos: usize,
other_ty: Ty<'tcx>,
) {
// `value` and `other_value` hold two incomplete type representation for display.
// `name` is the path of both types being compared. `sub`
value.push_highlighted(name);
let len = sub.len();
if len > 0 {
value.push_highlighted("<");
}
// Output the lifetimes for the first type
let lifetimes = sub
.regions()
.map(|lifetime| {
let s = lifetime.to_string();
if s.is_empty() { "'_".to_string() } else { s }
})
.collect::<Vec<_>>()
.join(", ");
if !lifetimes.is_empty() {
if sub.regions().count() < len {
value.push_normal(lifetimes + ", ");
} else {
value.push_normal(lifetimes);
}
}
// Highlight all the type arguments that aren't at `pos` and compare the type argument at
// `pos` and `other_ty`.
for (i, type_arg) in sub.types().enumerate() {
if i == pos {
let values = self.cmp(type_arg, other_ty);
value.0.extend((values.0).0);
other_value.0.extend((values.1).0);
} else {
value.push_highlighted(type_arg.to_string());
}
if len > 0 && i != len - 1 {
value.push_normal(", ");
}
}
if len > 0 {
value.push_highlighted(">");
}
}
/// If `other_ty` is the same as a type argument present in `sub`, highlight `path` in `t1_out`,
/// as that is the difference to the other type.
///
/// For the following code:
///
/// ```no_run
/// let x: Foo<Bar<Qux>> = foo::<Bar<Qux>>();
/// ```
///
/// The type error output will behave in the following way:
///
/// ```text
/// Foo<Bar<Qux>>
/// ^^^^--------^ this is highlighted
/// | |
/// | this type argument is exactly the same as the other type, not highlighted
/// this is highlighted
/// Bar<Qux>
/// -------- this type is the same as a type argument in the other type, not highlighted
/// ```
fn cmp_type_arg(
&self,
mut t1_out: &mut DiagnosticStyledString,
mut t2_out: &mut DiagnosticStyledString,
path: String,
sub: ty::subst::SubstsRef<'tcx>,
other_path: String,
other_ty: Ty<'tcx>,
) -> Option<()> {
for (i, ta) in sub.types().enumerate() {
if ta == other_ty {
self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
return Some(());
}
if let &ty::Adt(def, _) = ta.kind() {
let path_ = self.tcx.def_path_str(def.did);
if path_ == other_path {
self.highlight_outer(&mut t1_out, &mut t2_out, path, sub, i, &other_ty);
return Some(());
}
}
}
None
}
/// Adds a `,` to the type representation only if it is appropriate.
fn push_comma(
&self,
value: &mut DiagnosticStyledString,
other_value: &mut DiagnosticStyledString,
len: usize,
pos: usize,
) {
if len > 0 && pos != len - 1 {
value.push_normal(", ");
other_value.push_normal(", ");
}
}
/// For generic types with parameters with defaults, remove the parameters corresponding to
/// the defaults. This repeats a lot of the logic found in `ty::print::pretty`.
fn strip_generic_default_params(
&self,
def_id: DefId,
substs: ty::subst::SubstsRef<'tcx>,
) -> SubstsRef<'tcx> {
let generics = self.tcx.generics_of(def_id);
let mut num_supplied_defaults = 0;
let mut type_params = generics
.params
.iter()
.rev()
.filter_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime => None,
ty::GenericParamDefKind::Type { has_default, .. } => {
Some((param.def_id, has_default))
}
ty::GenericParamDefKind::Const => None, // FIXME(const_generics:defaults)
})
.peekable();
let has_default = {
let has_default = type_params.peek().map(|(_, has_default)| has_default);
*has_default.unwrap_or(&false)
};
if has_default {
let types = substs.types().rev();
for ((def_id, has_default), actual) in type_params.zip(types) {
if !has_default {
break;
}
if self.tcx.type_of(def_id).subst(self.tcx, substs) != actual {
break;
}
num_supplied_defaults += 1;
}
}
let len = generics.params.len();
let mut generics = generics.clone();
generics.params.truncate(len - num_supplied_defaults);
substs.truncate_to(self.tcx, &generics)
}
/// Given two `fn` signatures highlight only sub-parts that are different.
fn cmp_fn_sig(
&self,
sig1: &ty::PolyFnSig<'tcx>,
sig2: &ty::PolyFnSig<'tcx>,
) -> (DiagnosticStyledString, DiagnosticStyledString) {
let get_lifetimes = |sig| {
use rustc_hir::def::Namespace;
let mut s = String::new();
let (_, (sig, reg)) = ty::print::FmtPrinter::new(self.tcx, &mut s, Namespace::TypeNS)
.name_all_regions(sig)
.unwrap();
let lts: Vec<String> = reg.into_iter().map(|(_, kind)| kind.to_string()).collect();
(if lts.is_empty() { String::new() } else { format!("for<{}> ", lts.join(", ")) }, sig)
};
let (lt1, sig1) = get_lifetimes(sig1);
let (lt2, sig2) = get_lifetimes(sig2);
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
let mut values = (
DiagnosticStyledString::normal("".to_string()),
DiagnosticStyledString::normal("".to_string()),
);
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^^^^
values.0.push(sig1.unsafety.prefix_str(), sig1.unsafety != sig2.unsafety);
values.1.push(sig2.unsafety.prefix_str(), sig1.unsafety != sig2.unsafety);
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^^^^^^^^
if sig1.abi != abi::Abi::Rust {
values.0.push(format!("extern {} ", sig1.abi), sig1.abi != sig2.abi);
}
if sig2.abi != abi::Abi::Rust {
values.1.push(format!("extern {} ", sig2.abi), sig1.abi != sig2.abi);
}
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^^^^^^
let lifetime_diff = lt1 != lt2;
values.0.push(lt1, lifetime_diff);
values.1.push(lt2, lifetime_diff);
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^
values.0.push_normal("fn(");
values.1.push_normal("fn(");
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^^^
let len1 = sig1.inputs().len();
let len2 = sig2.inputs().len();
if len1 == len2 {
for (i, (l, r)) in sig1.inputs().iter().zip(sig2.inputs().iter()).enumerate() {
let (x1, x2) = self.cmp(l, r);
(values.0).0.extend(x1.0);
(values.1).0.extend(x2.0);
self.push_comma(&mut values.0, &mut values.1, len1, i);
}
} else {
for (i, l) in sig1.inputs().iter().enumerate() {
values.0.push_highlighted(l.to_string());
if i != len1 - 1 {
values.0.push_highlighted(", ");
}
}
for (i, r) in sig2.inputs().iter().enumerate() {
values.1.push_highlighted(r.to_string());
if i != len2 - 1 {
values.1.push_highlighted(", ");
}
}
}
if sig1.c_variadic {
if len1 > 0 {
values.0.push_normal(", ");
}
values.0.push("...", !sig2.c_variadic);
}
if sig2.c_variadic {
if len2 > 0 {
values.1.push_normal(", ");
}
values.1.push("...", !sig1.c_variadic);
}
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^
values.0.push_normal(")");
values.1.push_normal(")");
// unsafe extern "C" for<'a> fn(&'a T) -> &'a T
// ^^^^^^^^
let output1 = sig1.output();
let output2 = sig2.output();
let (x1, x2) = self.cmp(output1, output2);
if !output1.is_unit() {
values.0.push_normal(" -> ");
(values.0).0.extend(x1.0);
}
if !output2.is_unit() {
values.1.push_normal(" -> ");
(values.1).0.extend(x2.0);
}
values
}
/// Compares two given types, eliding parts that are the same between them and highlighting
/// relevant differences, and return two representation of those types for highlighted printing.
