blob: 270033be9375c20029f763de31b8da3816bc930d [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm::ValueRef;
use rustc::ty::Ty;
use rustc::mir::repr as mir;
use rustc_data_structures::indexed_vec::Idx;
use base;
use common::{self, Block, BlockAndBuilder};
use value::Value;
use type_of;
use type_::Type;
use std::fmt;
use super::{MirContext, LocalRef};
/// The representation of a Rust value. The enum variant is in fact
/// uniquely determined by the value's type, but is kept as a
/// safety check.
#[derive(Copy, Clone)]
pub enum OperandValue {
/// A reference to the actual operand. The data is guaranteed
/// to be valid for the operand's lifetime.
Ref(ValueRef),
/// A single LLVM value.
Immediate(ValueRef),
/// A pair of immediate LLVM values. Used by fat pointers too.
Pair(ValueRef, ValueRef)
}
/// An `OperandRef` is an "SSA" reference to a Rust value, along with
/// its type.
///
/// NOTE: unless you know a value's type exactly, you should not
/// generate LLVM opcodes acting on it and instead act via methods,
/// to avoid nasty edge cases. In particular, using `Builder.store`
/// directly is sure to cause problems -- use `MirContext.store_operand`
/// instead.
#[derive(Copy, Clone)]
pub struct OperandRef<'tcx> {
// The value.
pub val: OperandValue,
// The type of value being returned.
pub ty: Ty<'tcx>
}
impl<'tcx> fmt::Debug for OperandRef<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.val {
OperandValue::Ref(r) => {
write!(f, "OperandRef(Ref({:?}) @ {:?})",
Value(r), self.ty)
}
OperandValue::Immediate(i) => {
write!(f, "OperandRef(Immediate({:?}) @ {:?})",
Value(i), self.ty)
}
OperandValue::Pair(a, b) => {
write!(f, "OperandRef(Pair({:?}, {:?}) @ {:?})",
Value(a), Value(b), self.ty)
}
}
}
}
impl<'bcx, 'tcx> OperandRef<'tcx> {
/// Asserts that this operand refers to a scalar and returns
/// a reference to its value.
pub fn immediate(self) -> ValueRef {
match self.val {
OperandValue::Immediate(s) => s,
_ => bug!()
}
}
/// If this operand is a Pair, we return an
/// Immediate aggregate with the two values.
pub fn pack_if_pair(mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>)
-> OperandRef<'tcx> {
if let OperandValue::Pair(a, b) = self.val {
// Reconstruct the immediate aggregate.
let llty = type_of::type_of(bcx.ccx(), self.ty);
let mut llpair = common::C_undef(llty);
let elems = [a, b];
for i in 0..2 {
let mut elem = elems[i];
// Extend boolean i1's to i8.
if common::val_ty(elem) == Type::i1(bcx.ccx()) {
elem = bcx.zext(elem, Type::i8(bcx.ccx()));
}
llpair = bcx.insert_value(llpair, elem, i);
}
self.val = OperandValue::Immediate(llpair);
}
self
}
/// If this operand is a pair in an Immediate,
/// we return a Pair with the two halves.
pub fn unpack_if_pair(mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>)
-> OperandRef<'tcx> {
if let OperandValue::Immediate(llval) = self.val {
// Deconstruct the immediate aggregate.
if common::type_is_imm_pair(bcx.ccx(), self.ty) {
debug!("Operand::unpack_if_pair: unpacking {:?}", self);
let mut a = bcx.extract_value(llval, 0);
let mut b = bcx.extract_value(llval, 1);
let pair_fields = common::type_pair_fields(bcx.ccx(), self.ty);
if let Some([a_ty, b_ty]) = pair_fields {
if a_ty.is_bool() {
a = bcx.trunc(a, Type::i1(bcx.ccx()));
}
if b_ty.is_bool() {
b = bcx.trunc(b, Type::i1(bcx.ccx()));
}
}
self.val = OperandValue::Pair(a, b);
}
}
self
}
}
impl<'bcx, 'tcx> MirContext<'bcx, 'tcx> {
pub fn trans_load(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
llval: ValueRef,
ty: Ty<'tcx>)
-> OperandRef<'tcx>
{
debug!("trans_load: {:?} @ {:?}", Value(llval), ty);
let val = if common::type_is_imm_pair(bcx.ccx(), ty) {
let a_ptr = bcx.struct_gep(llval, 0);
let b_ptr = bcx.struct_gep(llval, 1);
// This is None only for fat pointers, which don't
// need any special load-time behavior anyway.
