blob: 5e967f3250f710523440b186f468246a7d65b4e8 [file] [log] [blame]
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Write the output of rustc's analysis to an implementor of Dump. The data is
//! primarily designed to be used as input to the DXR tool, specifically its
//! Rust plugin. It could also be used by IDEs or other code browsing, search, or
//! cross-referencing tools.
//!
//! Dumping the analysis is implemented by walking the AST and getting a bunch of
//! info out from all over the place. We use Def IDs to identify objects. The
//! tricky part is getting syntactic (span, source text) and semantic (reference
//! Def IDs) information for parts of expressions which the compiler has discarded.
//! E.g., in a path `foo::bar::baz`, the compiler only keeps a span for the whole
//! path and a reference to `baz`, but we want spans and references for all three
//! idents.
//!
//! SpanUtils is used to manipulate spans. In particular, to extract sub-spans
//! from spans (e.g., the span for `bar` from the above example path).
//! DumpVisitor walks the AST and processes it, and an implementor of Dump
//! is used for recording the output in a format-agnostic way (see CsvDumper
//! for an example).
use rustc::hir::def::Def;
use rustc::hir::def_id::DefId;
use rustc::hir::map::Node;
use rustc::session::Session;
use rustc::ty::{self, TyCtxt, ImplOrTraitItem, ImplOrTraitItemContainer};
use std::collections::HashSet;
use std::hash::*;
use syntax::ast::{self, NodeId, PatKind};
use syntax::parse::token::{self, keywords};
use syntax::visit::{self, Visitor};
use syntax::print::pprust::{path_to_string, ty_to_string, bounds_to_string, generics_to_string};
use syntax::ptr::P;
use syntax::codemap::Spanned;
use syntax_pos::*;
use super::{escape, generated_code, SaveContext, PathCollector};
use super::data::*;
use super::dump::Dump;
use super::external_data::Lower;
use super::span_utils::SpanUtils;
use super::recorder;
macro_rules! down_cast_data {
($id:ident, $kind:ident, $sp:expr) => {
let $id = if let super::Data::$kind(data) = $id {
data
} else {
span_bug!($sp, "unexpected data kind: {:?}", $id);
};
};
}
pub struct DumpVisitor<'l, 'tcx: 'l, 'll, D: 'll> {
save_ctxt: SaveContext<'l, 'tcx>,
sess: &'l Session,
tcx: TyCtxt<'l, 'tcx, 'tcx>,
analysis: &'l ty::CrateAnalysis<'l>,
dumper: &'ll mut D,
span: SpanUtils<'l>,
cur_scope: NodeId,
// Set of macro definition (callee) spans, and the set
// of macro use (callsite) spans. We store these to ensure
// we only write one macro def per unique macro definition, and
// one macro use per unique callsite span.
mac_defs: HashSet<Span>,
mac_uses: HashSet<Span>,
}
impl<'l, 'tcx: 'l, 'll, D: Dump + 'll> DumpVisitor<'l, 'tcx, 'll, D> {
pub fn new(tcx: TyCtxt<'l, 'tcx, 'tcx>,
save_ctxt: SaveContext<'l, 'tcx>,
analysis: &'l ty::CrateAnalysis<'l>,
dumper: &'ll mut D)
-> DumpVisitor<'l, 'tcx, 'll, D> {
let span_utils = SpanUtils::new(&tcx.sess);
DumpVisitor {
sess: &tcx.sess,
tcx: tcx,
save_ctxt: save_ctxt,
analysis: analysis,
dumper: dumper,
span: span_utils.clone(),
cur_scope: 0,
mac_defs: HashSet::new(),
mac_uses: HashSet::new(),
}
}
fn nest<F>(&mut self, scope_id: NodeId, f: F)
where F: FnOnce(&mut DumpVisitor<'l, 'tcx, 'll, D>)
{
let parent_scope = self.cur_scope;
self.cur_scope = scope_id;
f(self);
self.cur_scope = parent_scope;
}
pub fn dump_crate_info(&mut self, name: &str, krate: &ast::Crate) {
let source_file = self.tcx.sess.local_crate_source_file.as_ref();
let crate_root = source_file.map(|source_file| {
match source_file.file_name() {
Some(_) => source_file.parent().unwrap().display().to_string(),
None => source_file.display().to_string(),
}
});
// Info about all the external crates referenced from this crate.
let external_crates = self.save_ctxt.get_external_crates().into_iter().map(|c| {
let lo_loc = self.span.sess.codemap().lookup_char_pos(c.span.lo);
ExternalCrateData {
name: c.name,
num: c.number,
file_name: SpanUtils::make_path_string(&lo_loc.file.name),
}
}).collect();
// The current crate.
let data = CratePreludeData {
crate_name: name.into(),
crate_root: crate_root.unwrap_or("<no source>".to_owned()),
external_crates: external_crates,
span: krate.span,
};
self.dumper.crate_prelude(data.lower(self.tcx));
}
// Return all non-empty prefixes of a path.
// For each prefix, we return the span for the last segment in the prefix and
// a str representation of the entire prefix.
fn process_path_prefixes(&self, path: &ast::Path) -> Vec<(Span, String)> {
let spans = self.span.spans_for_path_segments(path);
// Paths to enums seem to not match their spans - the span includes all the
// variants too. But they seem to always be at the end, so I hope we can cope with
// always using the first ones. So, only error out if we don't have enough spans.
