blob: 48c8bcff1ec560a12db7bdba3f24b9be15b922ba [file] [log] [blame]
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Finds crate binaries and loads their metadata
//!
//! Might I be the first to welcome you to a world of platform differences,
//! version requirements, dependency graphs, conflicting desires, and fun! This
//! is the major guts (along with metadata::creader) of the compiler for loading
//! crates and resolving dependencies. Let's take a tour!
//!
//! # The problem
//!
//! Each invocation of the compiler is immediately concerned with one primary
//! problem, to connect a set of crates to resolved crates on the filesystem.
//! Concretely speaking, the compiler follows roughly these steps to get here:
//!
//! 1. Discover a set of `extern crate` statements.
//! 2. Transform these directives into crate names. If the directive does not
//! have an explicit name, then the identifier is the name.
//! 3. For each of these crate names, find a corresponding crate on the
//! filesystem.
//!
//! Sounds easy, right? Let's walk into some of the nuances.
//!
//! ## Transitive Dependencies
//!
//! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
//! on C. When we're compiling A, we primarily need to find and locate B, but we
//! also end up needing to find and locate C as well.
//!
//! The reason for this is that any of B's types could be composed of C's types,
//! any function in B could return a type from C, etc. To be able to guarantee
//! that we can always typecheck/translate any function, we have to have
//! complete knowledge of the whole ecosystem, not just our immediate
//! dependencies.
//!
//! So now as part of the "find a corresponding crate on the filesystem" step
//! above, this involves also finding all crates for *all upstream
//! dependencies*. This includes all dependencies transitively.
//!
//! ## Rlibs and Dylibs
//!
//! The compiler has two forms of intermediate dependencies. These are dubbed
//! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
//! is a rustc-defined file format (currently just an ar archive) while a dylib
//! is a platform-defined dynamic library. Each library has a metadata somewhere
//! inside of it.
//!
//! When translating a crate name to a crate on the filesystem, we all of a
//! sudden need to take into account both rlibs and dylibs! Linkage later on may
//! use either one of these files, as each has their pros/cons. The job of crate
//! loading is to discover what's possible by finding all candidates.
//!
//! Most parts of this loading systems keep the dylib/rlib as just separate
//! variables.
//!
//! ## Where to look?
//!
//! We can't exactly scan your whole hard drive when looking for dependencies,
//! so we need to places to look. Currently the compiler will implicitly add the
//! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
//! and otherwise all -L flags are added to the search paths.
//!
//! ## What criterion to select on?
//!
//! This a pretty tricky area of loading crates. Given a file, how do we know
//! whether it's the right crate? Currently, the rules look along these lines:
//!
//! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
//! filename have the right prefix/suffix?
//! 2. Does the filename have the right prefix for the crate name being queried?
//! This is filtering for files like `libfoo*.rlib` and such.
//! 3. Is the file an actual rust library? This is done by loading the metadata
//! from the library and making sure it's actually there.
//! 4. Does the name in the metadata agree with the name of the library?
//! 5. Does the target in the metadata agree with the current target?
//! 6. Does the SVH match? (more on this later)
//!
//! If the file answers `yes` to all these questions, then the file is
//! considered as being *candidate* for being accepted. It is illegal to have
//! more than two candidates as the compiler has no method by which to resolve
//! this conflict. Additionally, rlib/dylib candidates are considered
//! separately.
//!
//! After all this has happened, we have 1 or two files as candidates. These
//! represent the rlib/dylib file found for a library, and they're returned as
//! being found.
//!
//! ### What about versions?
//!
//! A lot of effort has been put forth to remove versioning from the compiler.
//! There have been forays in the past to have versioning baked in, but it was
//! largely always deemed insufficient to the point that it was recognized that
//! it's probably something the compiler shouldn't do anyway due to its
//! complicated nature and the state of the half-baked solutions.
//!
//! With a departure from versioning, the primary criterion for loading crates
//! is just the name of a crate. If we stopped here, it would imply that you
//! could never link two crates of the same name from different sources
//! together, which is clearly a bad state to be in.
//!
//! To resolve this problem, we come to the next section!
//!