let pair_fields = common::type_pair_fields(bcx.ccx(), ty);
let (a, b) = if let Some([a_ty, b_ty]) = pair_fields {
(base::load_ty_builder(bcx, a_ptr, a_ty),
base::load_ty_builder(bcx, b_ptr, b_ty))
} else {
(bcx.load(a_ptr), bcx.load(b_ptr))
};
OperandValue::Pair(a, b)
} else if common::type_is_immediate(bcx.ccx(), ty) {
OperandValue::Immediate(base::load_ty_builder(bcx, llval, ty))
} else {
OperandValue::Ref(llval)
};
OperandRef { val: val, ty: ty }
}
pub fn trans_consume(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
lvalue: &mir::Lvalue<'tcx>)
-> OperandRef<'tcx>
{
debug!("trans_consume(lvalue={:?})", lvalue);
// watch out for locals that do not have an
// alloca; they are handled somewhat differently
if let Some(index) = self.mir.local_index(lvalue) {
match self.locals[index] {
LocalRef::Operand(Some(o)) => {
return o;
}
LocalRef::Operand(None) => {
bug!("use of {:?} before def", lvalue);
}
LocalRef::Lvalue(..) => {
// use path below
}
}
}
// Moves out of pair fields are trivial.
if let &mir::Lvalue::Projection(ref proj) = lvalue {
if let Some(index) = self.mir.local_index(&proj.base) {
if let LocalRef::Operand(Some(o)) = self.locals[index] {
match (o.val, &proj.elem) {
(OperandValue::Pair(a, b),
&mir::ProjectionElem::Field(ref f, ty)) => {
let llval = [a, b][f.index()];
let op = OperandRef {
val: OperandValue::Immediate(llval),
ty: bcx.monomorphize(&ty)
};
// Handle nested pairs.
return op.unpack_if_pair(bcx);
}
_ => {}
}
}
}
}
// for most lvalues, to consume them we just load them
// out from their home
let tr_lvalue = self.trans_lvalue(bcx, lvalue);
let ty = tr_lvalue.ty.to_ty(bcx.tcx());
self.trans_load(bcx, tr_lvalue.llval, ty)
}
pub fn trans_operand(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
operand: &mir::Operand<'tcx>)
-> OperandRef<'tcx>
{
debug!("trans_operand(operand={:?})", operand);
match *operand {
mir::Operand::Consume(ref lvalue) => {
self.trans_consume(bcx, lvalue)
}
mir::Operand::Constant(ref constant) => {
let val = self.trans_constant(bcx, constant);
let operand = val.to_operand(bcx.ccx());
if let OperandValue::Ref(ptr) = operand.val {
// If this is a OperandValue::Ref to an immediate constant, load it.
self.trans_load(bcx, ptr, operand.ty)
} else {
operand
}
}
}
}
pub fn store_operand(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
lldest: ValueRef,
operand: OperandRef<'tcx>)
{
debug!("store_operand: operand={:?}", operand);
bcx.with_block(|bcx| self.store_operand_direct(bcx, lldest, operand))
}
pub fn store_operand_direct(&mut self,
bcx: Block<'bcx, 'tcx>,
lldest: ValueRef,
operand: OperandRef<'tcx>)
{
// Avoid generating stores of zero-sized values, because the only way to have a zero-sized
// value is through `undef`, and store itself is useless.
if common::type_is_zero_size(bcx.ccx(), operand.ty) {
return;
}
match operand.val {
OperandValue::Ref(r) => base::memcpy_ty(bcx, lldest, r, operand.ty),
OperandValue::Immediate(s) => base::store_ty(bcx, s, lldest, operand.ty),
OperandValue::Pair(a, b) => {
use build::*;
let a = base::from_immediate(bcx, a);
let b = base::from_immediate(bcx, b);
Store(bcx, a, StructGEP(bcx, lldest, 0));
Store(bcx, b, StructGEP(bcx, lldest, 1));
}
}
}
}