blob: 587c03af3abb6d6eaae9fbdd1c73a2650912049e [file] [log] [blame]
// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm::{self, ValueRef};
use base;
use build::AllocaFcx;
use common::{type_is_fat_ptr, BlockAndBuilder, C_uint};
use context::CrateContext;
use cabi_x86;
use cabi_x86_64;
use cabi_x86_win64;
use cabi_arm;
use cabi_aarch64;
use cabi_powerpc;
use cabi_powerpc64;
use cabi_mips;
use cabi_asmjs;
use machine::{llalign_of_min, llsize_of, llsize_of_real, llsize_of_store};
use type_::Type;
use type_of;
use rustc::hir;
use rustc::ty::{self, Ty};
use libc::c_uint;
use std::cmp;
pub use syntax::abi::Abi;
pub use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
#[derive(Clone, Copy, PartialEq, Debug)]
enum ArgKind {
/// Pass the argument directly using the normal converted
/// LLVM type or by coercing to another specified type
Direct,
/// Pass the argument indirectly via a hidden pointer
Indirect,
/// Ignore the argument (useful for empty struct)
Ignore,
}
/// Information about how a specific C type
/// should be passed to or returned from a function
///
/// This is borrowed from clang's ABIInfo.h
#[derive(Clone, Copy, Debug)]
pub struct ArgType {
kind: ArgKind,
/// Original LLVM type
pub original_ty: Type,
/// Sizing LLVM type (pointers are opaque).
/// Unlike original_ty, this is guaranteed to be complete.
///
/// For example, while we're computing the function pointer type in
/// `struct Foo(fn(Foo));`, `original_ty` is still LLVM's `%Foo = {}`.
/// The field type will likely end up being `void(%Foo)*`, but we cannot
/// use `%Foo` to compute properties (e.g. size and alignment) of `Foo`,
/// until `%Foo` is completed by having all of its field types inserted,
/// so `ty` holds the "sizing type" of `Foo`, which replaces all pointers
/// with opaque ones, resulting in `{i8*}` for `Foo`.
/// ABI-specific logic can then look at the size, alignment and fields of
/// `{i8*}` in order to determine how the argument will be passed.
/// Only later will `original_ty` aka `%Foo` be used in the LLVM function
/// pointer type, without ever having introspected it.
pub ty: Type,
/// Signedness for integer types, None for other types
pub signedness: Option<bool>,
/// Coerced LLVM Type
pub cast: Option<Type>,
/// Dummy argument, which is emitted before the real argument
pub pad: Option<Type>,
/// LLVM attributes of argument
pub attrs: llvm::Attributes
}
impl ArgType {
fn new(original_ty: Type, ty: Type) -> ArgType {
ArgType {
kind: ArgKind::Direct,
original_ty: original_ty,
ty: ty,
signedness: None,
cast: None,
pad: None,
attrs: llvm::Attributes::default()
}
}
pub fn make_indirect(&mut self, ccx: &CrateContext) {
assert_eq!(self.kind, ArgKind::Direct);
// Wipe old attributes, likely not valid through indirection.
self.attrs = llvm::Attributes::default();
let llarg_sz = llsize_of_real(ccx, self.ty);
// For non-immediate arguments the callee gets its own copy of
// the value on the stack, so there are no aliases. It's also
// program-invisible so can't possibly capture
self.attrs.set(llvm::Attribute::NoAlias)
.set(llvm::Attribute::NoCapture)
.set_dereferenceable(llarg_sz);
self.kind = ArgKind::Indirect;
}
pub fn ignore(&mut self) {
assert_eq!(self.kind, ArgKind::Direct);
self.kind = ArgKind::Ignore;
}
pub fn extend_integer_width_to(&mut self, bits: u64) {
// Only integers have signedness
if let Some(signed) = self.signedness {
if self.ty.int_width() < bits {
self.attrs.set(if signed {
llvm::Attribute::SExt
} else {
llvm::Attribute::ZExt
});
}
}
}
pub fn is_indirect(&self) -> bool {
self.kind == ArgKind::Indirect
}
pub fn is_ignore(&self) -> bool {
self.kind == ArgKind::Ignore
}
/// Get the LLVM type for an lvalue of the original Rust type of
/// this argument/return, i.e. the result of `type_of::type_of`.
pub fn memory_ty(&self, ccx: &CrateContext) -> Type {
if self.original_ty == Type::i1(ccx) {
Type::i8(ccx)
} else {
self.original_ty
}
}
/// Store a direct/indirect value described by this ArgType into a
/// lvalue for the original Rust type of this argument/return.
