blob: 81856cb87c7c40cdb1debe42f633caaec0ad43f9 [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A character type.
//!
//! The `char` type represents a single character. More specifically, since
//! 'character' isn't a well-defined concept in Unicode, `char` is a '[Unicode
//! scalar value]', which is similar to, but not the same as, a '[Unicode code
//! point]'.
//!
//! [Unicode scalar value]: http://www.unicode.org/glossary/#unicode_scalar_value
//! [Unicode code point]: http://www.unicode.org/glossary/#code_point
//!
//! This module exists for technical reasons, the primary documentation for
//! `char` is directly on [the `char` primitive type](../../std/primitive.char.html)
//! itself.
//!
//! This module is the home of the iterator implementations for the iterators
//! implemented on `char`, as well as some useful constants and conversion
//! functions that convert various types to `char`.
#![stable(feature = "rust1", since = "1.0.0")]
use core::char::CharExt as C;
use core::fmt;
use tables::{conversions, derived_property, general_category, property};
// stable reexports
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::char::{MAX, from_digit, from_u32, from_u32_unchecked};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::char::{EncodeUtf16, EncodeUtf8, EscapeDebug, EscapeDefault, EscapeUnicode};
// unstable reexports
#[unstable(feature = "decode_utf8", issue = "33906")]
pub use core::char::{DecodeUtf8, decode_utf8};
#[unstable(feature = "unicode", issue = "27783")]
pub use tables::UNICODE_VERSION;
/// Returns an iterator that yields the lowercase equivalent of a `char`.
///
/// This `struct` is created by the [`to_lowercase()`] method on [`char`]. See
/// its documentation for more.
///
/// [`to_lowercase()`]: ../../std/primitive.char.html#method.to_lowercase
/// [`char`]: ../../std/primitive.char.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct ToLowercase(CaseMappingIter);
#[stable(feature = "rust1", since = "1.0.0")]
impl Iterator for ToLowercase {
type Item = char;
fn next(&mut self) -> Option<char> {
self.0.next()
}
}
/// Returns an iterator that yields the uppercase equivalent of a `char`.
///
/// This `struct` is created by the [`to_uppercase()`] method on [`char`]. See
/// its documentation for more.
///
/// [`to_uppercase()`]: ../../std/primitive.char.html#method.to_uppercase
/// [`char`]: ../../std/primitive.char.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct ToUppercase(CaseMappingIter);
#[stable(feature = "rust1", since = "1.0.0")]
impl Iterator for ToUppercase {
type Item = char;
fn next(&mut self) -> Option<char> {
self.0.next()
}
}
enum CaseMappingIter {
Three(char, char, char),
Two(char, char),
One(char),
Zero,
}
impl CaseMappingIter {
fn new(chars: [char; 3]) -> CaseMappingIter {
if chars[2] == '\0' {
if chars[1] == '\0' {
CaseMappingIter::One(chars[0]) // Including if chars[0] == '\0'
} else {
CaseMappingIter::Two(chars[0], chars[1])
}
} else {
CaseMappingIter::Three(chars[0], chars[1], chars[2])
}
}
}
impl Iterator for CaseMappingIter {
type Item = char;
fn next(&mut self) -> Option<char> {
match *self {
CaseMappingIter::Three(a, b, c) => {
*self = CaseMappingIter::Two(b, c);
Some(a)
}
CaseMappingIter::Two(b, c) => {
*self = CaseMappingIter::One(c);
Some(b)
}
CaseMappingIter::One(c) => {
*self = CaseMappingIter::Zero;
Some(c)
}
CaseMappingIter::Zero => None,
}
}
}
#[lang = "char"]
impl char {
/// Checks if a `char` is a digit in the given radix.
///
/// A 'radix' here is sometimes also called a 'base'. A radix of two
/// indicates a binary number, a radix of ten, decimal, and a radix of
/// sixteen, hexadecimal, to give some common values. Arbitrary
/// radicum are supported.
///
/// Compared to `is_numeric()`, this function only recognizes the characters
/// `0-9`, `a-z` and `A-Z`.
