blob: 814e43c5fa5e978ed85805633df533bc9ff388ee [file] [log] [blame]
pub use super::ffi::*;
use rustc_index::vec::IndexVec;
use rustc_middle::mir::coverage::{
CodeRegion, CounterValueReference, ExpressionOperandId, InjectedExpressionIndex,
MappedExpressionIndex, Op,
};
use rustc_middle::ty::Instance;
use rustc_middle::ty::TyCtxt;
#[derive(Clone, Debug)]
pub struct ExpressionRegion {
lhs: ExpressionOperandId,
op: Op,
rhs: ExpressionOperandId,
region: CodeRegion,
}
/// Collects all of the coverage regions associated with (a) injected counters, (b) counter
/// expressions (additions or subtraction), and (c) unreachable regions (always counted as zero),
/// for a given Function. Counters and counter expressions have non-overlapping `id`s because they
/// can both be operands in an expression. This struct also stores the `function_source_hash`,
/// computed during instrumentation, and forwarded with counters.
///
/// Note, it may be important to understand LLVM's definitions of `unreachable` regions versus "gap
/// regions" (or "gap areas"). A gap region is a code region within a counted region (either counter
/// or expression), but the line or lines in the gap region are not executable (such as lines with
/// only whitespace or comments). According to LLVM Code Coverage Mapping documentation, "A count
/// for a gap area is only used as the line execution count if there are no other regions on a
/// line."
pub struct FunctionCoverage {
source_hash: u64,
counters: IndexVec<CounterValueReference, Option<CodeRegion>>,
expressions: IndexVec<InjectedExpressionIndex, Option<ExpressionRegion>>,
unreachable_regions: Vec<CodeRegion>,
}
impl FunctionCoverage {
pub fn new<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> Self {
let coverageinfo = tcx.coverageinfo(instance.def_id());
Self {
source_hash: 0, // will be set with the first `add_counter()`
counters: IndexVec::from_elem_n(None, coverageinfo.num_counters as usize),
expressions: IndexVec::from_elem_n(None, coverageinfo.num_expressions as usize),
unreachable_regions: Vec::new(),
}
}
/// Adds a code region to be counted by an injected counter intrinsic.
/// The source_hash (computed during coverage instrumentation) should also be provided, and
/// should be the same for all counters in a given function.
pub fn add_counter(&mut self, source_hash: u64, id: CounterValueReference, region: CodeRegion) {
if self.source_hash == 0 {
self.source_hash = source_hash;
} else {
debug_assert_eq!(source_hash, self.source_hash);
}
self.counters[id].replace(region).expect_none("add_counter called with duplicate `id`");
}
/// Both counters and "counter expressions" (or simply, "expressions") can be operands in other
/// expressions. Expression IDs start from `u32::MAX` and go down, so the range of expression
/// IDs will not overlap with the range of counter IDs. Counters and expressions can be added in
/// any order, and expressions can still be assigned contiguous (though descending) IDs, without
/// knowing what the last counter ID will be.
///
/// When storing the expression data in the `expressions` vector in the `FunctionCoverage`
/// struct, its vector index is computed, from the given expression ID, by subtracting from
/// `u32::MAX`.
///
/// Since the expression operands (`lhs` and `rhs`) can reference either counters or
/// expressions, an operand that references an expression also uses its original ID, descending
/// from `u32::MAX`. Theses operands are translated only during code generation, after all
/// counters and expressions have been added.
pub fn add_counter_expression(
&mut self,
expression_id: InjectedExpressionIndex,
lhs: ExpressionOperandId,
op: Op,
rhs: ExpressionOperandId,
region: CodeRegion,
) {
let expression_index = self.expression_index(u32::from(expression_id));
self.expressions[expression_index]
.replace(ExpressionRegion { lhs, op, rhs, region })
.expect_none("add_counter_expression called with duplicate `id_descending_from_max`");
}
/// Add a region that will be marked as "unreachable", with a constant "zero counter".
pub fn add_unreachable_region(&mut self, region: CodeRegion) {
self.unreachable_regions.push(region)
}
/// Return the source hash, generated from the HIR node structure, and used to indicate whether
/// or not the source code structure changed between different compilations.