// What could go wrong...?
if spans.len() < path.segments.len() {
if generated_code(path.span) {
return vec!();
}
error!("Mis-calculated spans for path '{}'. Found {} spans, expected {}. Found spans:",
path_to_string(path),
spans.len(),
path.segments.len());
for s in &spans {
let loc = self.sess.codemap().lookup_char_pos(s.lo);
error!(" '{}' in {}, line {}",
self.span.snippet(*s),
loc.file.name,
loc.line);
}
return vec!();
}
let mut result: Vec<(Span, String)> = vec!();
let mut segs = vec!();
for (i, (seg, span)) in path.segments.iter().zip(&spans).enumerate() {
segs.push(seg.clone());
let sub_path = ast::Path {
span: *span, // span for the last segment
global: path.global,
segments: segs,
};
let qualname = if i == 0 && path.global {
format!("::{}", path_to_string(&sub_path))
} else {
path_to_string(&sub_path)
};
result.push((*span, qualname));
segs = sub_path.segments;
}
result
}
// The global arg allows us to override the global-ness of the path (which
// actually means 'does the path start with `::`', rather than 'is the path
// semantically global). We use the override for `use` imports (etc.) where
// the syntax is non-global, but the semantics are global.
fn write_sub_paths(&mut self, path: &ast::Path, global: bool) {
let sub_paths = self.process_path_prefixes(path);
for (i, &(ref span, ref qualname)) in sub_paths.iter().enumerate() {
let qualname = if i == 0 && global && !path.global {
format!("::{}", qualname)
} else {
qualname.clone()
};
self.dumper.mod_ref(ModRefData {
span: *span,
qualname: qualname,
scope: self.cur_scope,
ref_id: None
}.lower(self.tcx));
}
}
// As write_sub_paths, but does not process the last ident in the path (assuming it
// will be processed elsewhere). See note on write_sub_paths about global.
fn write_sub_paths_truncated(&mut self, path: &ast::Path, global: bool) {
let sub_paths = self.process_path_prefixes(path);
let len = sub_paths.len();
if len <= 1 {
return;
}
let sub_paths = &sub_paths[..len-1];
for (i, &(ref span, ref qualname)) in sub_paths.iter().enumerate() {
let qualname = if i == 0 && global && !path.global {
format!("::{}", qualname)
} else {
qualname.clone()
};
self.dumper.mod_ref(ModRefData {
span: *span,
qualname: qualname,
scope: self.cur_scope,
ref_id: None
}.lower(self.tcx));
}
}
// As write_sub_paths, but expects a path of the form module_path::trait::method
// Where trait could actually be a struct too.
fn write_sub_path_trait_truncated(&mut self, path: &ast::Path) {
let sub_paths = self.process_path_prefixes(path);
let len = sub_paths.len();
if len <= 1 {
return;
}
let sub_paths = &sub_paths[.. (len-1)];
// write the trait part of the sub-path
let (ref span, ref qualname) = sub_paths[len-2];
self.dumper.type_ref(TypeRefData {
ref_id: None,
span: *span,
qualname: qualname.to_owned(),
scope: 0
}.lower(self.tcx));
// write the other sub-paths
if len <= 2 {
return;
}
let sub_paths = &sub_paths[..len-2];
for &(ref span, ref qualname) in sub_paths {
self.dumper.mod_ref(ModRefData {
span: *span,
qualname: qualname.to_owned(),
scope: self.cur_scope,
ref_id: None
}.lower(self.tcx));
}
}
// looks up anything, not just a type
fn lookup_type_ref(&self, ref_id: NodeId) -> Option<DefId> {
match self.tcx.expect_def(ref_id) {
Def::PrimTy(..) => None,
Def::SelfTy(..) => None,
def => Some(def.def_id()),
}
}
fn process_def_kind(&mut self,
ref_id: NodeId,
span: Span,
sub_span: Option<Span>,
def_id: DefId,
scope: NodeId) {
if self.span.filter_generated(sub_span, span) {
return;
}
let def = self.tcx.expect_def(ref_id);
match def {
Def::Mod(_) |
Def::ForeignMod(_) => {
self.dumper.mod_ref(ModRefData {
span: sub_span.expect("No span found for mod ref"),
ref_id: Some(def_id),
scope: scope,
qualname: String::new()
}.lower(self.tcx));
}
Def::Struct(..) |
Def::Enum(..) |
Def::TyAlias(..) |
Def::AssociatedTy(..) |
Def::Trait(_) => {
self.dumper.type_ref(TypeRefData {
span: sub_span.expect("No span found for type ref"),
ref_id: Some(def_id),
scope: scope,
qualname: String::new()
}.lower(self.tcx));
}
Def::Static(_, _) |
Def::Const(_) |
Def::AssociatedConst(..) |
Def::Local(..) |
Def::Variant(..) |
Def::Upvar(..) => {
self.dumper.variable_ref(VariableRefData {
span: sub_span.expect("No span found for var ref"),
ref_id: def_id,
scope: scope,
name: String::new()
}.lower(self.tcx));
}
Def::Fn(..) => {
self.dumper.function_ref(FunctionRefData {
span: sub_span.expect("No span found for fn ref"),
ref_id: def_id,
scope: scope
}.lower(self.tcx));
}
Def::SelfTy(..) |
Def::Label(_) |
Def::TyParam(..) |
Def::Method(..) |
Def::PrimTy(_) |
Def::Err => {
span_bug!(span,
"process_def_kind for unexpected item: {:?}",
def);
}
}
}
fn process_formals(&mut self, formals: &Vec<ast::Arg>, qualname: &str) {
for arg in formals {
self.visit_pat(&arg.pat);
let mut collector = PathCollector::new();
collector.visit_pat(&arg.pat);
let span_utils = self.span.clone();
for &(id, ref p, _, _) in &collector.collected_paths {
let typ = self.tcx.node_types().get(&id).unwrap().to_string();
// get the span only for the name of the variable (I hope the path is only ever a
// variable name, but who knows?)