fn cmp(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> (DiagnosticStyledString, DiagnosticStyledString) {
debug!("cmp(t1={}, t1.kind={:?}, t2={}, t2.kind={:?})", t1, t1.kind(), t2, t2.kind());
// helper functions
fn equals<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match (a.kind(), b.kind()) {
(a, b) if *a == *b => true,
(&ty::Int(_), &ty::Infer(ty::InferTy::IntVar(_)))
| (
&ty::Infer(ty::InferTy::IntVar(_)),
&ty::Int(_) | &ty::Infer(ty::InferTy::IntVar(_)),
)
| (&ty::Float(_), &ty::Infer(ty::InferTy::FloatVar(_)))
| (
&ty::Infer(ty::InferTy::FloatVar(_)),
&ty::Float(_) | &ty::Infer(ty::InferTy::FloatVar(_)),
) => true,
_ => false,
}
}
fn push_ty_ref<'tcx>(
region: &ty::Region<'tcx>,
ty: Ty<'tcx>,
mutbl: hir::Mutability,
s: &mut DiagnosticStyledString,
) {
let mut r = region.to_string();
if r == "'_" {
r.clear();
} else {
r.push(' ');
}
s.push_highlighted(format!("&{}{}", r, mutbl.prefix_str()));
s.push_normal(ty.to_string());
}
// process starts here
match (t1.kind(), t2.kind()) {
(&ty::Adt(def1, sub1), &ty::Adt(def2, sub2)) => {
let sub_no_defaults_1 = self.strip_generic_default_params(def1.did, sub1);
let sub_no_defaults_2 = self.strip_generic_default_params(def2.did, sub2);
let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
let path1 = self.tcx.def_path_str(def1.did);
let path2 = self.tcx.def_path_str(def2.did);
if def1.did == def2.did {
// Easy case. Replace same types with `_` to shorten the output and highlight
// the differing ones.
// let x: Foo<Bar, Qux> = y::<Foo<Quz, Qux>>();
// Foo<Bar, _>
// Foo<Quz, _>
// --- ^ type argument elided
// |
// highlighted in output
values.0.push_normal(path1);
values.1.push_normal(path2);
// Avoid printing out default generic parameters that are common to both
// types.
let len1 = sub_no_defaults_1.len();
let len2 = sub_no_defaults_2.len();
let common_len = cmp::min(len1, len2);
let remainder1: Vec<_> = sub1.types().skip(common_len).collect();
let remainder2: Vec<_> = sub2.types().skip(common_len).collect();
let common_default_params = remainder1
.iter()
.rev()
.zip(remainder2.iter().rev())
.filter(|(a, b)| a == b)
.count();
let len = sub1.len() - common_default_params;
let consts_offset = len - sub1.consts().count();
// Only draw `<...>` if there're lifetime/type arguments.
if len > 0 {
values.0.push_normal("<");
values.1.push_normal("<");
}
fn lifetime_display(lifetime: Region<'_>) -> String {
let s = lifetime.to_string();
if s.is_empty() { "'_".to_string() } else { s }
}
// At one point we'd like to elide all lifetimes here, they are irrelevant for
// all diagnostics that use this output
//
// Foo<'x, '_, Bar>
// Foo<'y, '_, Qux>
// ^^ ^^ --- type arguments are not elided
// | |
// | elided as they were the same
// not elided, they were different, but irrelevant
let lifetimes = sub1.regions().zip(sub2.regions());
for (i, lifetimes) in lifetimes.enumerate() {
let l1 = lifetime_display(lifetimes.0);
let l2 = lifetime_display(lifetimes.1);
if lifetimes.0 == lifetimes.1 {
values.0.push_normal("'_");
values.1.push_normal("'_");
} else {
values.0.push_highlighted(l1);
values.1.push_highlighted(l2);
}
self.push_comma(&mut values.0, &mut values.1, len, i);
}
// We're comparing two types with the same path, so we compare the type
// arguments for both. If they are the same, do not highlight and elide from the
// output.
// Foo<_, Bar>
// Foo<_, Qux>
// ^ elided type as this type argument was the same in both sides
let type_arguments = sub1.types().zip(sub2.types());
let regions_len = sub1.regions().count();
let num_display_types = consts_offset - regions_len;
for (i, (ta1, ta2)) in type_arguments.take(num_display_types).enumerate() {
let i = i + regions_len;
if ta1 == ta2 {
values.0.push_normal("_");
values.1.push_normal("_");
} else {
let (x1, x2) = self.cmp(ta1, ta2);
(values.0).0.extend(x1.0);
(values.1).0.extend(x2.0);
}
self.push_comma(&mut values.0, &mut values.1, len, i);
}
// Do the same for const arguments, if they are equal, do not highlight and
// elide them from the output.
let const_arguments = sub1.consts().zip(sub2.consts());
for (i, (ca1, ca2)) in const_arguments.enumerate() {
let i = i + consts_offset;
if ca1 == ca2 {
values.0.push_normal("_");
values.1.push_normal("_");
} else {
values.0.push_highlighted(ca1.to_string());
values.1.push_highlighted(ca2.to_string());
}
self.push_comma(&mut values.0, &mut values.1, len, i);
}
// Close the type argument bracket.