/// Can be used for both storing formal arguments into Rust variables
/// or results of call/invoke instructions into their destinations.
pub fn store(&self, bcx: &BlockAndBuilder, mut val: ValueRef, dst: ValueRef) {
if self.is_ignore() {
return;
}
let ccx = bcx.ccx();
if self.is_indirect() {
let llsz = llsize_of(ccx, self.ty);
let llalign = llalign_of_min(ccx, self.ty);
base::call_memcpy(bcx, dst, val, llsz, llalign as u32);
} else if let Some(ty) = self.cast {
// FIXME(eddyb): Figure out when the simpler Store is safe, clang
// uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
let can_store_through_cast_ptr = false;
if can_store_through_cast_ptr {
let cast_dst = bcx.pointercast(dst, ty.ptr_to());
let store = bcx.store(val, cast_dst);
let llalign = llalign_of_min(ccx, self.ty);
unsafe {
llvm::LLVMSetAlignment(store, llalign);
}
} else {
// The actual return type is a struct, but the ABI
// adaptation code has cast it into some scalar type. The
// code that follows is the only reliable way I have
// found to do a transform like i64 -> {i32,i32}.
// Basically we dump the data onto the stack then memcpy it.
//
// Other approaches I tried:
// - Casting rust ret pointer to the foreign type and using Store
// is (a) unsafe if size of foreign type > size of rust type and
// (b) runs afoul of strict aliasing rules, yielding invalid
// assembly under -O (specifically, the store gets removed).
// - Truncating foreign type to correct integral type and then
// bitcasting to the struct type yields invalid cast errors.
// We instead thus allocate some scratch space...
let llscratch = AllocaFcx(bcx.fcx(), ty, "abi_cast");
base::Lifetime::Start.call(bcx, llscratch);
// ...where we first store the value...
bcx.store(val, llscratch);
// ...and then memcpy it to the intended destination.
base::call_memcpy(bcx,
bcx.pointercast(dst, Type::i8p(ccx)),
bcx.pointercast(llscratch, Type::i8p(ccx)),
C_uint(ccx, llsize_of_store(ccx, self.ty)),
cmp::min(llalign_of_min(ccx, self.ty),
llalign_of_min(ccx, ty)) as u32);
base::Lifetime::End.call(bcx, llscratch);
}
} else {
if self.original_ty == Type::i1(ccx) {
val = bcx.zext(val, Type::i8(ccx));
}
bcx.store(val, dst);
}
}
pub fn store_fn_arg(&self, bcx: &BlockAndBuilder, idx: &mut usize, dst: ValueRef) {
if self.pad.is_some() {
*idx += 1;
}
if self.is_ignore() {
return;
}
let val = llvm::get_param(bcx.fcx().llfn, *idx as c_uint);
*idx += 1;
self.store(bcx, val, dst);
}
}
/// Metadata describing how the arguments to a native function
/// should be passed in order to respect the native ABI.
///
/// I will do my best to describe this structure, but these
/// comments are reverse-engineered and may be inaccurate. -NDM
#[derive(Clone)]
pub struct FnType {
/// The LLVM types of each argument.
pub args: Vec<ArgType>,
/// LLVM return type.
pub ret: ArgType,
pub variadic: bool,
pub cconv: llvm::CallConv
}
impl FnType {
pub fn new<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
abi: Abi,
sig: &ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType {
let mut fn_ty = FnType::unadjusted(ccx, abi, sig, extra_args);
fn_ty.adjust_for_abi(ccx, abi, sig);
fn_ty
}
pub fn unadjusted<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
abi: Abi,
sig: &ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType {
use self::Abi::*;
let cconv = match ccx.sess().target.target.adjust_abi(abi) {
RustIntrinsic | PlatformIntrinsic |
Rust | RustCall => llvm::CCallConv,
// It's the ABI's job to select this, not us.
System => bug!("system abi should be selected elsewhere"),
Stdcall => llvm::X86StdcallCallConv,
Fastcall => llvm::X86FastcallCallConv,
Vectorcall => llvm::X86_VectorCall,
C => llvm::CCallConv,
Win64 => llvm::X86_64_Win64,
// These API constants ought to be more specific...
Cdecl => llvm::CCallConv,
Aapcs => llvm::CCallConv,
};
let mut inputs = &sig.inputs[..];
let extra_args = if abi == RustCall {
assert!(!sig.variadic && extra_args.is_empty());
match inputs[inputs.len() - 1].sty {
ty::TyTuple(ref tupled_arguments) => {
inputs = &inputs[..inputs.len() - 1];
&tupled_arguments[..]