//! # Expert Mode
//!
//! A number of flags have been added to the compiler to solve the "version
//! problem" in the previous section, as well as generally enabling more
//! powerful usage of the crate loading system of the compiler. The goal of
//! these flags and options are to enable third-party tools to drive the
//! compiler with prior knowledge about how the world should look.
//!
//! ## The `--extern` flag
//!
//! The compiler accepts a flag of this form a number of times:
//!
//! ```text
//! --extern crate-name=path/to/the/crate.rlib
//! ```
//!
//! This flag is basically the following letter to the compiler:
//!
//! > Dear rustc,
//! >
//! > When you are attempting to load the immediate dependency `crate-name`, I
//! > would like you to assume that the library is located at
//! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
//! > assume that the path I specified has the name `crate-name`.
//!
//! This flag basically overrides most matching logic except for validating that
//! the file is indeed a rust library. The same `crate-name` can be specified
//! twice to specify the rlib/dylib pair.
//!
//! ## Enabling "multiple versions"
//!
//! This basically boils down to the ability to specify arbitrary packages to
//! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
//! would look something like:
//!
//! ```ignore
//! extern crate b1;
//! extern crate b2;
//!
//! fn main() {}
//! ```
//!
//! and the compiler would be invoked as:
//!
//! ```text
//! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
//! ```
//!
//! In this scenario there are two crates named `b` and the compiler must be
//! manually driven to be informed where each crate is.
//!
//! ## Frobbing symbols
//!
//! One of the immediate problems with linking the same library together twice
//! in the same problem is dealing with duplicate symbols. The primary way to
//! deal with this in rustc is to add hashes to the end of each symbol.
//!
//! In order to force hashes to change between versions of a library, if
//! desired, the compiler exposes an option `-C metadata=foo`, which is used to
//! initially seed each symbol hash. The string `foo` is prepended to each
//! string-to-hash to ensure that symbols change over time.
//!
//! ## Loading transitive dependencies
//!
//! Dealing with same-named-but-distinct crates is not just a local problem, but
//! one that also needs to be dealt with for transitive dependencies. Note that
//! in the letter above `--extern` flags only apply to the *local* set of
//! dependencies, not the upstream transitive dependencies. Consider this
//! dependency graph:
//!
//! ```text
//! A.1 A.2
//! | |
//! | |
//! B C
//! \ /
//! \ /
//! D
//! ```
//!
//! In this scenario, when we compile `D`, we need to be able to distinctly
//! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
//! transitive dependencies.
//!
//! Note that the key idea here is that `B` and `C` are both *already compiled*.
//! That is, they have already resolved their dependencies. Due to unrelated
//! technical reasons, when a library is compiled, it is only compatible with
//! the *exact same* version of the upstream libraries it was compiled against.
//! We use the "Strict Version Hash" to identify the exact copy of an upstream
//! library.
//!
//! With this knowledge, we know that `B` and `C` will depend on `A` with
//! different SVH values, so we crawl the normal `-L` paths looking for
//! `liba*.rlib` and filter based on the contained SVH.
//!
//! In the end, this ends up not needing `--extern` to specify upstream
//! transitive dependencies.
//!
//! # Wrapping up
//!
//! That's the general overview of loading crates in the compiler, but it's by
//! no means all of the necessary details. Take a look at the rest of
//! metadata::loader or metadata::creader for all the juicy details!