// Only draw `<...>` if there're lifetime/type arguments.
if len > 0 {
values.0.push_normal(">");
values.1.push_normal(">");
}
values
} else {
// Check for case:
// let x: Foo<Bar<Qux> = foo::<Bar<Qux>>();
// Foo<Bar<Qux>
// ------- this type argument is exactly the same as the other type
// Bar<Qux>
if self
.cmp_type_arg(
&mut values.0,
&mut values.1,
path1.clone(),
sub_no_defaults_1,
path2.clone(),
&t2,
)
.is_some()
{
return values;
}
// Check for case:
// let x: Bar<Qux> = y:<Foo<Bar<Qux>>>();
// Bar<Qux>
// Foo<Bar<Qux>>
// ------- this type argument is exactly the same as the other type
if self
.cmp_type_arg(
&mut values.1,
&mut values.0,
path2,
sub_no_defaults_2,
path1,
&t1,
)
.is_some()
{
return values;
}
// We can't find anything in common, highlight relevant part of type path.
// let x: foo::bar::Baz<Qux> = y:<foo::bar::Bar<Zar>>();
// foo::bar::Baz<Qux>
// foo::bar::Bar<Zar>
// -------- this part of the path is different
let t1_str = t1.to_string();
let t2_str = t2.to_string();
let min_len = t1_str.len().min(t2_str.len());
const SEPARATOR: &str = "::";
let separator_len = SEPARATOR.len();
let split_idx: usize = t1_str
.split(SEPARATOR)
.zip(t2_str.split(SEPARATOR))
.take_while(|(mod1_str, mod2_str)| mod1_str == mod2_str)
.map(|(mod_str, _)| mod_str.len() + separator_len)
.sum();
debug!(
"cmp: separator_len={}, split_idx={}, min_len={}",
separator_len, split_idx, min_len
);
if split_idx >= min_len {
// paths are identical, highlight everything
(
DiagnosticStyledString::highlighted(t1_str),
DiagnosticStyledString::highlighted(t2_str),
)
} else {
let (common, uniq1) = t1_str.split_at(split_idx);
let (_, uniq2) = t2_str.split_at(split_idx);
debug!("cmp: common={}, uniq1={}, uniq2={}", common, uniq1, uniq2);
values.0.push_normal(common);
values.0.push_highlighted(uniq1);
values.1.push_normal(common);
values.1.push_highlighted(uniq2);
values
}
}
}
// When finding T != &T, highlight only the borrow
(&ty::Ref(r1, ref_ty1, mutbl1), _) if equals(&ref_ty1, &t2) => {
let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
push_ty_ref(&r1, ref_ty1, mutbl1, &mut values.0);
values.1.push_normal(t2.to_string());
values
}
(_, &ty::Ref(r2, ref_ty2, mutbl2)) if equals(&t1, &ref_ty2) => {
let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
values.0.push_normal(t1.to_string());
push_ty_ref(&r2, ref_ty2, mutbl2, &mut values.1);
values
}
// When encountering &T != &mut T, highlight only the borrow
(&ty::Ref(r1, ref_ty1, mutbl1), &ty::Ref(r2, ref_ty2, mutbl2))
if equals(&ref_ty1, &ref_ty2) =>
{
let mut values = (DiagnosticStyledString::new(), DiagnosticStyledString::new());
push_ty_ref(&r1, ref_ty1, mutbl1, &mut values.0);
push_ty_ref(&r2, ref_ty2, mutbl2, &mut values.1);
values
}
// When encountering tuples of the same size, highlight only the differing types
(&ty::Tuple(substs1), &ty::Tuple(substs2)) if substs1.len() == substs2.len() => {
let mut values =
(DiagnosticStyledString::normal("("), DiagnosticStyledString::normal("("));
let len = substs1.len();
for (i, (left, right)) in substs1.types().zip(substs2.types()).enumerate() {
let (x1, x2) = self.cmp(left, right);
(values.0).0.extend(x1.0);
(values.1).0.extend(x2.0);
self.push_comma(&mut values.0, &mut values.1, len, i);
}
if len == 1 {
// Keep the output for single element tuples as `(ty,)`.
values.0.push_normal(",");
values.1.push_normal(",");
}
values.0.push_normal(")");
values.1.push_normal(")");
values
}
(ty::FnDef(did1, substs1), ty::FnDef(did2, substs2)) => {
let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1);
let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2);
let mut values = self.cmp_fn_sig(&sig1, &sig2);
let path1 = format!(" {{{}}}", self.tcx.def_path_str_with_substs(*did1, substs1));
let path2 = format!(" {{{}}}", self.tcx.def_path_str_with_substs(*did2, substs2));
let same_path = path1 == path2;
values.0.push(path1, !same_path);
values.1.push(path2, !same_path);
values
}
(ty::FnDef(did1, substs1), ty::FnPtr(sig2)) => {
let sig1 = self.tcx.fn_sig(*did1).subst(self.tcx, substs1);
let mut values = self.cmp_fn_sig(&sig1, sig2);
values.0.push_highlighted(format!(
" {{{}}}",
self.tcx.def_path_str_with_substs(*did1, substs1)
));
values
}
(ty::FnPtr(sig1), ty::FnDef(did2, substs2)) => {
let sig2 = self.tcx.fn_sig(*did2).subst(self.tcx, substs2);
let mut values = self.cmp_fn_sig(sig1, &sig2);
values.1.push_normal(format!(
" {{{}}}",
self.tcx.def_path_str_with_substs(*did2, substs2)
));
values
}
(ty::FnPtr(sig1), ty::FnPtr(sig2)) => self.cmp_fn_sig(sig1, sig2),
_ => {
if t1 == t2 {
// The two types are the same, elide and don't highlight.