///
/// 'Digit' is defined to be only the following characters:
///
/// * `0-9`
/// * `a-z`
/// * `A-Z`
///
/// For a more comprehensive understanding of 'digit', see [`is_numeric()`][is_numeric].
///
/// [is_numeric]: #method.is_numeric
///
/// # Panics
///
/// Panics if given a radix larger than 36.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// assert!('1'.is_digit(10));
/// assert!('f'.is_digit(16));
/// assert!(!'f'.is_digit(10));
/// ```
///
/// Passing a large radix, causing a panic:
///
/// ```
/// use std::thread;
///
/// let result = thread::spawn(|| {
/// // this panics
/// '1'.is_digit(37);
/// }).join();
///
/// assert!(result.is_err());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn is_digit(self, radix: u32) -> bool {
C::is_digit(self, radix)
}
/// Converts a `char` to a digit in the given radix.
///
/// A 'radix' here is sometimes also called a 'base'. A radix of two
/// indicates a binary number, a radix of ten, decimal, and a radix of
/// sixteen, hexadecimal, to give some common values. Arbitrary
/// radicum are supported.
///
/// 'Digit' is defined to be only the following characters:
///
/// * `0-9`
/// * `a-z`
/// * `A-Z`
///
/// # Errors
///
/// Returns `None` if the `char` does not refer to a digit in the given radix.
///
/// # Panics
///
/// Panics if given a radix larger than 36.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// assert_eq!('1'.to_digit(10), Some(1));
/// assert_eq!('f'.to_digit(16), Some(15));
/// ```
///
/// Passing a non-digit results in failure:
///
/// ```
/// assert_eq!('f'.to_digit(10), None);
/// assert_eq!('z'.to_digit(16), None);
/// ```
///
/// Passing a large radix, causing a panic:
///
/// ```
/// use std::thread;
///
/// let result = thread::spawn(|| {
/// '1'.to_digit(37);
/// }).join();
///
/// assert!(result.is_err());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn to_digit(self, radix: u32) -> Option<u32> {
C::to_digit(self, radix)
}
/// Returns an iterator that yields the hexadecimal Unicode escape of a
/// character, as `char`s.
///
/// All characters are escaped with Rust syntax of the form `\u{NNNNNN}`
/// where `NNNNNN` is the shortest hexadecimal representation.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// for c in '❤'.escape_unicode() {
/// print!("{}", c);
/// }
/// println!("");
/// ```
///
/// This prints:
///
/// ```text
/// \u{2764}
/// ```
///
/// Collecting into a `String`:
///
/// ```
/// let heart: String = '❤'.escape_unicode().collect();
///
/// assert_eq!(heart, r"\u{2764}");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn escape_unicode(self) -> EscapeUnicode {
C::escape_unicode(self)
}
/// Returns an iterator that yields the literal escape code of a `char`.
///
/// This will escape the characters similar to the `Debug` implementations
/// of `str` or `char`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// for i in '\n'.escape_default() {
/// println!("{}", i);
/// }
/// ```
///
/// This prints:
///
/// ```text
/// \
/// n
/// ```
///
/// Collecting into a `String`:
///
/// ```
/// let quote: String = '\n'.escape_default().collect();
///
/// assert_eq!(quote, "\\n");
/// ```
#[unstable(feature = "char_escape_debug", issue = "35068")]
#[inline]
pub fn escape_debug(self) -> EscapeDebug {
C::escape_debug(self)
}
/// Returns an iterator that yields the literal escape code of a `char`.
///
/// The default is chosen with a bias toward producing literals that are
/// legal in a variety of languages, including C++11 and similar C-family
/// languages. The exact rules are:
///
/// * Tab is escaped as `\t`.
/// * Carriage return is escaped as `\r`.
/// * Line feed is escaped as `\n`.
/// * Single quote is escaped as `\'`.
/// * Double quote is escaped as `\"`.
/// * Backslash is escaped as `\\`.
/// * Any character in the 'printable ASCII' range `0x20` .. `0x7e`
/// inclusive is not escaped.
/// * All other characters are given hexadecimal Unicode escapes; see
/// [`escape_unicode`][escape_unicode].