use cstore::{MetadataBlob, MetadataVec, MetadataArchive};
use common::{metadata_encoding_version, rustc_version};
use decoder;
use rustc::hir::svh::Svh;
use rustc::session::Session;
use rustc::session::filesearch::{FileSearch, FileMatches, FileDoesntMatch};
use rustc::session::search_paths::PathKind;
use rustc::util::common;
use rustc_llvm as llvm;
use rustc_llvm::{False, ObjectFile, mk_section_iter};
use rustc_llvm::archive_ro::ArchiveRO;
use errors::DiagnosticBuilder;
use syntax_pos::Span;
use rustc_back::target::Target;
use std::cmp;
use std::collections::HashMap;
use std::fmt;
use std::fs;
use std::io;
use std::path::{Path, PathBuf};
use std::ptr;
use std::slice;
use std::time::Instant;
use flate;
pub struct CrateMismatch {
path: PathBuf,
got: String,
}
pub struct Context<'a> {
pub sess: &'a Session,
pub span: Span,
pub ident: &'a str,
pub crate_name: &'a str,
pub hash: Option<&'a Svh>,
// points to either self.sess.target.target or self.sess.host, must match triple
pub target: &'a Target,
pub triple: &'a str,
pub filesearch: FileSearch<'a>,
pub root: &'a Option<CratePaths>,
pub rejected_via_hash: Vec<CrateMismatch>,
pub rejected_via_triple: Vec<CrateMismatch>,
pub rejected_via_kind: Vec<CrateMismatch>,
pub rejected_via_version: Vec<CrateMismatch>,
pub should_match_name: bool,
}
pub struct Library {
pub dylib: Option<(PathBuf, PathKind)>,
pub rlib: Option<(PathBuf, PathKind)>,
pub metadata: MetadataBlob,
}
pub struct ArchiveMetadata {
_archive: ArchiveRO,
// points into self._archive
data: *const [u8],
}
pub struct CratePaths {
pub ident: String,
pub dylib: Option<PathBuf>,
pub rlib: Option<PathBuf>
}
pub const METADATA_FILENAME: &'static str = "rust.metadata.bin";
#[derive(Copy, Clone, PartialEq)]
enum CrateFlavor {
Rlib,
Dylib
}
impl fmt::Display for CrateFlavor {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(match *self {
CrateFlavor::Rlib => "rlib",
CrateFlavor::Dylib => "dylib"
})
}
}
impl CratePaths {
fn paths(&self) -> Vec<PathBuf> {
match (&self.dylib, &self.rlib) {
(&None, &None) => vec!(),
(&Some(ref p), &None) |
(&None, &Some(ref p)) => vec!(p.clone()),
(&Some(ref p1), &Some(ref p2)) => vec!(p1.clone(), p2.clone()),
}
}
}
impl<'a> Context<'a> {
pub fn maybe_load_library_crate(&mut self) -> Option<Library> {
self.find_library_crate()
}
pub fn load_library_crate(&mut self) -> Library {
self.find_library_crate().unwrap_or_else(|| self.report_load_errs())
}
pub fn report_load_errs(&mut self) -> ! {
let add = match self.root {
&None => String::new(),
&Some(ref r) => format!(" which `{}` depends on",
r.ident)
};
let mut err = if !self.rejected_via_hash.is_empty() {
struct_span_err!(self.sess, self.span, E0460,
"found possibly newer version of crate `{}`{}",
self.ident, add)
} else if !self.rejected_via_triple.is_empty() {
struct_span_err!(self.sess, self.span, E0461,
"couldn't find crate `{}` with expected target triple {}{}",
self.ident, self.triple, add)
} else if !self.rejected_via_kind.is_empty() {
struct_span_err!(self.sess, self.span, E0462,
"found staticlib `{}` instead of rlib or dylib{}",
self.ident, add)
} else if !self.rejected_via_version.is_empty() {
struct_span_err!(self.sess, self.span, E0514,
"found crate `{}` compiled by an incompatible version of rustc{}",
self.ident, add)
} else {
struct_span_err!(self.sess, self.span, E0463,
"can't find crate for `{}`{}",
self.ident, add)
};
if !self.rejected_via_triple.is_empty() {
let mismatches = self.rejected_via_triple.iter();
for (i, &CrateMismatch{ ref path, ref got }) in mismatches.enumerate() {
err.note(&format!("crate `{}`, path #{}, triple {}: {}",
self.ident, i+1, got, path.display()));
}
}
if !self.rejected_via_hash.is_empty() {
err.note("perhaps that crate needs to be recompiled?");
let mismatches = self.rejected_via_hash.iter();
for (i, &CrateMismatch{ ref path, .. }) in mismatches.enumerate() {
err.note(&format!("crate `{}` path #{}: {}",
self.ident, i+1, path.display()));
}
match self.root {
&None => {}
&Some(ref r) => {
for (i, path) in r.paths().iter().enumerate() {
err.note(&format!("crate `{}` path #{}: {}",
r.ident, i+1, path.display()));
}
}
}
}
if !self.rejected_via_kind.is_empty() {
err.help("please recompile that crate using --crate-type lib");
let mismatches = self.rejected_via_kind.iter();
for (i, &CrateMismatch { ref path, .. }) in mismatches.enumerate() {
err.note(&format!("crate `{}` path #{}: {}",
self.ident, i+1, path.display()));
}
}
if !self.rejected_via_version.is_empty() {
err.help(&format!("please recompile that crate using this compiler ({})",
rustc_version()));
let mismatches = self.rejected_via_version.iter();
for (i, &CrateMismatch { ref path, ref got }) in mismatches.enumerate() {
err.note(&format!("crate `{}` path #{}: {} compiled by {:?}",
self.ident, i+1, path.display(), got));
}
}
err.emit();
self.sess.abort_if_errors();
unreachable!();
}
fn find_library_crate(&mut self) -> Option<Library> {
// If an SVH is specified, then this is a transitive dependency that
// must be loaded via -L plus some filtering.