(DiagnosticStyledString::normal("_"), DiagnosticStyledString::normal("_"))
} else {
// We couldn't find anything in common, highlight everything.
(
DiagnosticStyledString::highlighted(t1.to_string()),
DiagnosticStyledString::highlighted(t2.to_string()),
)
}
}
}
}
pub fn note_type_err(
&self,
diag: &mut DiagnosticBuilder<'tcx>,
cause: &ObligationCause<'tcx>,
secondary_span: Option<(Span, String)>,
mut values: Option<ValuePairs<'tcx>>,
terr: &TypeError<'tcx>,
) {
let span = cause.span(self.tcx);
debug!("note_type_err cause={:?} values={:?}, terr={:?}", cause, values, terr);
// For some types of errors, expected-found does not make
// sense, so just ignore the values we were given.
if let TypeError::CyclicTy(_) = terr {
values = None;
}
struct OpaqueTypesVisitor<'tcx> {
types: FxHashMap<TyCategory, FxHashSet<Span>>,
expected: FxHashMap<TyCategory, FxHashSet<Span>>,
found: FxHashMap<TyCategory, FxHashSet<Span>>,
ignore_span: Span,
tcx: TyCtxt<'tcx>,
}
impl<'tcx> OpaqueTypesVisitor<'tcx> {
fn visit_expected_found(
tcx: TyCtxt<'tcx>,
expected: Ty<'tcx>,
found: Ty<'tcx>,
ignore_span: Span,
) -> Self {
let mut types_visitor = OpaqueTypesVisitor {
types: Default::default(),
expected: Default::default(),
found: Default::default(),
ignore_span,
tcx,
};
// The visitor puts all the relevant encountered types in `self.types`, but in
// here we want to visit two separate types with no relation to each other, so we
// move the results from `types` to `expected` or `found` as appropriate.
expected.visit_with(&mut types_visitor);
std::mem::swap(&mut types_visitor.expected, &mut types_visitor.types);
found.visit_with(&mut types_visitor);
std::mem::swap(&mut types_visitor.found, &mut types_visitor.types);
types_visitor
}
fn report(&self, err: &mut DiagnosticBuilder<'_>) {
self.add_labels_for_types(err, "expected", &self.expected);
self.add_labels_for_types(err, "found", &self.found);
}
fn add_labels_for_types(
&self,
err: &mut DiagnosticBuilder<'_>,
target: &str,
types: &FxHashMap<TyCategory, FxHashSet<Span>>,
) {
for (key, values) in types.iter() {
let count = values.len();
let kind = key.descr();
for sp in values {
err.span_label(
*sp,
format!(
"{}{}{} {}{}",
if sp.is_desugaring(DesugaringKind::Async) {
"the `Output` of this `async fn`'s "
} else if count == 1 {
"the "
} else {
""
},
if count > 1 { "one of the " } else { "" },
target,
kind,
pluralize!(count),
),
);
}
}
}
}
impl<'tcx> ty::fold::TypeVisitor<'tcx> for OpaqueTypesVisitor<'tcx> {
fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
if let Some((kind, def_id)) = TyCategory::from_ty(t) {
let span = self.tcx.def_span(def_id);
// Avoid cluttering the output when the "found" and error span overlap:
//
// error[E0308]: mismatched types
// --> $DIR/issue-20862.rs:2:5
// |
// LL | |y| x + y
// | ^^^^^^^^^
// | |
// | the found closure
// | expected `()`, found closure
// |
// = note: expected unit type `()`
// found closure `[closure@$DIR/issue-20862.rs:2:5: 2:14 x:_]`
if !self.ignore_span.overlaps(span) {
self.types.entry(kind).or_default().insert(span);
}
}
t.super_visit_with(self)
}
}
debug!("note_type_err(diag={:?})", diag);
enum Mismatch<'a> {
Variable(ty::error::ExpectedFound<Ty<'a>>),
Fixed(&'static str),
}
let (expected_found, exp_found, is_simple_error) = match values {
None => (None, Mismatch::Fixed("type"), false),
Some(values) => {
let (is_simple_error, exp_found) = match values {
ValuePairs::Types(exp_found) => {
let is_simple_err =
exp_found.expected.is_simple_text() && exp_found.found.is_simple_text();
OpaqueTypesVisitor::visit_expected_found(
self.tcx,
exp_found.expected,
exp_found.found,
span,
)
.report(diag);
(is_simple_err, Mismatch::Variable(exp_found))
}
ValuePairs::TraitRefs(_) => (false, Mismatch::Fixed("trait")),
_ => (false, Mismatch::Fixed("type")),
};
let vals = match self.values_str(&values) {
Some((expected, found)) => Some((expected, found)),
None => {
// Derived error. Cancel the emitter.
diag.cancel();
return;
}
};
(vals, exp_found, is_simple_error)
}
};
// Ignore msg for object safe coercion
// since E0038 message will be printed
match terr {
TypeError::ObjectUnsafeCoercion(_) => {}
_ => {
diag.span_label(span, terr.to_string());
if let Some((sp, msg)) = secondary_span {
diag.span_label(sp, msg);
}
}
};
if let Some((expected, found)) = expected_found {
let expected_label = match exp_found {
Mismatch::Variable(ef) => ef.expected.prefix_string(),
Mismatch::Fixed(s) => s.into(),
};
let found_label = match exp_found {
Mismatch::Variable(ef) => ef.found.prefix_string(),
Mismatch::Fixed(s) => s.into(),
};
let exp_found = match exp_found {
Mismatch::Variable(exp_found) => Some(exp_found),
Mismatch::Fixed(_) => None,
};
match (&terr, expected == found) {
(TypeError::Sorts(values), extra) => {
let sort_string = |ty: Ty<'tcx>| match (extra, ty.kind()) {
(true, ty::Opaque(def_id, _)) => format!(
" (opaque type at {})",
self.tcx
.sess
.source_map()
.mk_substr_filename(self.tcx.def_span(*def_id)),
),
(true, _) => format!(" ({})", ty.sort_string(self.tcx)),
(false, _) => "".to_string(),
};
if !(values.expected.is_simple_text() && values.found.is_simple_text())
|| (exp_found.map_or(false, |ef| {
// This happens when the type error is a subset of the expectation,
// like when you have two references but one is `usize` and the other
// is `f32`. In those cases we still want to show the `note`. If the
// value from `ef` is `Infer(_)`, then we ignore it.