let sub_span = span_utils.span_for_last_ident(p.span);
if !self.span.filter_generated(sub_span, p.span) {
self.dumper.variable(VariableData {
id: id,
kind: VariableKind::Local,
span: sub_span.expect("No span found for variable"),
name: path_to_string(p),
qualname: format!("{}::{}", qualname, path_to_string(p)),
type_value: typ,
value: String::new(),
scope: 0
}.lower(self.tcx));
}
}
}
}
fn process_method(&mut self,
sig: &ast::MethodSig,
body: Option<&ast::Block>,
id: ast::NodeId,
name: ast::Name,
span: Span) {
debug!("process_method: {}:{}", id, name);
if let Some(method_data) = self.save_ctxt.get_method_data(id, name, span) {
let sig_str = ::make_signature(&sig.decl, &sig.generics);
if body.is_some() {
self.process_formals(&sig.decl.inputs, &method_data.qualname);
}
// If the method is defined in an impl, then try and find the corresponding
// method decl in a trait, and if there is one, make a decl_id for it. This
// requires looking up the impl, then the trait, then searching for a method
// with the right name.
if !self.span.filter_generated(Some(method_data.span), span) {
let container =
self.tcx.impl_or_trait_item(self.tcx.map.local_def_id(id)).container();
let decl_id = if let ImplOrTraitItemContainer::ImplContainer(id) = container {
self.tcx.trait_id_of_impl(id).and_then(|id| {
for item in &**self.tcx.trait_items(id) {
if let &ImplOrTraitItem::MethodTraitItem(ref m) = item {
if m.name == name {
return Some(m.def_id);
}
}
}
None
})
} else {
None
};
self.dumper.method(MethodData {
id: method_data.id,
name: method_data.name,
span: method_data.span,
scope: method_data.scope,
qualname: method_data.qualname.clone(),
value: sig_str,
decl_id: decl_id,
}.lower(self.tcx));
}
self.process_generic_params(&sig.generics, span, &method_data.qualname, id);
}
// walk arg and return types
for arg in &sig.decl.inputs {
self.visit_ty(&arg.ty);
}
if let ast::FunctionRetTy::Ty(ref ret_ty) = sig.decl.output {
self.visit_ty(ret_ty);
}
// walk the fn body
if let Some(body) = body {
self.nest(id, |v| v.visit_block(body));
}
}
fn process_trait_ref(&mut self, trait_ref: &ast::TraitRef) {
let trait_ref_data = self.save_ctxt.get_trait_ref_data(trait_ref, self.cur_scope);
if let Some(trait_ref_data) = trait_ref_data {
if !self.span.filter_generated(Some(trait_ref_data.span), trait_ref.path.span) {
self.dumper.type_ref(trait_ref_data.lower(self.tcx));
}
visit::walk_path(self, &trait_ref.path);
}
}
fn process_struct_field_def(&mut self, field: &ast::StructField, parent_id: NodeId) {
let field_data = self.save_ctxt.get_field_data(field, parent_id);
if let Some(mut field_data) = field_data {
if !self.span.filter_generated(Some(field_data.span), field.span) {
field_data.value = String::new();
self.dumper.variable(field_data.lower(self.tcx));
}
}
}
// Dump generic params bindings, then visit_generics
fn process_generic_params(&mut self,
generics: &ast::Generics,
full_span: Span,
prefix: &str,
id: NodeId) {
// We can't only use visit_generics since we don't have spans for param
// bindings, so we reparse the full_span to get those sub spans.
// However full span is the entire enum/fn/struct block, so we only want
// the first few to match the number of generics we're looking for.
let param_sub_spans = self.span.spans_for_ty_params(full_span,
(generics.ty_params.len() as isize));
for (param, param_ss) in generics.ty_params.iter().zip(param_sub_spans) {
let name = escape(self.span.snippet(param_ss));
// Append $id to name to make sure each one is unique
let qualname = format!("{}::{}${}",
prefix,
name,
id);
if !self.span.filter_generated(Some(param_ss), full_span) {
self.dumper.typedef(TypeDefData {
span: param_ss,
name: name,
id: param.id,
qualname: qualname,
value: String::new()
}.lower(self.tcx));
}
}
self.visit_generics(generics);
}
fn process_fn(&mut self,
item: &ast::Item,
decl: &ast::FnDecl,
ty_params: &ast::Generics,
body: &ast::Block) {
if let Some(fn_data) = self.save_ctxt.get_item_data(item) {
down_cast_data!(fn_data, FunctionData, item.span);
if !self.span.filter_generated(Some(fn_data.span), item.span) {
self.dumper.function(fn_data.clone().lower(self.tcx));
}
self.process_formals(&decl.inputs, &fn_data.qualname);
self.process_generic_params(ty_params, item.span, &fn_data.qualname, item.id);
}
for arg in &decl.inputs {
self.visit_ty(&arg.ty);
}
if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output {
self.visit_ty(&ret_ty);
}
self.nest(item.id, |v| v.visit_block(&body));
}
fn process_static_or_const_item(&mut self, item: &ast::Item, typ: &ast::Ty, expr: &ast::Expr) {
if let Some(var_data) = self.save_ctxt.get_item_data(item) {
down_cast_data!(var_data, VariableData, item.span);
if !self.span.filter_generated(Some(var_data.span), item.span) {
self.dumper.variable(var_data.lower(self.tcx));
}
}
self.visit_ty(&typ);
self.visit_expr(expr);
}
fn process_const(&mut self,
id: ast::NodeId,
name: ast::Name,
span: Span,
typ: &ast::Ty,
expr: &ast::Expr) {
let qualname = format!("::{}", self.tcx.node_path_str(id));
let sub_span = self.span.sub_span_after_keyword(span, keywords::Const);
if !self.span.filter_generated(sub_span, span) {
self.dumper.variable(VariableData {
span: sub_span.expect("No span found for variable"),
kind: VariableKind::Const,
id: id,
name: name.to_string(),
qualname: qualname,
value: self.span.snippet(expr.span),
type_value: ty_to_string(&typ),
scope: self.cur_scope
}.lower(self.tcx));
}
// walk type and init value
self.visit_ty(typ);
self.visit_expr(expr);
}
// FIXME tuple structs should generate tuple-specific data.