if self.hash.is_none() {
self.should_match_name = false;
if let Some(s) = self.sess.opts.externs.get(self.crate_name) {
return self.find_commandline_library(s);
}
self.should_match_name = true;
}
let dypair = self.dylibname();
let staticpair = self.staticlibname();
// want: crate_name.dir_part() + prefix + crate_name.file_part + "-"
let dylib_prefix = format!("{}{}", dypair.0, self.crate_name);
let rlib_prefix = format!("lib{}", self.crate_name);
let staticlib_prefix = format!("{}{}", staticpair.0, self.crate_name);
let mut candidates = HashMap::new();
let mut staticlibs = vec!();
// First, find all possible candidate rlibs and dylibs purely based on
// the name of the files themselves. We're trying to match against an
// exact crate name and a possibly an exact hash.
//
// During this step, we can filter all found libraries based on the
// name and id found in the crate id (we ignore the path portion for
// filename matching), as well as the exact hash (if specified). If we
// end up having many candidates, we must look at the metadata to
// perform exact matches against hashes/crate ids. Note that opening up
// the metadata is where we do an exact match against the full contents
// of the crate id (path/name/id).
//
// The goal of this step is to look at as little metadata as possible.
self.filesearch.search(|path, kind| {
let file = match path.file_name().and_then(|s| s.to_str()) {
None => return FileDoesntMatch,
Some(file) => file,
};
let (hash, rlib) = if file.starts_with(&rlib_prefix[..]) &&
file.ends_with(".rlib") {
(&file[(rlib_prefix.len()) .. (file.len() - ".rlib".len())],
true)
} else if file.starts_with(&dylib_prefix) &&
file.ends_with(&dypair.1) {
(&file[(dylib_prefix.len()) .. (file.len() - dypair.1.len())],
false)
} else {
if file.starts_with(&staticlib_prefix[..]) &&
file.ends_with(&staticpair.1) {
staticlibs.push(CrateMismatch {
path: path.to_path_buf(),
got: "static".to_string()
});
}
return FileDoesntMatch
};
info!("lib candidate: {}", path.display());
let hash_str = hash.to_string();
let slot = candidates.entry(hash_str)
.or_insert_with(|| (HashMap::new(), HashMap::new()));
let (ref mut rlibs, ref mut dylibs) = *slot;
fs::canonicalize(path).map(|p| {
if rlib {
rlibs.insert(p, kind);
} else {
dylibs.insert(p, kind);
}
FileMatches
}).unwrap_or(FileDoesntMatch)
});
self.rejected_via_kind.extend(staticlibs);
// We have now collected all known libraries into a set of candidates
// keyed of the filename hash listed. For each filename, we also have a
// list of rlibs/dylibs that apply. Here, we map each of these lists
// (per hash), to a Library candidate for returning.