///
/// [escape_unicode]: #method.escape_unicode
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// for i in '"'.escape_default() {
/// println!("{}", i);
/// }
/// ```
///
/// This prints:
///
/// ```text
/// \
/// "
/// ```
///
/// Collecting into a `String`:
///
/// ```
/// let quote: String = '"'.escape_default().collect();
///
/// assert_eq!(quote, "\\\"");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn escape_default(self) -> EscapeDefault {
C::escape_default(self)
}
/// Returns the number of bytes this `char` would need if encoded in UTF-8.
///
/// That number of bytes is always between 1 and 4, inclusive.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let len = 'A'.len_utf8();
/// assert_eq!(len, 1);
///
/// let len = 'ß'.len_utf8();
/// assert_eq!(len, 2);
///
/// let len = 'ℝ'.len_utf8();
/// assert_eq!(len, 3);
///
/// let len = '💣'.len_utf8();
/// assert_eq!(len, 4);
/// ```
///
/// The `&str` type guarantees that its contents are UTF-8, and so we can compare the length it
/// would take if each code point was represented as a `char` vs in the `&str` itself:
///
/// ```
/// // as chars
/// let eastern = '東';
/// let capitol = '京';
///
/// // both can be represented as three bytes
/// assert_eq!(3, eastern.len_utf8());
/// assert_eq!(3, capitol.len_utf8());
///
/// // as a &str, these two are encoded in UTF-8
/// let tokyo = "東京";
///
/// let len = eastern.len_utf8() + capitol.len_utf8();
///
/// // we can see that they take six bytes total...
/// assert_eq!(6, tokyo.len());
///
/// // ... just like the &str
/// assert_eq!(len, tokyo.len());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn len_utf8(self) -> usize {
C::len_utf8(self)
}
/// Returns the number of 16-bit code units this `char` would need if
/// encoded in UTF-16.
///
/// See the documentation for [`len_utf8()`] for more explanation of this
/// concept. This function is a mirror, but for UTF-16 instead of UTF-8.
///
/// [`len_utf8()`]: #method.len_utf8
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let n = 'ß'.len_utf16();
/// assert_eq!(n, 1);
///
/// let len = '💣'.len_utf16();
/// assert_eq!(len, 2);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn len_utf16(self) -> usize {
C::len_utf16(self)
}
/// Returns an iterator over the bytes of this character as UTF-8.
///
/// The returned iterator also has an `as_slice()` method to view the
/// encoded bytes as a byte slice.
///
/// # Examples
///
/// ```
/// #![feature(unicode)]
///
/// let iterator = 'ß'.encode_utf8();
/// assert_eq!(iterator.as_slice(), [0xc3, 0x9f]);
///
/// for (i, byte) in iterator.enumerate() {
/// println!("byte {}: {:x}", i, byte);
/// }
/// ```
#[unstable(feature = "unicode", issue = "27784")]
#[inline]
pub fn encode_utf8(self) -> EncodeUtf8 {
C::encode_utf8(self)
}
/// Returns an iterator over the `u16` entries of this character as UTF-16.
///
/// The returned iterator also has an `as_slice()` method to view the
/// encoded form as a slice.
///
/// # Examples
///
/// ```
/// #![feature(unicode)]
///
/// let iterator = '𝕊'.encode_utf16();
/// assert_eq!(iterator.as_slice(), [0xd835, 0xdd4a]);
///
/// for (i, val) in iterator.enumerate() {
/// println!("entry {}: {:x}", i, val);
/// }
/// ```
#[unstable(feature = "unicode", issue = "27784")]
#[inline]
pub fn encode_utf16(self) -> EncodeUtf16 {
C::encode_utf16(self)
}
/// Returns true if this `char` is an alphabetic code point, and false if not.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// assert!('a'.is_alphabetic());
/// assert!('京'.is_alphabetic());
///
/// let c = '💝';
/// // love is many things, but it is not alphabetic
/// assert!(!c.is_alphabetic());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn is_alphabetic(self) -> bool {
match self {
'a'...'z' | 'A'...'Z' => true,
c if c > '\x7f' => derived_property::Alphabetic(c),
_ => false,
}
}
/// Returns true if this `char` satisfies the 'XID_Start' Unicode property, and false
/// otherwise.