fn process_struct(&mut self,
item: &ast::Item,
def: &ast::VariantData,
ty_params: &ast::Generics) {
let name = item.ident.to_string();
let qualname = format!("::{}", self.tcx.node_path_str(item.id));
let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Struct);
let (val, fields) =
if let ast::ItemKind::Struct(ast::VariantData::Struct(ref fields, _), _) = item.node
{
let fields_str = fields.iter()
.enumerate()
.map(|(i, f)| f.ident.map(|i| i.to_string())
.unwrap_or(i.to_string()))
.collect::<Vec<_>>()
.join(", ");
(format!("{} {{ {} }}", name, fields_str), fields.iter().map(|f| f.id).collect())
} else {
(String::new(), vec![])
};
if !self.span.filter_generated(sub_span, item.span) {
self.dumper.struct_data(StructData {
span: sub_span.expect("No span found for struct"),
id: item.id,
name: name,
ctor_id: def.id(),
qualname: qualname.clone(),
scope: self.cur_scope,
value: val,
fields: fields,
}.lower(self.tcx));
}
// fields
for field in def.fields() {
self.process_struct_field_def(field, item.id);
self.visit_ty(&field.ty);
}
self.process_generic_params(ty_params, item.span, &qualname, item.id);
}
fn process_enum(&mut self,
item: &ast::Item,
enum_definition: &ast::EnumDef,
ty_params: &ast::Generics) {
let enum_data = self.save_ctxt.get_item_data(item);
let enum_data = match enum_data {
None => return,
Some(data) => data,
};
down_cast_data!(enum_data, EnumData, item.span);
if !self.span.filter_generated(Some(enum_data.span), item.span) {
self.dumper.enum_data(enum_data.clone().lower(self.tcx));
}
for variant in &enum_definition.variants {
let name = variant.node.name.name.to_string();
let mut qualname = enum_data.qualname.clone();
qualname.push_str("::");
qualname.push_str(&name);
match variant.node.data {
ast::VariantData::Struct(ref fields, _) => {
let sub_span = self.span.span_for_first_ident(variant.span);
let fields_str = fields.iter()
.enumerate()
.map(|(i, f)| f.ident.map(|i| i.to_string())
.unwrap_or(i.to_string()))
.collect::<Vec<_>>()
.join(", ");
let val = format!("{}::{} {{ {} }}", enum_data.name, name, fields_str);
if !self.span.filter_generated(sub_span, variant.span) {
self.dumper.struct_variant(StructVariantData {
span: sub_span.expect("No span found for struct variant"),
id: variant.node.data.id(),
name: name,
qualname: qualname,
type_value: enum_data.qualname.clone(),
value: val,
scope: enum_data.scope
}.lower(self.tcx));
}
}
ref v => {
let sub_span = self.span.span_for_first_ident(variant.span);
let mut val = format!("{}::{}", enum_data.name, name);
if let &ast::VariantData::Tuple(ref fields, _) = v {
val.push('(');
val.push_str(&fields.iter()
.map(|f| ty_to_string(&f.ty))
.collect::<Vec<_>>()
.join(", "));
val.push(')');
}
if !self.span.filter_generated(sub_span, variant.span) {
self.dumper.tuple_variant(TupleVariantData {
span: sub_span.expect("No span found for tuple variant"),
id: variant.node.data.id(),
name: name,
qualname: qualname,
type_value: enum_data.qualname.clone(),
value: val,
scope: enum_data.scope
}.lower(self.tcx));
}
}
}
for field in variant.node.data.fields() {
self.process_struct_field_def(field, variant.node.data.id());
self.visit_ty(&field.ty);
}
}
self.process_generic_params(ty_params, item.span, &enum_data.qualname, enum_data.id);
}
fn process_impl(&mut self,
item: &ast::Item,
type_parameters: &ast::Generics,
trait_ref: &Option<ast::TraitRef>,
typ: &ast::Ty,
impl_items: &[ast::ImplItem]) {
let mut has_self_ref = false;
if let Some(impl_data) = self.save_ctxt.get_item_data(item) {
down_cast_data!(impl_data, ImplData, item.span);
if let Some(ref self_ref) = impl_data.self_ref {
has_self_ref = true;
if !self.span.filter_generated(Some(self_ref.span), item.span) {
self.dumper.type_ref(self_ref.clone().lower(self.tcx));
}
}
if let Some(ref trait_ref_data) = impl_data.trait_ref {
if !self.span.filter_generated(Some(trait_ref_data.span), item.span) {
self.dumper.type_ref(trait_ref_data.clone().lower(self.tcx));
}
visit::walk_path(self, &trait_ref.as_ref().unwrap().path);
}
if !self.span.filter_generated(Some(impl_data.span), item.span) {
self.dumper.impl_data(ImplData {
id: impl_data.id,
span: impl_data.span,
scope: impl_data.scope,