if !ef.expected.is_ty_infer() {
ef.expected != values.expected
} else if !ef.found.is_ty_infer() {
ef.found != values.found
} else {
false
}
}))
{
diag.note_expected_found_extra(
&expected_label,
expected,
&found_label,
found,
&sort_string(values.expected),
&sort_string(values.found),
);
}
}
(TypeError::ObjectUnsafeCoercion(_), _) => {
diag.note_unsuccessfull_coercion(found, expected);
}
(_, _) => {
debug!(
"note_type_err: exp_found={:?}, expected={:?} found={:?}",
exp_found, expected, found
);
if !is_simple_error || terr.must_include_note() {
diag.note_expected_found(&expected_label, expected, &found_label, found);
}
}
}
}
let exp_found = match exp_found {
Mismatch::Variable(exp_found) => Some(exp_found),
Mismatch::Fixed(_) => None,
};
if let Some(exp_found) = exp_found {
self.suggest_as_ref_where_appropriate(span, &exp_found, diag);
self.suggest_await_on_expect_found(cause, span, &exp_found, diag);
}
// In some (most?) cases cause.body_id points to actual body, but in some cases
// it's a actual definition. According to the comments (e.g. in
// librustc_typeck/check/compare_method.rs:compare_predicate_entailment) the latter
// is relied upon by some other code. This might (or might not) need cleanup.
let body_owner_def_id =
self.tcx.hir().opt_local_def_id(cause.body_id).unwrap_or_else(|| {
self.tcx.hir().body_owner_def_id(hir::BodyId { hir_id: cause.body_id })
});
self.check_and_note_conflicting_crates(diag, terr);
self.tcx.note_and_explain_type_err(diag, terr, cause, span, body_owner_def_id.to_def_id());
// It reads better to have the error origin as the final
// thing.
self.note_error_origin(diag, cause, exp_found);
}
fn suggest_await_on_expect_found(
&self,
cause: &ObligationCause<'tcx>,
exp_span: Span,
exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
diag: &mut DiagnosticBuilder<'tcx>,
) {
debug!(
"suggest_await_on_expect_found: exp_span={:?}, expected_ty={:?}, found_ty={:?}",
exp_span, exp_found.expected, exp_found.found
);
if let ty::Opaque(def_id, _) = *exp_found.expected.kind() {
let future_trait = self.tcx.require_lang_item(LangItem::Future, None);
// Future::Output
let item_def_id = self
.tcx
.associated_items(future_trait)
.in_definition_order()
.next()
.unwrap()
.def_id;
let projection_ty = self.tcx.projection_ty_from_predicates((def_id, item_def_id));
if let Some(projection_ty) = projection_ty {
let projection_query = self.canonicalize_query(
&ParamEnvAnd { param_env: self.tcx.param_env(def_id), value: projection_ty },
&mut OriginalQueryValues::default(),
);
if let Ok(resp) = self.tcx.normalize_projection_ty(projection_query) {
let normalized_ty = resp.value.value.normalized_ty;
debug!("suggest_await_on_expect_found: normalized={:?}", normalized_ty);
if ty::TyS::same_type(normalized_ty, exp_found.found) {
let span = if let ObligationCauseCode::Pattern {
span,
origin_expr: _,
root_ty: _,
} = cause.code
{
// scrutinee's span
span.unwrap_or(exp_span)
} else {
exp_span
};
diag.span_suggestion_verbose(
span.shrink_to_hi(),
"consider awaiting on the future",
".await".to_string(),
Applicability::MaybeIncorrect,
);
}
}
}
}
}
/// When encountering a case where `.as_ref()` on a `Result` or `Option` would be appropriate,
/// suggests it.
fn suggest_as_ref_where_appropriate(
&self,
span: Span,
exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
diag: &mut DiagnosticBuilder<'tcx>,
) {
if let (ty::Adt(exp_def, exp_substs), ty::Ref(_, found_ty, _)) =
(exp_found.expected.kind(), exp_found.found.kind())
{
if let ty::Adt(found_def, found_substs) = *found_ty.kind() {
let path_str = format!("{:?}", exp_def);
if exp_def == &found_def {
let opt_msg = "you can convert from `&Option<T>` to `Option<&T>` using \
`.as_ref()`";
let result_msg = "you can convert from `&Result<T, E>` to \
`Result<&T, &E>` using `.as_ref()`";
let have_as_ref = &[
("std::option::Option", opt_msg),
("core::option::Option", opt_msg),
("std::result::Result", result_msg),
("core::result::Result", result_msg),
];
if let Some(msg) = have_as_ref
.iter()
.find_map(|(path, msg)| (&path_str == path).then_some(msg))
{
let mut show_suggestion = true;
for (exp_ty, found_ty) in exp_substs.types().zip(found_substs.types()) {
match *exp_ty.kind() {
ty::Ref(_, exp_ty, _) => {
match (exp_ty.kind(), found_ty.kind()) {
(_, ty::Param(_))
| (_, ty::Infer(_))
| (ty::Param(_), _)
| (ty::Infer(_), _) => {}
_ if ty::TyS::same_type(exp_ty, found_ty) => {}
_ => show_suggestion = false,
};
}
ty::Param(_) | ty::Infer(_) => {}