//
// A Library candidate is created if the metadata for the set of
// libraries corresponds to the crate id and hash criteria that this
// search is being performed for.
let mut libraries = HashMap::new();
for (_hash, (rlibs, dylibs)) in candidates {
let mut slot = None;
let rlib = self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot);
let dylib = self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot);
if let Some((h, m)) = slot {
libraries.insert(h, Library {
dylib: dylib,
rlib: rlib,
metadata: m,
});
}
}
// Having now translated all relevant found hashes into libraries, see
// what we've got and figure out if we found multiple candidates for
// libraries or not.
match libraries.len() {
0 => None,
1 => Some(libraries.into_iter().next().unwrap().1),
_ => {
let mut err = struct_span_err!(self.sess, self.span, E0464,
"multiple matching crates for `{}`",
self.crate_name);
err.note("candidates:");
for (_, lib) in libraries {
if let Some((ref p, _)) = lib.dylib {
err.note(&format!("path: {}", p.display()));
}
if let Some((ref p, _)) = lib.rlib {
err.note(&format!("path: {}", p.display()));
}
let data = lib.metadata.as_slice();
let name = decoder::get_crate_name(data);
note_crate_name(&mut err, &name);
}
err.emit();
None
}
}
}
// Attempts to extract *one* library from the set `m`. If the set has no
// elements, `None` is returned. If the set has more than one element, then
// the errors and notes are emitted about the set of libraries.
//
// With only one library in the set, this function will extract it, and then
// read the metadata from it if `*slot` is `None`. If the metadata couldn't
// be read, it is assumed that the file isn't a valid rust library (no
// errors are emitted).
fn extract_one(&mut self, m: HashMap<PathBuf, PathKind>, flavor: CrateFlavor,
slot: &mut Option<(Svh, MetadataBlob)>) -> Option<(PathBuf, PathKind)> {
let mut ret: Option<(PathBuf, PathKind)> = None;
let mut error = 0;
if slot.is_some() {
// FIXME(#10786): for an optimization, we only read one of the
// libraries' metadata sections. In theory we should
// read both, but reading dylib metadata is quite
// slow.
if m.is_empty() {
return None
} else if m.len() == 1 {
return Some(m.into_iter().next().unwrap())
}
}
let mut err: Option<DiagnosticBuilder> = None;
for (lib, kind) in m {
info!("{} reading metadata from: {}", flavor, lib.display());
let (hash, metadata) = match get_metadata_section(self.target, flavor, &lib) {
Ok(blob) => {
if let Some(h) = self.crate_matches(blob.as_slice(), &lib) {
(h, blob)
} else {
info!("metadata mismatch");
continue
}
}
Err(err) => {
info!("no metadata found: {}", err);
continue
}
};
// If we see multiple hashes, emit an error about duplicate candidates.
if slot.as_ref().map_or(false, |s| s.0 != hash) {
let mut e = struct_span_err!(self.sess, self.span, E0465,
"multiple {} candidates for `{}` found",
flavor, self.crate_name);
e.span_note(self.span,
&format!(r"candidate #1: {}",
ret.as_ref().unwrap().0
.display()));
if let Some(ref mut e) = err {
e.emit();
}
err = Some(e);
error = 1;
*slot = None;
}
if error > 0 {
error += 1;
err.as_mut().unwrap().span_note(self.span,
&format!(r"candidate #{}: {}", error,
lib.display()));
continue
}
*slot = Some((hash, metadata));
ret = Some((lib, kind));
}
if error > 0 {
err.unwrap().emit();
None
} else {
ret
}
}
fn crate_matches(&mut self, crate_data: &[u8], libpath: &Path) -> Option<Svh> {
let crate_rustc_version = decoder::crate_rustc_version(crate_data);
if crate_rustc_version != Some(rustc_version()) {
let message = crate_rustc_version.unwrap_or(format!("an unknown compiler"));
info!("Rejecting via version: expected {} got {}", rustc_version(), message);
self.rejected_via_version.push(CrateMismatch {
path: libpath.to_path_buf(),
got: message
});
return None;
}
if self.should_match_name {
match decoder::maybe_get_crate_name(crate_data) {
Some(ref name) if self.crate_name == *name => {}
_ => { info!("Rejecting via crate name"); return None }
}
}
let hash = match decoder::maybe_get_crate_hash(crate_data) {