trait_ref: impl_data.trait_ref.map(|d| d.ref_id.unwrap()),
self_ref: impl_data.self_ref.map(|d| d.ref_id.unwrap())
}.lower(self.tcx));
}
}
if !has_self_ref {
self.visit_ty(&typ);
}
self.process_generic_params(type_parameters, item.span, "", item.id);
for impl_item in impl_items {
self.visit_impl_item(impl_item);
}
}
fn process_trait(&mut self,
item: &ast::Item,
generics: &ast::Generics,
trait_refs: &ast::TyParamBounds,
methods: &[ast::TraitItem]) {
let name = item.ident.to_string();
let qualname = format!("::{}", self.tcx.node_path_str(item.id));
let mut val = name.clone();
if !generics.lifetimes.is_empty() || !generics.ty_params.is_empty() {
val.push_str(&generics_to_string(generics));
}
if !trait_refs.is_empty() {
val.push_str(": ");
val.push_str(&bounds_to_string(trait_refs));
}
let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Trait);
if !self.span.filter_generated(sub_span, item.span) {
self.dumper.trait_data(TraitData {
span: sub_span.expect("No span found for trait"),
id: item.id,
name: name,
qualname: qualname.clone(),
scope: self.cur_scope,
value: val,
items: methods.iter().map(|i| i.id).collect(),
}.lower(self.tcx));
}
// super-traits
for super_bound in trait_refs.iter() {
let trait_ref = match *super_bound {
ast::TraitTyParamBound(ref trait_ref, _) => {
trait_ref
}
ast::RegionTyParamBound(..) => {
continue;
}
};
let trait_ref = &trait_ref.trait_ref;
if let Some(id) = self.lookup_type_ref(trait_ref.ref_id) {
let sub_span = self.span.sub_span_for_type_name(trait_ref.path.span);
if !self.span.filter_generated(sub_span, trait_ref.path.span) {
self.dumper.type_ref(TypeRefData {
span: sub_span.expect("No span found for trait ref"),
ref_id: Some(id),
scope: self.cur_scope,
qualname: String::new()
}.lower(self.tcx));
}
if !self.span.filter_generated(sub_span, trait_ref.path.span) {
let sub_span = sub_span.expect("No span for inheritance");
self.dumper.inheritance(InheritanceData {
span: sub_span,
base_id: id,
deriv_id: item.id
}.lower(self.tcx));
}
}
}
// walk generics and methods
self.process_generic_params(generics, item.span, &qualname, item.id);
for method in methods {
self.visit_trait_item(method)
}
}
// `item` is the module in question, represented as an item.
fn process_mod(&mut self, item: &ast::Item) {
if let Some(mod_data) = self.save_ctxt.get_item_data(item) {
down_cast_data!(mod_data, ModData, item.span);
if !self.span.filter_generated(Some(mod_data.span), item.span) {
self.dumper.mod_data(mod_data.lower(self.tcx));
}
}
}
fn process_path(&mut self, id: NodeId, path: &ast::Path, ref_kind: Option<recorder::Row>) {
let path_data = self.save_ctxt.get_path_data(id, path);
if generated_code(path.span) && path_data.is_none() {
return;
}
let path_data = match path_data {
Some(pd) => pd,
None => {
span_bug!(path.span,
"Unexpected def kind while looking up path in `{}`",
self.span.snippet(path.span))
}
};
match path_data {
Data::VariableRefData(vrd) => {
// FIXME: this whole block duplicates the code in process_def_kind
if !self.span.filter_generated(Some(vrd.span), path.span) {
match ref_kind {
Some(recorder::TypeRef) => {
self.dumper.type_ref(TypeRefData {
span: vrd.span,
ref_id: Some(vrd.ref_id),
scope: vrd.scope,
qualname: String::new()
}.lower(self.tcx));
}
Some(recorder::FnRef) => {
self.dumper.function_ref(FunctionRefData {
span: vrd.span,
ref_id: vrd.ref_id,
scope: vrd.scope
}.lower(self.tcx));
}
Some(recorder::ModRef) => {
self.dumper.mod_ref( ModRefData {
span: vrd.span,
ref_id: Some(vrd.ref_id),
scope: vrd.scope,
qualname: String::new()
}.lower(self.tcx));
}
Some(recorder::VarRef) | None
=> self.dumper.variable_ref(vrd.lower(self.tcx))
}
}
}
Data::TypeRefData(trd) => {
if !self.span.filter_generated(Some(trd.span), path.span) {
self.dumper.type_ref(trd.lower(self.tcx));
}
}
Data::MethodCallData(mcd) => {
if !self.span.filter_generated(Some(mcd.span), path.span) {
self.dumper.method_call(mcd.lower(self.tcx));
}
}
Data::FunctionCallData(fcd) => {
if !self.span.filter_generated(Some(fcd.span), path.span) {
self.dumper.function_call(fcd.lower(self.tcx));
}
}
_ => {
span_bug!(path.span, "Unexpected data: {:?}", path_data);
}
}
// Modules or types in the path prefix.