///
/// 'XID_Start' is a Unicode Derived Property specified in
/// [UAX #31](http://unicode.org/reports/tr31/#NFKC_Modifications),
/// mostly similar to `ID_Start` but modified for closure under `NFKx`.
#[unstable(feature = "unicode",
reason = "mainly needed for compiler internals",
issue = "0")]
#[inline]
pub fn is_xid_start(self) -> bool {
derived_property::XID_Start(self)
}
/// Returns true if this `char` satisfies the 'XID_Continue' Unicode property, and false
/// otherwise.
///
/// 'XID_Continue' is a Unicode Derived Property specified in
/// [UAX #31](http://unicode.org/reports/tr31/#NFKC_Modifications),
/// mostly similar to 'ID_Continue' but modified for closure under NFKx.
#[unstable(feature = "unicode",
reason = "mainly needed for compiler internals",
issue = "0")]
#[inline]
pub fn is_xid_continue(self) -> bool {
derived_property::XID_Continue(self)
}
/// Returns true if this `char` is lowercase, and false otherwise.
///
/// 'Lowercase' is defined according to the terms of the Unicode Derived Core
/// Property `Lowercase`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// assert!('a'.is_lowercase());
/// assert!('δ'.is_lowercase());
/// assert!(!'A'.is_lowercase());
/// assert!(!'Δ'.is_lowercase());
///
/// // The various Chinese scripts do not have case, and so:
/// assert!(!'中'.is_lowercase());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn is_lowercase(self) -> bool {
match self {
'a'...'z' => true,
c if c > '\x7f' => derived_property::Lowercase(c),
_ => false,
}
}
/// Returns true if this `char` is uppercase, and false otherwise.
///
/// 'Uppercase' is defined according to the terms of the Unicode Derived Core
/// Property `Uppercase`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// assert!(!'a'.is_uppercase());
/// assert!(!'δ'.is_uppercase());
/// assert!('A'.is_uppercase());
/// assert!('Δ'.is_uppercase());
///
/// // The various Chinese scripts do not have case, and so:
/// assert!(!'中'.is_uppercase());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn is_uppercase(self) -> bool {
match self {
'A'...'Z' => true,
c if c > '\x7f' => derived_property::Uppercase(c),
_ => false,
}
}
/// Returns true if this `char` is whitespace, and false otherwise.
///
/// 'Whitespace' is defined according to the terms of the Unicode Derived Core
/// Property `White_Space`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// assert!(' '.is_whitespace());
///
/// // a non-breaking space
/// assert!('\u{A0}'.is_whitespace());
///
/// assert!(!'越'.is_whitespace());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn is_whitespace(self) -> bool {
match self {
' ' | '\x09'...'\x0d' => true,
c if c > '\x7f' => property::White_Space(c),
_ => false,
}
}
/// Returns true if this `char` is alphanumeric, and false otherwise.
///
/// 'Alphanumeric'-ness is defined in terms of the Unicode General Categories
/// 'Nd', 'Nl', 'No' and the Derived Core Property 'Alphabetic'.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// assert!('٣'.is_alphanumeric());
/// assert!('7'.is_alphanumeric());
/// assert!('৬'.is_alphanumeric());
/// assert!('K'.is_alphanumeric());
/// assert!('و'.is_alphanumeric());
/// assert!('藏'.is_alphanumeric());
/// assert!(!'¾'.is_alphanumeric());
/// assert!(!'①'.is_alphanumeric());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn is_alphanumeric(self) -> bool {
self.is_alphabetic() || self.is_numeric()
}
/// Returns true if this `char` is a control code point, and false otherwise.
///
/// 'Control code point' is defined in terms of the Unicode General
/// Category `Cc`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// // U+009C, STRING TERMINATOR
/// assert!('œ'.is_control());
/// assert!(!'q'.is_control());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn is_control(self) -> bool {
general_category::Cc(self)
}
/// Returns true if this `char` is numeric, and false otherwise.