}
_ => {
bug!("argument to function with \"rust-call\" ABI \
is not a tuple");
}
}
} else {
assert!(sig.variadic || extra_args.is_empty());
extra_args
};
let target = &ccx.sess().target.target;
let win_x64_gnu = target.target_os == "windows"
&& target.arch == "x86_64"
&& target.target_env == "gnu";
let rust_abi = match abi {
RustIntrinsic | PlatformIntrinsic | Rust | RustCall => true,
_ => false
};
let arg_of = |ty: Ty<'tcx>, is_return: bool| {
if ty.is_bool() {
let llty = Type::i1(ccx);
let mut arg = ArgType::new(llty, llty);
arg.attrs.set(llvm::Attribute::ZExt);
arg
} else {
let mut arg = ArgType::new(type_of::type_of(ccx, ty),
type_of::sizing_type_of(ccx, ty));
if ty.is_integral() {
arg.signedness = Some(ty.is_signed());
}
if llsize_of_real(ccx, arg.ty) == 0 {
// For some forsaken reason, x86_64-pc-windows-gnu
// doesn't ignore zero-sized struct arguments.
if is_return || rust_abi || !win_x64_gnu {
arg.ignore();
}
}
arg
}
};
let ret_ty = match sig.output {
ty::FnConverging(ret_ty) => ret_ty,
ty::FnDiverging => ccx.tcx().mk_nil()
};
let mut ret = arg_of(ret_ty, true);
if !type_is_fat_ptr(ccx.tcx(), ret_ty) {
// The `noalias` attribute on the return value is useful to a
// function ptr caller.
if let ty::TyBox(_) = ret_ty.sty {
// `Box` pointer return values never alias because ownership
// is transferred
ret.attrs.set(llvm::Attribute::NoAlias);
}
// We can also mark the return value as `dereferenceable` in certain cases
match ret_ty.sty {
// These are not really pointers but pairs, (pointer, len)
ty::TyRef(_, ty::TypeAndMut { ty, .. }) |
ty::TyBox(ty) => {
let llty = type_of::sizing_type_of(ccx, ty);
let llsz = llsize_of_real(ccx, llty);
ret.attrs.set_dereferenceable(llsz);
}
_ => {}
}
}
let mut args = Vec::with_capacity(inputs.len() + extra_args.len());
// Handle safe Rust thin and fat pointers.
let rust_ptr_attrs = |ty: Ty<'tcx>, arg: &mut ArgType| match ty.sty {
// `Box` pointer parameters never alias because ownership is transferred
ty::TyBox(inner) => {
arg.attrs.set(llvm::Attribute::NoAlias);
Some(inner)
}
ty::TyRef(b, mt) => {
use rustc::ty::{BrAnon, ReLateBound};
// `&mut` pointer parameters never alias other parameters, or mutable global data
//
// `&T` where `T` contains no `UnsafeCell<U>` is immutable, and can be marked as
// both `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely
// on memory dependencies rather than pointer equality
let interior_unsafe = mt.ty.type_contents(ccx.tcx()).interior_unsafe();
if mt.mutbl != hir::MutMutable && !interior_unsafe {
arg.attrs.set(llvm::Attribute::NoAlias);
}
if mt.mutbl == hir::MutImmutable && !interior_unsafe {
arg.attrs.set(llvm::Attribute::ReadOnly);
}
// When a reference in an argument has no named lifetime, it's
// impossible for that reference to escape this function
// (returned or stored beyond the call by a closure).
if let ReLateBound(_, BrAnon(_)) = *b {
arg.attrs.set(llvm::Attribute::NoCapture);
}
Some(mt.ty)
}
_ => None
};
for ty in inputs.iter().chain(extra_args.iter()) {
let mut arg = arg_of(ty, false);
if type_is_fat_ptr(ccx.tcx(), ty) {
let original_tys = arg.original_ty.field_types();
let sizing_tys = arg.ty.field_types();
assert_eq!((original_tys.len(), sizing_tys.len()), (2, 2));
let mut data = ArgType::new(original_tys[0], sizing_tys[0]);
let mut info = ArgType::new(original_tys[1], sizing_tys[1]);
if let Some(inner) = rust_ptr_attrs(ty, &mut data) {
data.attrs.set(llvm::Attribute::NonNull);
if ccx.tcx().struct_tail(inner).is_trait() {
info.attrs.set(llvm::Attribute::NonNull);
}
}
args.push(data);
args.push(info);
} else {
if let Some(inner) = rust_ptr_attrs(ty, &mut arg) {
let llty = type_of::sizing_type_of(ccx, inner);
let llsz = llsize_of_real(ccx, llty);
arg.attrs.set_dereferenceable(llsz);
}
args.push(arg);
}
}
FnType {
args: args,
ret: ret,
variadic: sig.variadic,
cconv: cconv
}
}
pub fn adjust_for_abi<'a, 'tcx>(&mut self,
ccx: &CrateContext<'a, 'tcx>,
abi: Abi,
sig: &ty::FnSig<'tcx>) {
if abi == Abi::Rust || abi == Abi::RustCall ||
abi == Abi::RustIntrinsic || abi == Abi::PlatformIntrinsic {
let fixup = |arg: &mut ArgType| {
let mut llty = arg.ty;
// Replace newtypes with their inner-most type.