match self.tcx.expect_def(id) {
Def::Method(did) => {
let ti = self.tcx.impl_or_trait_item(did);
if let ty::MethodTraitItem(m) = ti {
if m.explicit_self == ty::ExplicitSelfCategory::Static {
self.write_sub_path_trait_truncated(path);
}
}
}
Def::Local(..) |
Def::Static(_,_) |
Def::Const(..) |
Def::AssociatedConst(..) |
Def::Struct(..) |
Def::Variant(..) |
Def::Fn(..) => self.write_sub_paths_truncated(path, false),
_ => {}
}
}
fn process_struct_lit(&mut self,
ex: &ast::Expr,
path: &ast::Path,
fields: &Vec<ast::Field>,
variant: ty::VariantDef,
base: &Option<P<ast::Expr>>) {
self.write_sub_paths_truncated(path, false);
if let Some(struct_lit_data) = self.save_ctxt.get_expr_data(ex) {
down_cast_data!(struct_lit_data, TypeRefData, ex.span);
if !self.span.filter_generated(Some(struct_lit_data.span), ex.span) {
self.dumper.type_ref(struct_lit_data.lower(self.tcx));
}
let scope = self.save_ctxt.enclosing_scope(ex.id);
for field in fields {
if let Some(field_data) = self.save_ctxt
.get_field_ref_data(field, variant, scope) {
if !self.span.filter_generated(Some(field_data.span), field.ident.span) {
self.dumper.variable_ref(field_data.lower(self.tcx));
}
}
self.visit_expr(&field.expr)
}
}
walk_list!(self, visit_expr, base);
}
fn process_method_call(&mut self, ex: &ast::Expr, args: &Vec<P<ast::Expr>>) {
if let Some(mcd) = self.save_ctxt.get_expr_data(ex) {
down_cast_data!(mcd, MethodCallData, ex.span);
if !self.span.filter_generated(Some(mcd.span), ex.span) {
self.dumper.method_call(mcd.lower(self.tcx));
}
}
// walk receiver and args
walk_list!(self, visit_expr, args);
}
fn process_pat(&mut self, p: &ast::Pat) {
match p.node {
PatKind::Struct(ref path, ref fields, _) => {
visit::walk_path(self, path);
let adt = self.tcx.node_id_to_type(p.id).ty_adt_def().unwrap();
let variant = adt.variant_of_def(self.tcx.expect_def(p.id));
for &Spanned { node: ref field, span } in fields {
let sub_span = self.span.span_for_first_ident(span);
if let Some(f) = variant.find_field_named(field.ident.name) {
if !self.span.filter_generated(sub_span, span) {
self.dumper.variable_ref(VariableRefData {
span: sub_span.expect("No span fund for var ref"),
ref_id: f.did,
scope: self.cur_scope,
name: String::new()
}.lower(self.tcx));
}
}
self.visit_pat(&field.pat);
}
}
_ => visit::walk_pat(self, p),
}
}
fn process_var_decl(&mut self, p: &ast::Pat, value: String) {
// The local could declare multiple new vars, we must walk the
// pattern and collect them all.
let mut collector = PathCollector::new();
collector.visit_pat(&p);
self.visit_pat(&p);
for &(id, ref p, immut, _) in &collector.collected_paths {
let mut value = if immut == ast::Mutability::Immutable {
value.to_string()
} else {
"<mutable>".to_string()
};
let types = self.tcx.node_types();
let typ = types.get(&id).map(|t| t.to_string()).unwrap_or(String::new());
value.push_str(": ");
value.push_str(&typ);
// Get the span only for the name of the variable (I hope the path
// is only ever a variable name, but who knows?).
let sub_span = self.span.span_for_last_ident(p.span);
// Rust uses the id of the pattern for var lookups, so we'll use it too.
if !self.span.filter_generated(sub_span, p.span) {
self.dumper.variable(VariableData {
span: sub_span.expect("No span found for variable"),
kind: VariableKind::Local,
id: id,
name: path_to_string(p),
qualname: format!("{}${}", path_to_string(p), id),
value: value,
type_value: typ,
scope: 0
}.lower(self.tcx));
}
}
}
/// Extract macro use and definition information from the AST node defined
/// by the given NodeId, using the expansion information from the node's
/// span.
///
/// If the span is not macro-generated, do nothing, else use callee and
/// callsite spans to record macro definition and use data, using the
/// mac_uses and mac_defs sets to prevent multiples.
fn process_macro_use(&mut self, span: Span, id: NodeId) {
let data = match self.save_ctxt.get_macro_use_data(span, id) {
None => return,
Some(data) => data,
};
let mut hasher = SipHasher::new();
data.callee_span.hash(&mut hasher);
let hash = hasher.finish();
let qualname = format!("{}::{}", data.name, hash);
// Don't write macro definition for imported macros
if !self.mac_defs.contains(&data.callee_span)
&& !data.imported {
self.mac_defs.insert(data.callee_span);
if let Some(sub_span) = self.span.span_for_macro_def_name(data.callee_span) {
self.dumper.macro_data(MacroData {
span: sub_span,
name: data.name.clone(),
qualname: qualname.clone()
}.lower(self.tcx));
}
}
if !self.mac_uses.contains(&data.span) {
self.mac_uses.insert(data.span);
if let Some(sub_span) = self.span.span_for_macro_use_name(data.span) {
self.dumper.macro_use(MacroUseData {
span: sub_span,
name: data.name,
qualname: qualname,
scope: data.scope,
callee_span: data.callee_span,
imported: data.imported
}.lower(self.tcx));
}
}
}
}
impl<'l, 'tcx: 'l, 'll, D: Dump +'ll> Visitor for DumpVisitor<'l, 'tcx, 'll, D> {
fn visit_item(&mut self, item: &ast::Item) {
use syntax::ast::ItemKind::*;
self.process_macro_use(item.span, item.id);
match item.node {
Use(ref use_item) => {
match use_item.node {
ast::ViewPathSimple(ident, ref path) => {
let sub_span = self.span.span_for_last_ident(path.span);
let mod_id = match self.lookup_type_ref(item.id) {
Some(def_id) => {
let scope = self.cur_scope;
self.process_def_kind(item.id, path.span, sub_span, def_id, scope);
Some(def_id)
}
None => None,
};
// 'use' always introduces an alias, if there is not an explicit
// one, there is an implicit one.
let sub_span = match self.span.sub_span_after_keyword(use_item.span,
keywords::As) {
Some(sub_span) => Some(sub_span),
None => sub_span,
};
if !self.span.filter_generated(sub_span, path.span) {
self.dumper.use_data(UseData {
span: sub_span.expect("No span found for use"),
id: item.id,
mod_id: mod_id,
name: ident.to_string(),
scope: self.cur_scope
}.lower(self.tcx));
}
self.write_sub_paths_truncated(path, true);
}
ast::ViewPathGlob(ref path) => {
// Make a comma-separated list of names of imported modules.