_ => show_suggestion = false,
}
}
if let (Ok(snippet), true) =
(self.tcx.sess.source_map().span_to_snippet(span), show_suggestion)
{
diag.span_suggestion(
span,
msg,
format!("{}.as_ref()", snippet),
Applicability::MachineApplicable,
);
}
}
}
}
}
}
pub fn report_and_explain_type_error(
&self,
trace: TypeTrace<'tcx>,
terr: &TypeError<'tcx>,
) -> DiagnosticBuilder<'tcx> {
debug!("report_and_explain_type_error(trace={:?}, terr={:?})", trace, terr);
let span = trace.cause.span(self.tcx);
let failure_code = trace.cause.as_failure_code(terr);
let mut diag = match failure_code {
FailureCode::Error0038(did) => {
let violations = self.tcx.object_safety_violations(did);
report_object_safety_error(self.tcx, span, did, violations)
}
FailureCode::Error0317(failure_str) => {
struct_span_err!(self.tcx.sess, span, E0317, "{}", failure_str)
}
FailureCode::Error0580(failure_str) => {
struct_span_err!(self.tcx.sess, span, E0580, "{}", failure_str)
}
FailureCode::Error0308(failure_str) => {
struct_span_err!(self.tcx.sess, span, E0308, "{}", failure_str)
}
FailureCode::Error0644(failure_str) => {
struct_span_err!(self.tcx.sess, span, E0644, "{}", failure_str)
}
};
self.note_type_err(&mut diag, &trace.cause, None, Some(trace.values), terr);
diag
}
fn values_str(
&self,
values: &ValuePairs<'tcx>,
) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
match *values {
infer::Types(ref exp_found) => self.expected_found_str_ty(exp_found),
infer::Regions(ref exp_found) => self.expected_found_str(exp_found),
infer::Consts(ref exp_found) => self.expected_found_str(exp_found),
infer::TraitRefs(ref exp_found) => {
let pretty_exp_found = ty::error::ExpectedFound {
expected: exp_found.expected.print_only_trait_path(),
found: exp_found.found.print_only_trait_path(),
};
self.expected_found_str(&pretty_exp_found)
}
infer::PolyTraitRefs(ref exp_found) => {
let pretty_exp_found = ty::error::ExpectedFound {
expected: exp_found.expected.print_only_trait_path(),
found: exp_found.found.print_only_trait_path(),
};
self.expected_found_str(&pretty_exp_found)
}
}
}
fn expected_found_str_ty(
&self,
exp_found: &ty::error::ExpectedFound<Ty<'tcx>>,
) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
let exp_found = self.resolve_vars_if_possible(exp_found);
if exp_found.references_error() {
return None;
}
Some(self.cmp(exp_found.expected, exp_found.found))
}
/// Returns a string of the form "expected `{}`, found `{}`".
fn expected_found_str<T: fmt::Display + TypeFoldable<'tcx>>(
&self,
exp_found: &ty::error::ExpectedFound<T>,
) -> Option<(DiagnosticStyledString, DiagnosticStyledString)> {
let exp_found = self.resolve_vars_if_possible(exp_found);
if exp_found.references_error() {
return None;
}
Some((
DiagnosticStyledString::highlighted(exp_found.expected.to_string()),
DiagnosticStyledString::highlighted(exp_found.found.to_string()),
))
}
pub fn report_generic_bound_failure(
&self,
span: Span,
origin: Option<SubregionOrigin<'tcx>>,
bound_kind: GenericKind<'tcx>,
sub: Region<'tcx>,
) {
self.construct_generic_bound_failure(span, origin, bound_kind, sub).emit();
}
pub fn construct_generic_bound_failure(
&self,
span: Span,
origin: Option<SubregionOrigin<'tcx>>,
bound_kind: GenericKind<'tcx>,
sub: Region<'tcx>,
) -> DiagnosticBuilder<'a> {
let hir = &self.tcx.hir();
// Attempt to obtain the span of the parameter so we can
// suggest adding an explicit lifetime bound to it.
let generics = self
.in_progress_typeck_results
.map(|typeck_results| typeck_results.borrow().hir_owner)
.map(|owner| {
let hir_id = hir.local_def_id_to_hir_id(owner);
let parent_id = hir.get_parent_item(hir_id);
(
// Parent item could be a `mod`, so we check the HIR before calling:
if let Some(Node::Item(Item {
kind: ItemKind::Trait(..) | ItemKind::Impl { .. },
..
})) = hir.find(parent_id)
{
Some(self.tcx.generics_of(hir.local_def_id(parent_id).to_def_id()))
} else {
None
},
self.tcx.generics_of(owner.to_def_id()),
)
});
let type_param_span = match (generics, bound_kind) {
(Some((_, ref generics)), GenericKind::Param(ref param)) => {
// Account for the case where `param` corresponds to `Self`,
// which doesn't have the expected type argument.
if !(generics.has_self && param.index == 0) {
let type_param = generics.type_param(param, self.tcx);
type_param.def_id.as_local().map(|def_id| {
// Get the `hir::Param` to verify whether it already has any bounds.
// We do this to avoid suggesting code that ends up as `T: 'a'b`,
// instead we suggest `T: 'a + 'b` in that case.
