blob: 953c65549195a9ee00739cafa6f145c7221b23c2 [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use rustc::session::Session;
use generated_code;
use std::cell::Cell;
use std::env;
use std::path::Path;
use syntax::ast;
use syntax::parse::lexer::{self, Reader, StringReader};
use syntax::parse::token::{self, keywords, Token};
use syntax_pos::*;
#[derive(Clone)]
pub struct SpanUtils<'a> {
pub sess: &'a Session,
// FIXME given that we clone SpanUtils all over the place, this err_count is
// probably useless and any logic relying on it is bogus.
pub err_count: Cell<isize>,
}
impl<'a> SpanUtils<'a> {
pub fn new(sess: &'a Session) -> SpanUtils<'a> {
SpanUtils {
sess: sess,
err_count: Cell::new(0),
}
}
pub fn make_path_string(file_name: &str) -> String {
let path = Path::new(file_name);
if path.is_absolute() {
path.clone().display().to_string()
} else {
env::current_dir().unwrap().join(&path).display().to_string()
}
}
// sub_span starts at span.lo, so we need to adjust the positions etc.
// If sub_span is None, we don't need to adjust.
pub fn make_sub_span(&self, span: Span, sub_span: Option<Span>) -> Option<Span> {
match sub_span {
None => None,
Some(sub) => {
let FileMapAndBytePos {fm, pos} = self.sess.codemap().lookup_byte_offset(span.lo);
let base = pos + fm.start_pos;
Some(Span {
lo: base + self.sess.codemap().lookup_byte_offset(sub.lo).pos,
hi: base + self.sess.codemap().lookup_byte_offset(sub.hi).pos,
expn_id: span.expn_id,
})
}
}
}
pub fn snippet(&self, span: Span) -> String {
match self.sess.codemap().span_to_snippet(span) {
Ok(s) => s,
Err(_) => String::new(),
}
}
pub fn retokenise_span(&self, span: Span) -> StringReader<'a> {
// sadness - we don't have spans for sub-expressions nor access to the tokens
// so in order to get extents for the function name itself (which dxr expects)
// we need to re-tokenise the fn definition
// Note: this is a bit awful - it adds the contents of span to the end of
// the codemap as a new filemap. This is mostly OK, but means we should
// not iterate over the codemap. Also, any spans over the new filemap
// are incompatible with spans over other filemaps.
let filemap = self.sess
.codemap()
.new_filemap(String::from("<anon-dxr>"), None, self.snippet(span));
let s = self.sess;
lexer::StringReader::new(s.diagnostic(), filemap)
}
// Re-parses a path and returns the span for the last identifier in the path
pub fn span_for_last_ident(&self, span: Span) -> Option<Span> {
let mut result = None;
let mut toks = self.retokenise_span(span);
let mut bracket_count = 0;
loop {
let ts = toks.real_token();
if ts.tok == token::Eof {
return self.make_sub_span(span, result)
}
if bracket_count == 0 && (ts.tok.is_ident() || ts.tok.is_keyword(keywords::SelfValue)) {
result = Some(ts.sp);
}
bracket_count += match ts.tok {
token::Lt => 1,
token::Gt => -1,
token::BinOp(token::Shr) => -2,
_ => 0,
}
}
}
// Return the span for the first identifier in the path.
pub fn span_for_first_ident(&self, span: Span) -> Option<Span> {
let mut toks = self.retokenise_span(span);
let mut bracket_count = 0;
loop {
let ts = toks.real_token();
if ts.tok == token::Eof {
return None;
}
if bracket_count == 0 && (ts.tok.is_ident() || ts.tok.is_keyword(keywords::SelfValue)) {
return self.make_sub_span(span, Some(ts.sp));
}
bracket_count += match ts.tok {
token::Lt => 1,
token::Gt => -1,
token::BinOp(token::Shr) => -2,
_ => 0,
}
}
}
// Return the span for the last ident before a `(` or `<` or '::<' and outside any
// any brackets, or the last span.