let mut names = vec![];
let glob_map = &self.analysis.glob_map;
let glob_map = glob_map.as_ref().unwrap();
if glob_map.contains_key(&item.id) {
for n in glob_map.get(&item.id).unwrap() {
names.push(n.to_string());
}
}
let sub_span = self.span
.sub_span_of_token(item.span, token::BinOp(token::Star));
if !self.span.filter_generated(sub_span, item.span) {
self.dumper.use_glob(UseGlobData {
span: sub_span.expect("No span found for use glob"),
id: item.id,
names: names,
scope: self.cur_scope
}.lower(self.tcx));
}
self.write_sub_paths(path, true);
}
ast::ViewPathList(ref path, ref list) => {
for plid in list {
match plid.node {
ast::PathListItemKind::Ident { id, .. } => {
let scope = self.cur_scope;
if let Some(def_id) = self.lookup_type_ref(id) {
self.process_def_kind(id,
plid.span,
Some(plid.span),
def_id,
scope);
}
}
ast::PathListItemKind::Mod { .. } => (),
}
}
self.write_sub_paths(path, true);
}
}
}
ExternCrate(ref s) => {
let location = match *s {
Some(s) => s.to_string(),
None => item.ident.to_string(),
};
let alias_span = self.span.span_for_last_ident(item.span);
let cnum = match self.sess.cstore.extern_mod_stmt_cnum(item.id) {
Some(cnum) => cnum,
None => 0,
};
if !self.span.filter_generated(alias_span, item.span) {
self.dumper.extern_crate(ExternCrateData {
id: item.id,
name: item.ident.to_string(),
crate_num: cnum,
location: location,
span: alias_span.expect("No span found for extern crate"),
scope: self.cur_scope,
}.lower(self.tcx));
}
}
Fn(ref decl, _, _, _, ref ty_params, ref body) =>
self.process_fn(item, &decl, ty_params, &body),
Static(ref typ, _, ref expr) =>
self.process_static_or_const_item(item, typ, expr),
Const(ref typ, ref expr) =>
self.process_static_or_const_item(item, &typ, &expr),
Struct(ref def, ref ty_params) => self.process_struct(item, def, ty_params),
Enum(ref def, ref ty_params) => self.process_enum(item, def, ty_params),
Impl(_, _,
ref ty_params,
ref trait_ref,
ref typ,
ref impl_items) => {
self.process_impl(item, ty_params, trait_ref, &typ, impl_items)
}
Trait(_, ref generics, ref trait_refs, ref methods) =>
self.process_trait(item, generics, trait_refs, methods),
Mod(ref m) => {
self.process_mod(item);
self.nest(item.id, |v| visit::walk_mod(v, m));
}
Ty(ref ty, ref ty_params) => {
let qualname = format!("::{}", self.tcx.node_path_str(item.id));
let value = ty_to_string(&ty);
let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Type);
if !self.span.filter_generated(sub_span, item.span) {
self.dumper.typedef(TypeDefData {
span: sub_span.expect("No span found for typedef"),
name: item.ident.to_string(),
id: item.id,
qualname: qualname.clone(),
value: value
}.lower(self.tcx));
}
self.visit_ty(&ty);
self.process_generic_params(ty_params, item.span, &qualname, item.id);
}
Mac(_) => (),
_ => visit::walk_item(self, item),
}
}
fn visit_generics(&mut self, generics: &ast::Generics) {
for param in generics.ty_params.iter() {
for bound in param.bounds.iter() {
if let ast::TraitTyParamBound(ref trait_ref, _) = *bound {
self.process_trait_ref(&trait_ref.trait_ref);
}
}
if let Some(ref ty) = param.default {
self.visit_ty(&ty);
}
}
}
fn visit_trait_item(&mut self, trait_item: &ast::TraitItem) {
self.process_macro_use(trait_item.span, trait_item.id);
match trait_item.node {
ast::TraitItemKind::Const(ref ty, Some(ref expr)) => {
self.process_const(trait_item.id,
trait_item.ident.name,
trait_item.span,
&ty,
&expr);
}
ast::TraitItemKind::Method(ref sig, ref body) => {
self.process_method(sig,
body.as_ref().map(|x| &**x),
trait_item.id,
trait_item.ident.name,
trait_item.span);
}
ast::TraitItemKind::Const(_, None) |
ast::TraitItemKind::Type(..) |
ast::TraitItemKind::Macro(_) => {}
}
}
fn visit_impl_item(&mut self, impl_item: &ast::ImplItem) {
self.process_macro_use(impl_item.span, impl_item.id);
match impl_item.node {
ast::ImplItemKind::Const(ref ty, ref expr) => {
self.process_const(impl_item.id,
impl_item.ident.name,
impl_item.span,
&ty,
&expr);
}
ast::ImplItemKind::Method(ref sig, ref body) => {
self.process_method(sig,
Some(body),
impl_item.id,
impl_item.ident.name,
impl_item.span);
}
ast::ImplItemKind::Type(_) |
ast::ImplItemKind::Macro(_) => {}
}
}
fn visit_ty(&mut self, t: &ast::Ty) {
self.process_macro_use(t.span, t.id);
match t.node {
ast::TyKind::Path(_, ref path) => {
if let Some(id) = self.lookup_type_ref(t.id) {
let sub_span = self.span.sub_span_for_type_name(t.span);
if !self.span.filter_generated(sub_span, t.span) {
self.dumper.type_ref(TypeRefData {
span: sub_span.expect("No span found for type ref"),
ref_id: Some(id),
scope: self.cur_scope,
qualname: String::new()
}.lower(self.tcx));
}
}
self.write_sub_paths_truncated(path, false);
visit::walk_path(self, path);
}
_ => visit::walk_ty(self, t),
}
}
fn visit_expr(&mut self, ex: &ast::Expr) {
self.process_macro_use(ex.span, ex.id);
match ex.node {
ast::ExprKind::Call(ref _f, ref _args) => {
// Don't need to do anything for function calls,
// because just walking the callee path does what we want.