while llty.kind() == llvm::TypeKind::Struct {
let inner = llty.field_types();
if inner.len() != 1 {
break;
}
llty = inner[0];
}
if !llty.is_aggregate() {
// Scalars and vectors, always immediate.
if llty != arg.ty {
// Needs a cast as we've unpacked a newtype.
arg.cast = Some(llty);
}
return;
}
let size = llsize_of_real(ccx, llty);
if size > llsize_of_real(ccx, ccx.int_type()) {
arg.make_indirect(ccx);
} else if size > 0 {
// We want to pass small aggregates as immediates, but using
// a LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.
arg.cast = Some(Type::ix(ccx, size * 8));
}
};
// Fat pointers are returned by-value.
if !self.ret.is_ignore() {
if !type_is_fat_ptr(ccx.tcx(), sig.output.unwrap()) {
fixup(&mut self.ret);
}
}
for arg in &mut self.args {
if arg.is_ignore() { continue; }
fixup(arg);
}
if self.ret.is_indirect() {
self.ret.attrs.set(llvm::Attribute::StructRet);
}
return;
}
match &ccx.sess().target.target.arch[..] {
"x86" => cabi_x86::compute_abi_info(ccx, self),
"x86_64" => if ccx.sess().target.target.options.is_like_windows {
cabi_x86_win64::compute_abi_info(ccx, self);
} else {
cabi_x86_64::compute_abi_info(ccx, self);
},
"aarch64" => cabi_aarch64::compute_abi_info(ccx, self),
"arm" => {
let flavor = if ccx.sess().target.target.target_os == "ios" {
cabi_arm::Flavor::Ios
} else {
cabi_arm::Flavor::General
};
cabi_arm::compute_abi_info(ccx, self, flavor);
},
"mips" => cabi_mips::compute_abi_info(ccx, self),
"powerpc" => cabi_powerpc::compute_abi_info(ccx, self),
"powerpc64" => cabi_powerpc64::compute_abi_info(ccx, self),
"asmjs" => cabi_asmjs::compute_abi_info(ccx, self),
a => ccx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a))
}
if self.ret.is_indirect() {
self.ret.attrs.set(llvm::Attribute::StructRet);
}
}
pub fn llvm_type(&self, ccx: &CrateContext) -> Type {
let mut llargument_tys = Vec::new();
let llreturn_ty = if self.ret.is_ignore() {
Type::void(ccx)
} else if self.ret.is_indirect() {
llargument_tys.push(self.ret.original_ty.ptr_to());
Type::void(ccx)
} else {
self.ret.cast.unwrap_or(self.ret.original_ty)
};
for arg in &self.args {
if arg.is_ignore() {
continue;
}
// add padding
if let Some(ty) = arg.pad {
llargument_tys.push(ty);
}
let llarg_ty = if arg.is_indirect() {
arg.original_ty.ptr_to()
} else {
arg.cast.unwrap_or(arg.original_ty)
};
llargument_tys.push(llarg_ty);
}
if self.variadic {
Type::variadic_func(&llargument_tys, &llreturn_ty)
} else {
Type::func(&llargument_tys, &llreturn_ty)
}
}
pub fn apply_attrs_llfn(&self, llfn: ValueRef) {
let mut i = if self.ret.is_indirect() { 1 } else { 0 };
if !self.ret.is_ignore() {
self.ret.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn);
}
i += 1;
for arg in &self.args {
if !arg.is_ignore() {
if arg.pad.is_some() { i += 1; }
arg.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn);
i += 1;
}
}
}
pub fn apply_attrs_callsite(&self, callsite: ValueRef) {
let mut i = if self.ret.is_indirect() { 1 } else { 0 };
if !self.ret.is_ignore() {
self.ret.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite);
}
i += 1;
for arg in &self.args {
if !arg.is_ignore() {
if arg.pad.is_some() { i += 1; }
arg.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite);
i += 1;
}
}
if self.cconv != llvm::CCallConv {
llvm::SetInstructionCallConv(callsite, self.cconv);
}
}
}