pub fn sub_span_for_meth_name(&self, span: Span) -> Option<Span> {
let mut toks = self.retokenise_span(span);
let mut prev = toks.real_token();
let mut result = None;
let mut bracket_count = 0;
let mut last_span = None;
while prev.tok != token::Eof {
last_span = None;
let mut next = toks.real_token();
if (next.tok == token::OpenDelim(token::Paren) || next.tok == token::Lt) &&
bracket_count == 0 && prev.tok.is_ident() {
result = Some(prev.sp);
}
if bracket_count == 0 && next.tok == token::ModSep {
let old = prev;
prev = next;
next = toks.real_token();
if next.tok == token::Lt && old.tok.is_ident() {
result = Some(old.sp);
}
}
bracket_count += match prev.tok {
token::OpenDelim(token::Paren) | token::Lt => 1,
token::CloseDelim(token::Paren) | token::Gt => -1,
token::BinOp(token::Shr) => -2,
_ => 0,
};
if prev.tok.is_ident() && bracket_count == 0 {
last_span = Some(prev.sp);
}
prev = next;
}
if result.is_none() && last_span.is_some() {
return self.make_sub_span(span, last_span);
}
return self.make_sub_span(span, result);
}
// Return the span for the last ident before a `<` and outside any
// brackets, or the last span.
pub fn sub_span_for_type_name(&self, span: Span) -> Option<Span> {
let mut toks = self.retokenise_span(span);
let mut prev = toks.real_token();
let mut result = None;
let mut bracket_count = 0;
loop {
let next = toks.real_token();
if (next.tok == token::Lt || next.tok == token::Colon) && bracket_count == 0 &&
prev.tok.is_ident() {
result = Some(prev.sp);
}
bracket_count += match prev.tok {
token::Lt => 1,
token::Gt => -1,
token::BinOp(token::Shl) => 2,
token::BinOp(token::Shr) => -2,
_ => 0,
};
if next.tok == token::Eof {
break;
}
prev = next;
}
if bracket_count != 0 {
let loc = self.sess.codemap().lookup_char_pos(span.lo);
span_bug!(span,
"Mis-counted brackets when breaking path? Parsing '{}' \
in {}, line {}",
self.snippet(span),
loc.file.name,
loc.line);
}
if result.is_none() && prev.tok.is_ident() && bracket_count == 0 {
return self.make_sub_span(span, Some(prev.sp));
}
self.make_sub_span(span, result)
}
// Reparse span and return an owned vector of sub spans of the first limit
// identifier tokens in the given nesting level.
// example with Foo<Bar<T,V>, Bar<T,V>>
// Nesting = 0: all idents outside of brackets: [Foo]
// Nesting = 1: idents within one level of brackets: [Bar, Bar]
pub fn spans_with_brackets(&self, span: Span, nesting: isize, limit: isize) -> Vec<Span> {
let mut result: Vec<Span> = vec!();
let mut toks = self.retokenise_span(span);
// We keep track of how many brackets we're nested in
let mut bracket_count: isize = 0;
let mut found_ufcs_sep = false;
loop {
let ts = toks.real_token();
if ts.tok == token::Eof {
if bracket_count != 0 {
if generated_code(span) {
return vec!();
}
let loc = self.sess.codemap().lookup_char_pos(span.lo);
span_bug!(span,
"Mis-counted brackets when breaking path? \
Parsing '{}' in {}, line {}",
self.snippet(span),
loc.file.name,
loc.line);
}
return result
}
if (result.len() as isize) == limit {
return result;
}
bracket_count += match ts.tok {
token::Lt => 1,
token::Gt => -1,
token::BinOp(token::Shl) => 2,
token::BinOp(token::Shr) => -2,
_ => 0,
};
// Ignore the `>::` in `<Type as Trait>::AssocTy`.
// The root cause of this hack is that the AST representation of
// qpaths is horrible. It treats <A as B>::C as a path with two
// segments, B and C and notes that there is also a self type A at
// position 0. Because we don't have spans for individual idents,
// only the whole path, we have to iterate over the tokens in the
// path, trying to pull out the non-nested idents (e.g., avoiding 'a
// in `<A as B<'a>>::C`). So we end up with a span for `B>::C` from
// the start of the first ident to the end of the path.