pub fn source_hash(&self) -> u64 {
self.source_hash
}
/// Generate an array of CounterExpressions, and an iterator over all `Counter`s and their
/// associated `Regions` (from which the LLVM-specific `CoverageMapGenerator` will create
/// `CounterMappingRegion`s.
pub fn get_expressions_and_counter_regions<'a>(
&'a self,
) -> (Vec<CounterExpression>, impl Iterator<Item = (Counter, &'a CodeRegion)>) {
assert!(self.source_hash != 0);
let counter_regions = self.counter_regions();
let (counter_expressions, expression_regions) = self.expressions_with_regions();
let unreachable_regions = self.unreachable_regions();
let counter_regions =
counter_regions.chain(expression_regions.into_iter().chain(unreachable_regions));
(counter_expressions, counter_regions)
}
fn counter_regions<'a>(&'a self) -> impl Iterator<Item = (Counter, &'a CodeRegion)> {
self.counters.iter_enumerated().filter_map(|(index, entry)| {
// Option::map() will return None to filter out missing counters. This may happen
// if, for example, a MIR-instrumented counter is removed during an optimization.
entry.as_ref().map(|region| {
(Counter::counter_value_reference(index as CounterValueReference), region)
})
})
}
fn expressions_with_regions(
&'a self,
) -> (Vec<CounterExpression>, impl Iterator<Item = (Counter, &'a CodeRegion)>) {
let mut counter_expressions = Vec::with_capacity(self.expressions.len());
let mut expression_regions = Vec::with_capacity(self.expressions.len());
let mut new_indexes =
IndexVec::from_elem_n(MappedExpressionIndex::from(u32::MAX), self.expressions.len());
// Note, the initial value shouldn't matter since every index in use in `self.expressions`
// will be set, and after that, `new_indexes` will only be accessed using those same
// indexes.
// Note that an `ExpressionRegion`s at any given index can include other expressions as
// operands, but expression operands can only come from the subset of expressions having
// `expression_index`s lower than the referencing `ExpressionRegion`. Therefore, it is
// reasonable to look up the new index of an expression operand while the `new_indexes`
// vector is only complete up to the current `ExpressionIndex`.
let id_to_counter =
|new_indexes: &IndexVec<InjectedExpressionIndex, MappedExpressionIndex>,
id: ExpressionOperandId| {
if id.index() < self.counters.len() {
let index = CounterValueReference::from(id.index());
self.counters
.get(index)
.unwrap() // pre-validated
.as_ref()
.map(|_| Counter::counter_value_reference(index))
} else {
let index = self.expression_index(u32::from(id));
self.expressions
.get(index)
.expect("expression id is out of range")
.as_ref()
.map(|_| Counter::expression(new_indexes[index]))
}
};
for (original_index, expression_region) in
self.expressions.iter_enumerated().filter_map(|(original_index, entry)| {
// Option::map() will return None to filter out missing expressions. This may happen
// if, for example, a MIR-instrumented expression is removed during an optimization.
entry.as_ref().map(|region| (original_index, region))
})
{
let region = &expression_region.region;
let ExpressionRegion { lhs, op, rhs, .. } = *expression_region;
if let Some(Some((lhs_counter, rhs_counter))) =
id_to_counter(&new_indexes, lhs).map(|lhs_counter| {
id_to_counter(&new_indexes, rhs).map(|rhs_counter| (lhs_counter, rhs_counter))
})
{
// Both operands exist. `Expression` operands exist in `self.expressions` and have
// been assigned a `new_index`.
let mapped_expression_index =
MappedExpressionIndex::from(counter_expressions.len());
counter_expressions.push(CounterExpression::new(
lhs_counter,
match op {
Op::Add => ExprKind::Add,
Op::Subtract => ExprKind::Subtract,
},
rhs_counter,
));
new_indexes[original_index] = mapped_expression_index;
expression_regions.push((Counter::expression(mapped_expression_index), region));
}
}
(counter_expressions, expression_regions.into_iter())
}
fn unreachable_regions<'a>(&'a self) -> impl Iterator<Item = (Counter, &'a CodeRegion)> {
self.unreachable_regions.iter().map(|region| (Counter::zero(), region))
}
fn expression_index(&self, id_descending_from_max: u32) -> InjectedExpressionIndex {
debug_assert!(id_descending_from_max >= self.counters.len() as u32);
InjectedExpressionIndex::from(u32::MAX - id_descending_from_max)
}
}