None => { info!("Rejecting via lack of crate hash"); return None; }
Some(h) => h,
};
let triple = match decoder::get_crate_triple(crate_data) {
None => { debug!("triple not present"); return None }
Some(t) => t,
};
if triple != self.triple {
info!("Rejecting via crate triple: expected {} got {}", self.triple, triple);
self.rejected_via_triple.push(CrateMismatch {
path: libpath.to_path_buf(),
got: triple.to_string()
});
return None;
}
if let Some(myhash) = self.hash {
if *myhash != hash {
info!("Rejecting via hash: expected {} got {}", *myhash, hash);
self.rejected_via_hash.push(CrateMismatch {
path: libpath.to_path_buf(),
got: myhash.to_string()
});
return None;
}
}
Some(hash)
}
// Returns the corresponding (prefix, suffix) that files need to have for
// dynamic libraries
fn dylibname(&self) -> (String, String) {
let t = &self.target;
(t.options.dll_prefix.clone(), t.options.dll_suffix.clone())
}
// Returns the corresponding (prefix, suffix) that files need to have for
// static libraries
fn staticlibname(&self) -> (String, String) {
let t = &self.target;
(t.options.staticlib_prefix.clone(), t.options.staticlib_suffix.clone())
}
fn find_commandline_library(&mut self, locs: &[String]) -> Option<Library> {
// First, filter out all libraries that look suspicious. We only accept
// files which actually exist that have the correct naming scheme for
// rlibs/dylibs.
let sess = self.sess;
let dylibname = self.dylibname();
let mut rlibs = HashMap::new();
let mut dylibs = HashMap::new();
{
let locs = locs.iter().map(|l| PathBuf::from(l)).filter(|loc| {
if !loc.exists() {
sess.err(&format!("extern location for {} does not exist: {}",
self.crate_name, loc.display()));
return false;
}
let file = match loc.file_name().and_then(|s| s.to_str()) {
Some(file) => file,
None => {
sess.err(&format!("extern location for {} is not a file: {}",
self.crate_name, loc.display()));
return false;
}
};
if file.starts_with("lib") && file.ends_with(".rlib") {
return true
} else {
let (ref prefix, ref suffix) = dylibname;
if file.starts_with(&prefix[..]) &&
file.ends_with(&suffix[..]) {
return true
}
}
sess.struct_err(&format!("extern location for {} is of an unknown type: {}",
self.crate_name, loc.display()))
.help(&format!("file name should be lib*.rlib or {}*.{}",
dylibname.0, dylibname.1))
.emit();
false
});
// Now that we have an iterator of good candidates, make sure
// there's at most one rlib and at most one dylib.
for loc in locs {
if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") {
rlibs.insert(fs::canonicalize(&loc).unwrap(),
PathKind::ExternFlag);
} else {
dylibs.insert(fs::canonicalize(&loc).unwrap(),
PathKind::ExternFlag);
}
}
};
// Extract the rlib/dylib pair.
let mut slot = None;
let rlib = self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot);
let dylib = self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot);
if rlib.is_none() && dylib.is_none() { return None }
match slot {
Some((_, metadata)) => Some(Library {
dylib: dylib,
rlib: rlib,
metadata: metadata,
}),
None => None,
}
}
}
pub fn note_crate_name(err: &mut DiagnosticBuilder, name: &str) {
err.note(&format!("crate name: {}", name));
}
impl ArchiveMetadata {
fn new(ar: ArchiveRO) -> Option<ArchiveMetadata> {
let data = {
let section = ar.iter().filter_map(|s| s.ok()).find(|sect| {
sect.name() == Some(METADATA_FILENAME)
});
match section {
Some(s) => s.data() as *const [u8],
None => {
debug!("didn't find '{}' in the archive", METADATA_FILENAME);
return None;
}
}
};
Some(ArchiveMetadata {
_archive: ar,
data: data,
})
}
pub fn as_slice<'a>(&'a self) -> &'a [u8] { unsafe { &*self.data } }
}
fn verify_decompressed_encoding_version(blob: &MetadataBlob, filename: &Path)
-> Result<(), String>
{
let data = blob.as_slice_raw();
if data.len() < 4+metadata_encoding_version.len() ||
!<[u8]>::eq(&data[..4], &[0, 0, 0, 0]) ||
&data[4..4+metadata_encoding_version.len()] != metadata_encoding_version
{
Err((format!("incompatible metadata version found: '{}'",
filename.display())))
} else {
Ok(())
}
}
// Just a small wrapper to time how long reading metadata takes.