if !found_ufcs_sep && bracket_count == -1 {
found_ufcs_sep = true;
bracket_count += 1;
}
if ts.tok.is_ident() && bracket_count == nesting {
result.push(self.make_sub_span(span, Some(ts.sp)).unwrap());
}
}
}
pub fn sub_span_before_token(&self, span: Span, tok: Token) -> Option<Span> {
let mut toks = self.retokenise_span(span);
let mut prev = toks.real_token();
loop {
if prev.tok == token::Eof {
return None;
}
let next = toks.real_token();
if next.tok == tok {
return self.make_sub_span(span, Some(prev.sp));
}
prev = next;
}
}
pub fn sub_span_of_token(&self, span: Span, tok: Token) -> Option<Span> {
let mut toks = self.retokenise_span(span);
loop {
let next = toks.real_token();
if next.tok == token::Eof {
return None;
}
if next.tok == tok {
return self.make_sub_span(span, Some(next.sp));
}
}
}
pub fn sub_span_after_keyword(&self, span: Span, keyword: keywords::Keyword) -> Option<Span> {
self.sub_span_after(span, |t| t.is_keyword(keyword))
}
pub fn sub_span_after_token(&self, span: Span, tok: Token) -> Option<Span> {
self.sub_span_after(span, |t| t == tok)
}
fn sub_span_after<F: Fn(Token) -> bool>(&self, span: Span, f: F) -> Option<Span> {
let mut toks = self.retokenise_span(span);
loop {
let ts = toks.real_token();
if ts.tok == token::Eof {
return None;
}
if f(ts.tok) {
let ts = toks.real_token();
if ts.tok == token::Eof {
return None
} else {
return self.make_sub_span(span, Some(ts.sp));
}
}
}
}
// Returns a list of the spans of idents in a path.
// E.g., For foo::bar<x,t>::baz, we return [foo, bar, baz] (well, their spans)
pub fn spans_for_path_segments(&self, path: &ast::Path) -> Vec<Span> {
self.spans_with_brackets(path.span, 0, -1)
}
// Return an owned vector of the subspans of the param identifier
// tokens found in span.
pub fn spans_for_ty_params(&self, span: Span, number: isize) -> Vec<Span> {
// Type params are nested within one level of brackets:
// i.e. we want Vec<A, B> from Foo<A, B<T,U>>
self.spans_with_brackets(span, 1, number)
}
pub fn report_span_err(&self, kind: &str, span: Span) {
let loc = self.sess.codemap().lookup_char_pos(span.lo);
info!("({}) Could not find sub_span in `{}` in {}, line {}",
kind,
self.snippet(span),
loc.file.name,
loc.line);
self.err_count.set(self.err_count.get() + 1);
if self.err_count.get() > 1000 {
bug!("span errors reached 1000, giving up");
}
}
// Return the name for a macro definition (identifier after first `!`)
pub fn span_for_macro_def_name(&self, span: Span) -> Option<Span> {
let mut toks = self.retokenise_span(span);
loop {
let ts = toks.real_token();
if ts.tok == token::Eof {
return None;
}
if ts.tok == token::Not {
let ts = toks.real_token();
if ts.tok.is_ident() {
return self.make_sub_span(span, Some(ts.sp));
} else {
return None;
}
}
}
}
// Return the name for a macro use (identifier before first `!`).
pub fn span_for_macro_use_name(&self, span:Span) -> Option<Span> {
let mut toks = self.retokenise_span(span);
let mut prev = toks.real_token();
loop {
if prev.tok == token::Eof {
return None;
}
let ts = toks.real_token();
if ts.tok == token::Not {
if prev.tok.is_ident() {
return self.make_sub_span(span, Some(prev.sp));
} else {
return None;
}
}
prev = ts;
}
}
/// Return true if the span is generated code, and
/// it is not a subspan of the root callsite.
///
/// Used to filter out spans of minimal value,
/// such as references to macro internal variables.
pub fn filter_generated(&self, sub_span: Option<Span>, parent: Span) -> bool {
if !generated_code(parent) {
if sub_span.is_none() {
// Edge case - this occurs on generated code with incorrect expansion info.
return true;
}
return false;
}
// If sub_span is none, filter out generated code.
if sub_span.is_none() {
return true;
}
//If the span comes from a fake filemap, filter it.
if !self.sess.codemap().lookup_char_pos(parent.lo).file.is_real_file() {
return true;
}
// Otherwise, a generated span is deemed invalid if it is not a sub-span of the root
// callsite. This filters out macro internal variables and most malformed spans.
let span = self.sess.codemap().source_callsite(parent);
!(span.contains(parent))
}
}
macro_rules! filter {
($util: expr, $span: ident, $parent: expr, None) => {
if $util.filter_generated($span, $parent) {
return None;
}
};
($util: expr, $span: ident, $parent: expr) => {
if $util.filter_generated($span, $parent) {
return;
}
};
}