let id = hir.local_def_id_to_hir_id(def_id);
let mut has_bounds = false;
if let Node::GenericParam(param) = hir.get(id) {
has_bounds = !param.bounds.is_empty();
}
let sp = hir.span(id);
// `sp` only covers `T`, change it so that it covers
// `T:` when appropriate
let is_impl_trait = bound_kind.to_string().starts_with("impl ");
let sp = if has_bounds && !is_impl_trait {
sp.to(self
.tcx
.sess
.source_map()
.next_point(self.tcx.sess.source_map().next_point(sp)))
} else {
sp
};
(sp, has_bounds, is_impl_trait)
})
} else {
None
}
}
_ => None,
};
let new_lt = generics
.as_ref()
.and_then(|(parent_g, g)| {
let possible: Vec<_> = (b'a'..=b'z').map(|c| format!("'{}", c as char)).collect();
let mut lts_names = g
.params
.iter()
.filter(|p| matches!(p.kind, ty::GenericParamDefKind::Lifetime))
.map(|p| p.name.as_str())
.collect::<Vec<_>>();
if let Some(g) = parent_g {
lts_names.extend(
g.params
.iter()
.filter(|p| matches!(p.kind, ty::GenericParamDefKind::Lifetime))
.map(|p| p.name.as_str()),
);
}
let lts = lts_names.iter().map(|s| -> &str { &*s }).collect::<Vec<_>>();
possible.into_iter().find(|candidate| !lts.contains(&candidate.as_str()))
})
.unwrap_or("'lt".to_string());
let add_lt_sugg = generics
.as_ref()
.and_then(|(_, g)| g.params.first())
.and_then(|param| param.def_id.as_local())
.map(|def_id| {
(
hir.span(hir.local_def_id_to_hir_id(def_id)).shrink_to_lo(),
format!("{}, ", new_lt),
)
});
let labeled_user_string = match bound_kind {
GenericKind::Param(ref p) => format!("the parameter type `{}`", p),
GenericKind::Projection(ref p) => format!("the associated type `{}`", p),
};
if let Some(SubregionOrigin::CompareImplMethodObligation {
span,
item_name,
impl_item_def_id,
trait_item_def_id,
}) = origin
{
return self.report_extra_impl_obligation(
span,
item_name,
impl_item_def_id,
trait_item_def_id,
&format!("`{}: {}`", bound_kind, sub),
);
}
fn binding_suggestion<'tcx, S: fmt::Display>(
err: &mut DiagnosticBuilder<'tcx>,
type_param_span: Option<(Span, bool, bool)>,
bound_kind: GenericKind<'tcx>,
sub: S,
) {
let msg = "consider adding an explicit lifetime bound";
if let Some((sp, has_lifetimes, is_impl_trait)) = type_param_span {
let suggestion = if is_impl_trait {
format!("{} + {}", bound_kind, sub)
} else {
let tail = if has_lifetimes { " + " } else { "" };
format!("{}: {}{}", bound_kind, sub, tail)
};
err.span_suggestion(
sp,
&format!("{}...", msg),
suggestion,
Applicability::MaybeIncorrect, // Issue #41966
);
} else {
let consider = format!(
"{} {}...",
msg,
if type_param_span.map(|(_, _, is_impl_trait)| is_impl_trait).unwrap_or(false) {
format!(" `{}` to `{}`", sub, bound_kind)
} else {
format!("`{}: {}`", bound_kind, sub)
},
);
err.help(&consider);
}
}
let new_binding_suggestion =
|err: &mut DiagnosticBuilder<'tcx>,
type_param_span: Option<(Span, bool, bool)>,
bound_kind: GenericKind<'tcx>| {
let msg = "consider introducing an explicit lifetime bound";
if let Some((sp, has_lifetimes, is_impl_trait)) = type_param_span {
let suggestion = if is_impl_trait {
(sp.shrink_to_hi(), format!(" + {}", new_lt))
} else {
let tail = if has_lifetimes { " +" } else { "" };
(sp, format!("{}: {}{}", bound_kind, new_lt, tail))
};
let mut sugg =
vec![suggestion, (span.shrink_to_hi(), format!(" + {}", new_lt))];
if let Some(lt) = add_lt_sugg {
sugg.push(lt);
sugg.rotate_right(1);
}
// `MaybeIncorrect` due to issue #41966.
err.multipart_suggestion(msg, sugg, Applicability::MaybeIncorrect);
}
};
let mut err = match *sub {
ty::ReEarlyBound(ty::EarlyBoundRegion { name, .. })
| ty::ReFree(ty::FreeRegion { bound_region: ty::BrNamed(_, name), .. }) => {
// Does the required lifetime have a nice name we can print?
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0309,
"{} may not live long enough",
labeled_user_string
);
// Explicitly use the name instead of `sub`'s `Display` impl. The `Display` impl
// for the bound is not suitable for suggestions when `-Zverbose` is set because it
// uses `Debug` output, so we handle it specially here so that suggestions are
// always correct.
binding_suggestion(&mut err, type_param_span, bound_kind, name);
err
}
ty::ReStatic => {
// Does the required lifetime have a nice name we can print?
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0310,
"{} may not live long enough",
labeled_user_string
);
binding_suggestion(&mut err, type_param_span, bound_kind, "'static");
err
}
_ => {
// If not, be less specific.
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0311,
"{} may not live long enough",
labeled_user_string
);
note_and_explain_region(
self.tcx,
&mut err,
&format!("{} must be valid for ", labeled_user_string),
sub,
"...",
);
if let Some(infer::RelateParamBound(_, t)) = origin {
let t = self.resolve_vars_if_possible(&t);
match t.kind() {
// We've got:
// fn get_later<G, T>(g: G, dest: &mut T) -> impl FnOnce() + '_
// suggest:
// fn get_later<'a, G: 'a, T>(g: G, dest: &mut T) -> impl FnOnce() + '_ + 'a
ty::Closure(_, _substs) | ty::Opaque(_, _substs) => {
new_binding_suggestion(&mut err, type_param_span, bound_kind);
}
_ => {
binding_suggestion(&mut err, type_param_span, bound_kind, new_lt);
}
}
}
err
}
};
if let Some(origin) = origin {
self.note_region_origin(&mut err, &origin);
}
err
}
fn report_sub_sup_conflict(
&self,
var_origin: RegionVariableOrigin,
sub_origin: SubregionOrigin<'tcx>,
sub_region: Region<'tcx>,
sup_origin: SubregionOrigin<'tcx>,
sup_region: Region<'tcx>,
) {
let mut err = self.report_inference_failure(var_origin);
note_and_explain_region(
self.tcx,
&mut err,
"first, the lifetime cannot outlive ",
sup_region,
"...",
);
debug!("report_sub_sup_conflict: var_origin={:?}", var_origin);
debug!("report_sub_sup_conflict: sub_region={:?}", sub_region);
debug!("report_sub_sup_conflict: sub_origin={:?}", sub_origin);
debug!("report_sub_sup_conflict: sup_region={:?}", sup_region);
debug!("report_sub_sup_conflict: sup_origin={:?}", sup_origin);
if let (&infer::Subtype(ref sup_trace), &infer::Subtype(ref sub_trace)) =
(&sup_origin, &sub_origin)
{
debug!("report_sub_sup_conflict: sup_trace={:?}", sup_trace);
debug!("report_sub_sup_conflict: sub_trace={:?}", sub_trace);