///
/// 'Numeric'-ness is defined in terms of the Unicode General Categories
/// 'Nd', 'Nl', 'No'.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// assert!('٣'.is_numeric());
/// assert!('7'.is_numeric());
/// assert!('৬'.is_numeric());
/// assert!(!'K'.is_numeric());
/// assert!(!'و'.is_numeric());
/// assert!(!'藏'.is_numeric());
/// assert!(!'¾'.is_numeric());
/// assert!(!'①'.is_numeric());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn is_numeric(self) -> bool {
match self {
'0'...'9' => true,
c if c > '\x7f' => general_category::N(c),
_ => false,
}
}
/// Returns an iterator that yields the lowercase equivalent of a `char`.
///
/// If no conversion is possible then an iterator with just the input character is returned.
///
/// This performs complex unconditional mappings with no tailoring: it maps
/// one Unicode character to its lowercase equivalent according to the
/// [Unicode database] and the additional complex mappings
/// [`SpecialCasing.txt`]. Conditional mappings (based on context or
/// language) are not considered here.
///
/// For a full reference, see [here][reference].
///
/// [Unicode database]: ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt
///
/// [`SpecialCasing.txt`]: ftp://ftp.unicode.org/Public/UNIDATA/SpecialCasing.txt
///
/// [reference]: http://www.unicode.org/versions/Unicode7.0.0/ch03.pdf#G33992
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// assert_eq!('C'.to_lowercase().collect::<String>(), "c");
///
/// // Sometimes the result is more than one character:
/// assert_eq!('İ'.to_lowercase().collect::<String>(), "i\u{307}");
///
/// // Japanese scripts do not have case, and so:
/// assert_eq!('山'.to_lowercase().collect::<String>(), "山");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn to_lowercase(self) -> ToLowercase {
ToLowercase(CaseMappingIter::new(conversions::to_lower(self)))
}
/// Returns an iterator that yields the uppercase equivalent of a `char`.
///
/// If no conversion is possible then an iterator with just the input character is returned.
///
/// This performs complex unconditional mappings with no tailoring: it maps
/// one Unicode character to its uppercase equivalent according to the
/// [Unicode database] and the additional complex mappings
/// [`SpecialCasing.txt`]. Conditional mappings (based on context or
/// language) are not considered here.
///
/// For a full reference, see [here][reference].
///
/// [Unicode database]: ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt
///
/// [`SpecialCasing.txt`]: ftp://ftp.unicode.org/Public/UNIDATA/SpecialCasing.txt
///
/// [reference]: http://www.unicode.org/versions/Unicode7.0.0/ch03.pdf#G33992
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// assert_eq!('c'.to_uppercase().collect::<String>(), "C");
///
/// // Sometimes the result is more than one character:
/// assert_eq!('ß'.to_uppercase().collect::<String>(), "SS");
///
/// // Japanese does not have case, and so:
/// assert_eq!('山'.to_uppercase().collect::<String>(), "山");
/// ```
///
/// In Turkish, the equivalent of 'i' in Latin has five forms instead of two:
///
/// * 'Dotless': I / ı, sometimes written ï
/// * 'Dotted': İ / i
///
/// Note that the lowercase dotted 'i' is the same as the Latin. Therefore:
///
/// ```
/// let upper_i: String = 'i'.to_uppercase().collect();
/// ```
///
/// The value of `upper_i` here relies on the language of the text: if we're
/// in `en-US`, it should be `"I"`, but if we're in `tr_TR`, it should
/// be `"İ"`. `to_uppercase()` does not take this into account, and so:
///
/// ```
/// let upper_i: String = 'i'.to_uppercase().collect();
///
/// assert_eq!(upper_i, "I");
/// ```
///
/// holds across languages.
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn to_uppercase(self) -> ToUppercase {
ToUppercase(CaseMappingIter::new(conversions::to_upper(self)))
}
}
/// An iterator that decodes UTF-16 encoded code points from an iterator of `u16`s.
#[stable(feature = "decode_utf16", since = "1.9.0")]
#[derive(Clone)]
pub struct DecodeUtf16<I>
where I: Iterator<Item = u16>
{
iter: I,
buf: Option<u16>,
}
/// An iterator that decodes UTF-16 encoded code points from an iterator of `u16`s.