visit::walk_expr(self, ex);
}
ast::ExprKind::Path(_, ref path) => {
self.process_path(ex.id, path, None);
visit::walk_expr(self, ex);
}
ast::ExprKind::Struct(ref path, ref fields, ref base) => {
let hir_expr = self.save_ctxt.tcx.map.expect_expr(ex.id);
let adt = self.tcx.expr_ty(&hir_expr).ty_adt_def().unwrap();
let def = self.tcx.expect_def(hir_expr.id);
self.process_struct_lit(ex, path, fields, adt.variant_of_def(def), base)
}
ast::ExprKind::MethodCall(_, _, ref args) => self.process_method_call(ex, args),
ast::ExprKind::Field(ref sub_ex, _) => {
self.visit_expr(&sub_ex);
if let Some(field_data) = self.save_ctxt.get_expr_data(ex) {
down_cast_data!(field_data, VariableRefData, ex.span);
if !self.span.filter_generated(Some(field_data.span), ex.span) {
self.dumper.variable_ref(field_data.lower(self.tcx));
}
}
}
ast::ExprKind::TupField(ref sub_ex, idx) => {
self.visit_expr(&sub_ex);
let hir_node = match self.save_ctxt.tcx.map.find(sub_ex.id) {
Some(Node::NodeExpr(expr)) => expr,
_ => {
debug!("Missing or weird node for sub-expression {} in {:?}",
sub_ex.id, ex);
return;
}
};
let ty = &self.tcx.expr_ty_adjusted(&hir_node).sty;
match *ty {
ty::TyStruct(def, _) => {
let sub_span = self.span.sub_span_after_token(ex.span, token::Dot);
if !self.span.filter_generated(sub_span, ex.span) {
self.dumper.variable_ref(VariableRefData {
span: sub_span.expect("No span found for var ref"),
ref_id: def.struct_variant().fields[idx.node].did,
scope: self.cur_scope,
name: String::new()
}.lower(self.tcx));
}
}
ty::TyTuple(_) => {}
_ => span_bug!(ex.span,
"Expected struct or tuple type, found {:?}",
ty),
}
}
ast::ExprKind::Closure(_, ref decl, ref body, _fn_decl_span) => {
let mut id = String::from("$");
id.push_str(&ex.id.to_string());
self.process_formals(&decl.inputs, &id);
// walk arg and return types
for arg in &decl.inputs {
self.visit_ty(&arg.ty);
}
if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output {
self.visit_ty(&ret_ty);
}
// walk the body
self.nest(ex.id, |v| v.visit_block(&body));
}
ast::ExprKind::ForLoop(ref pattern, ref subexpression, ref block, _) |
ast::ExprKind::WhileLet(ref pattern, ref subexpression, ref block, _) => {
let value = self.span.snippet(subexpression.span);
self.process_var_decl(pattern, value);
visit::walk_expr(self, subexpression);
visit::walk_block(self, block);
}
ast::ExprKind::IfLet(ref pattern, ref subexpression, ref block, ref opt_else) => {
let value = self.span.snippet(subexpression.span);
self.process_var_decl(pattern, value);
visit::walk_expr(self, subexpression);
visit::walk_block(self, block);
opt_else.as_ref().map(|el| visit::walk_expr(self, el));
}
_ => {
visit::walk_expr(self, ex)
}
}
}
fn visit_mac(&mut self, mac: &ast::Mac) {
// These shouldn't exist in the AST at this point, log a span bug.
span_bug!(mac.span, "macro invocation should have been expanded out of AST");
}
fn visit_pat(&mut self, p: &ast::Pat) {
self.process_macro_use(p.span, p.id);
self.process_pat(p);
}
fn visit_arm(&mut self, arm: &ast::Arm) {
let mut collector = PathCollector::new();
for pattern in &arm.pats {
// collect paths from the arm's patterns
collector.visit_pat(&pattern);
self.visit_pat(&pattern);
}
// This is to get around borrow checking, because we need mut self to call process_path.
let mut paths_to_process = vec![];
// process collected paths
for &(id, ref p, immut, ref_kind) in &collector.collected_paths {
match self.tcx.expect_def(id) {
Def::Local(_, id) => {
let value = if immut == ast::Mutability::Immutable {
self.span.snippet(p.span).to_string()
} else {
"<mutable>".to_string()
};
assert!(p.segments.len() == 1,
"qualified path for local variable def in arm");
if !self.span.filter_generated(Some(p.span), p.span) {
self.dumper.variable(VariableData {
span: p.span,
kind: VariableKind::Local,
id: id,
name: path_to_string(p),
qualname: format!("{}${}", path_to_string(p), id),
value: value,
type_value: String::new(),
scope: 0
}.lower(self.tcx));
}
}
Def::Variant(..) | Def::Enum(..) |
Def::TyAlias(..) | Def::Struct(..) => {
paths_to_process.push((id, p.clone(), Some(ref_kind)))
}
// FIXME(nrc) what are these doing here?
Def::Static(_, _) |
Def::Const(..) |
Def::AssociatedConst(..) => {}
def => error!("unexpected definition kind when processing collected paths: {:?}",
def),
}
}
for &(id, ref path, ref_kind) in &paths_to_process {
self.process_path(id, path, ref_kind);
}
walk_list!(self, visit_expr, &arm.guard);
self.visit_expr(&arm.body);
}
fn visit_stmt(&mut self, s: &ast::Stmt) {
self.process_macro_use(s.span, s.id);
visit::walk_stmt(self, s)
}
fn visit_local(&mut self, l: &ast::Local) {
self.process_macro_use(l.span, l.id);
let value = l.init.as_ref().map(|i| self.span.snippet(i.span)).unwrap_or(String::new());
self.process_var_decl(&l.pat, value);
// Just walk the initialiser and type (don't want to walk the pattern again).
walk_list!(self, visit_ty, &l.ty);
walk_list!(self, visit_expr, &l.init);
}
}