debug!("report_sub_sup_conflict: sup_trace.values={:?}", sup_trace.values);
debug!("report_sub_sup_conflict: sub_trace.values={:?}", sub_trace.values);
if let (Some((sup_expected, sup_found)), Some((sub_expected, sub_found))) =
(self.values_str(&sup_trace.values), self.values_str(&sub_trace.values))
{
if sub_expected == sup_expected && sub_found == sup_found {
note_and_explain_region(
self.tcx,
&mut err,
"...but the lifetime must also be valid for ",
sub_region,
"...",
);
err.span_note(
sup_trace.cause.span,
&format!("...so that the {}", sup_trace.cause.as_requirement_str()),
);
err.note_expected_found(&"", sup_expected, &"", sup_found);
err.emit();
return;
}
}
}
self.note_region_origin(&mut err, &sup_origin);
note_and_explain_region(
self.tcx,
&mut err,
"but, the lifetime must be valid for ",
sub_region,
"...",
);
self.note_region_origin(&mut err, &sub_origin);
err.emit();
}
}
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
fn report_inference_failure(
&self,
var_origin: RegionVariableOrigin,
) -> DiagnosticBuilder<'tcx> {
let br_string = |br: ty::BoundRegion| {
let mut s = match br {
ty::BrNamed(_, name) => name.to_string(),
_ => String::new(),
};
if !s.is_empty() {
s.push(' ');
}
s
};
let var_description = match var_origin {
infer::MiscVariable(_) => String::new(),
infer::PatternRegion(_) => " for pattern".to_string(),
infer::AddrOfRegion(_) => " for borrow expression".to_string(),
infer::Autoref(_, _) => " for autoref".to_string(),
infer::Coercion(_) => " for automatic coercion".to_string(),
infer::LateBoundRegion(_, br, infer::FnCall) => {
format!(" for lifetime parameter {}in function call", br_string(br))
}
infer::LateBoundRegion(_, br, infer::HigherRankedType) => {
format!(" for lifetime parameter {}in generic type", br_string(br))
}
infer::LateBoundRegion(_, br, infer::AssocTypeProjection(def_id)) => format!(
" for lifetime parameter {}in trait containing associated type `{}`",
br_string(br),
self.tcx.associated_item(def_id).ident
),
infer::EarlyBoundRegion(_, name) => format!(" for lifetime parameter `{}`", name),
infer::BoundRegionInCoherence(name) => {
format!(" for lifetime parameter `{}` in coherence check", name)
}
infer::UpvarRegion(ref upvar_id, _) => {
let var_name = self.tcx.hir().name(upvar_id.var_path.hir_id);
format!(" for capture of `{}` by closure", var_name)
}
infer::NLL(..) => bug!("NLL variable found in lexical phase"),
};
struct_span_err!(
self.tcx.sess,
var_origin.span(),
E0495,
"cannot infer an appropriate lifetime{} due to conflicting requirements",
var_description
)
}
}
enum FailureCode {
Error0038(DefId),
Error0317(&'static str),
Error0580(&'static str),
Error0308(&'static str),
Error0644(&'static str),
}
trait ObligationCauseExt<'tcx> {
fn as_failure_code(&self, terr: &TypeError<'tcx>) -> FailureCode;
fn as_requirement_str(&self) -> &'static str;
}
impl<'tcx> ObligationCauseExt<'tcx> for ObligationCause<'tcx> {
fn as_failure_code(&self, terr: &TypeError<'tcx>) -> FailureCode {
use self::FailureCode::*;
use crate::traits::ObligationCauseCode::*;
match self.code {
CompareImplMethodObligation { .. } => Error0308("method not compatible with trait"),
CompareImplTypeObligation { .. } => Error0308("type not compatible with trait"),
MatchExpressionArm(box MatchExpressionArmCause { source, .. }) => {
Error0308(match source {
hir::MatchSource::IfLetDesugar { .. } => {
"`if let` arms have incompatible types"
}
hir::MatchSource::TryDesugar => {
"try expression alternatives have incompatible types"
}
_ => "`match` arms have incompatible types",
})
}
IfExpression { .. } => Error0308("`if` and `else` have incompatible types"),
IfExpressionWithNoElse => Error0317("`if` may be missing an `else` clause"),
MainFunctionType => Error0580("`main` function has wrong type"),
StartFunctionType => Error0308("`#[start]` function has wrong type"),
IntrinsicType => Error0308("intrinsic has wrong type"),
MethodReceiver => Error0308("mismatched `self` parameter type"),
// In the case where we have no more specific thing to
// say, also take a look at the error code, maybe we can
// tailor to that.
_ => match terr {
TypeError::CyclicTy(ty) if ty.is_closure() || ty.is_generator() => {
Error0644("closure/generator type that references itself")
}
TypeError::IntrinsicCast => {
Error0308("cannot coerce intrinsics to function pointers")
}
TypeError::ObjectUnsafeCoercion(did) => Error0038(*did),
_ => Error0308("mismatched types"),
},
}
}
fn as_requirement_str(&self) -> &'static str {
use crate::traits::ObligationCauseCode::*;
match self.code {
CompareImplMethodObligation { .. } => "method type is compatible with trait",
CompareImplTypeObligation { .. } => "associated type is compatible with trait",
ExprAssignable => "expression is assignable",
MatchExpressionArm(box MatchExpressionArmCause { source, .. }) => match source {
hir::MatchSource::IfLetDesugar { .. } => "`if let` arms have compatible types",
_ => "`match` arms have compatible types",
},
IfExpression { .. } => "`if` and `else` have incompatible types",
IfExpressionWithNoElse => "`if` missing an `else` returns `()`",
MainFunctionType => "`main` function has the correct type",
StartFunctionType => "`#[start]` function has the correct type",
IntrinsicType => "intrinsic has the correct type",
MethodReceiver => "method receiver has the correct type",
_ => "types are compatible",
}
}
}
/// This is a bare signal of what kind of type we're dealing with. `ty::TyKind` tracks
/// extra information about each type, but we only care about the category.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub enum TyCategory {
Closure,
Opaque,
Generator,
Foreign,
}
impl TyCategory {
fn descr(&self) -> &'static str {
match self {
Self::Closure => "closure",
Self::Opaque => "opaque type",
Self::Generator => "generator",
Self::Foreign => "foreign type",
}
}
pub fn from_ty(ty: Ty<'_>) -> Option<(Self, DefId)> {
match *ty.kind() {
ty::Closure(def_id, _) => Some((Self::Closure, def_id)),
ty::Opaque(def_id, _) => Some((Self::Opaque, def_id)),
ty::Generator(def_id, ..) => Some((Self::Generator, def_id)),
ty::Foreign(def_id) => Some((Self::Foreign, def_id)),
_ => None,
}
}
}