#[stable(feature = "decode_utf16", since = "1.9.0")]
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct DecodeUtf16Error {
code: u16,
}
/// Create an iterator over the UTF-16 encoded code points in `iter`,
/// returning unpaired surrogates as `Err`s.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::char::decode_utf16;
///
/// fn main() {
/// // 𝄞mus<invalid>ic<invalid>
/// let v = [0xD834, 0xDD1E, 0x006d, 0x0075,
/// 0x0073, 0xDD1E, 0x0069, 0x0063,
/// 0xD834];
///
/// assert_eq!(decode_utf16(v.iter().cloned())
/// .map(|r| r.map_err(|e| e.unpaired_surrogate()))
/// .collect::<Vec<_>>(),
/// vec![Ok('𝄞'),
/// Ok('m'), Ok('u'), Ok('s'),
/// Err(0xDD1E),
/// Ok('i'), Ok('c'),
/// Err(0xD834)]);
/// }
/// ```
///
/// A lossy decoder can be obtained by replacing `Err` results with the replacement character:
///
/// ```
/// use std::char::{decode_utf16, REPLACEMENT_CHARACTER};
///
/// fn main() {
/// // 𝄞mus<invalid>ic<invalid>
/// let v = [0xD834, 0xDD1E, 0x006d, 0x0075,
/// 0x0073, 0xDD1E, 0x0069, 0x0063,
/// 0xD834];
///
/// assert_eq!(decode_utf16(v.iter().cloned())
/// .map(|r| r.unwrap_or(REPLACEMENT_CHARACTER))
/// .collect::<String>(),
/// "𝄞mus�ic�");
/// }
/// ```
#[stable(feature = "decode_utf16", since = "1.9.0")]
#[inline]
pub fn decode_utf16<I: IntoIterator<Item = u16>>(iter: I) -> DecodeUtf16<I::IntoIter> {
DecodeUtf16 {
iter: iter.into_iter(),
buf: None,
}
}
#[stable(feature = "decode_utf16", since = "1.9.0")]
impl<I: Iterator<Item = u16>> Iterator for DecodeUtf16<I> {
type Item = Result<char, DecodeUtf16Error>;
fn next(&mut self) -> Option<Result<char, DecodeUtf16Error>> {
let u = match self.buf.take() {
Some(buf) => buf,
None => {
match self.iter.next() {
Some(u) => u,
None => return None,
}
}
};
if u < 0xD800 || 0xDFFF < u {
// not a surrogate
Some(Ok(unsafe { from_u32_unchecked(u as u32) }))
} else if u >= 0xDC00 {
// a trailing surrogate
Some(Err(DecodeUtf16Error { code: u }))
} else {
let u2 = match self.iter.next() {
Some(u2) => u2,
// eof
None => return Some(Err(DecodeUtf16Error { code: u })),
};
if u2 < 0xDC00 || u2 > 0xDFFF {
// not a trailing surrogate so we're not a valid
// surrogate pair, so rewind to redecode u2 next time.
self.buf = Some(u2);
return Some(Err(DecodeUtf16Error { code: u }));
}
// all ok, so lets decode it.
let c = (((u - 0xD800) as u32) << 10 | (u2 - 0xDC00) as u32) + 0x1_0000;
Some(Ok(unsafe { from_u32_unchecked(c) }))
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, high) = self.iter.size_hint();
// we could be entirely valid surrogates (2 elements per
// char), or entirely non-surrogates (1 element per char)
(low / 2, high)
}
}
impl DecodeUtf16Error {
/// Returns the unpaired surrogate which caused this error.
#[stable(feature = "decode_utf16", since = "1.9.0")]
pub fn unpaired_surrogate(&self) -> u16 {
self.code
}
}
#[stable(feature = "decode_utf16", since = "1.9.0")]
impl fmt::Display for DecodeUtf16Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "unpaired surrogate found: {:x}", self.code)
}
}
/// `U+FFFD REPLACEMENT CHARACTER` (�) is used in Unicode to represent a
/// decoding error.
///
/// It can occur, for example, when giving ill-formed UTF-8 bytes to
/// [`String::from_utf8_lossy`](../../std/string/struct.String.html#method.from_utf8_lossy).
#[stable(feature = "decode_utf16", since = "1.9.0")]
pub const REPLACEMENT_CHARACTER: char = '\u{FFFD}';