fn get_metadata_section(target: &Target, flavor: CrateFlavor, filename: &Path)
-> Result<MetadataBlob, String> {
let start = Instant::now();
let ret = get_metadata_section_imp(target, flavor, filename);
info!("reading {:?} => {:?}", filename.file_name().unwrap(),
start.elapsed());
return ret
}
fn get_metadata_section_imp(target: &Target, flavor: CrateFlavor, filename: &Path)
-> Result<MetadataBlob, String> {
if !filename.exists() {
return Err(format!("no such file: '{}'", filename.display()));
}
if flavor == CrateFlavor::Rlib {
// Use ArchiveRO for speed here, it's backed by LLVM and uses mmap
// internally to read the file. We also avoid even using a memcpy by
// just keeping the archive along while the metadata is in use.
let archive = match ArchiveRO::open(filename) {
Some(ar) => ar,
None => {
debug!("llvm didn't like `{}`", filename.display());
return Err(format!("failed to read rlib metadata: '{}'",
filename.display()));
}
};
return match ArchiveMetadata::new(archive).map(|ar| MetadataArchive(ar)) {
None => Err(format!("failed to read rlib metadata: '{}'",
filename.display())),
Some(blob) => {
try!(verify_decompressed_encoding_version(&blob, filename));
Ok(blob)
}
};
}
unsafe {
let buf = common::path2cstr(filename);
let mb = llvm::LLVMRustCreateMemoryBufferWithContentsOfFile(buf.as_ptr());
if mb as isize == 0 {
return Err(format!("error reading library: '{}'",
filename.display()))
}
let of = match ObjectFile::new(mb) {
Some(of) => of,
_ => {
return Err((format!("provided path not an object file: '{}'",
filename.display())))
}
};
let si = mk_section_iter(of.llof);
while llvm::LLVMIsSectionIteratorAtEnd(of.llof, si.llsi) == False {
let mut name_buf = ptr::null();
let name_len = llvm::LLVMRustGetSectionName(si.llsi, &mut name_buf);
let name = slice::from_raw_parts(name_buf as *const u8,
name_len as usize).to_vec();
let name = String::from_utf8(name).unwrap();
debug!("get_metadata_section: name {}", name);
if read_meta_section_name(target) == name {
let cbuf = llvm::LLVMGetSectionContents(si.llsi);
let csz = llvm::LLVMGetSectionSize(si.llsi) as usize;
let cvbuf: *const u8 = cbuf as *const u8;
let vlen = metadata_encoding_version.len();
debug!("checking {} bytes of metadata-version stamp",
vlen);
let minsz = cmp::min(vlen, csz);
let buf0 = slice::from_raw_parts(cvbuf, minsz);
let version_ok = buf0 == metadata_encoding_version;
if !version_ok {
return Err((format!("incompatible metadata version found: '{}'",
filename.display())));
}
let cvbuf1 = cvbuf.offset(vlen as isize);
debug!("inflating {} bytes of compressed metadata",
csz - vlen);
let bytes = slice::from_raw_parts(cvbuf1, csz - vlen);
match flate::inflate_bytes(bytes) {
Ok(inflated) => {
let blob = MetadataVec(inflated);
try!(verify_decompressed_encoding_version(&blob, filename));
return Ok(blob);
}
Err(_) => {}
}
}
llvm::LLVMMoveToNextSection(si.llsi);
}
Err(format!("metadata not found: '{}'", filename.display()))
}
}
pub fn meta_section_name(target: &Target) -> &'static str {
if target.options.is_like_osx {
"__DATA,__note.rustc"
} else if target.options.is_like_msvc {
// When using link.exe it was seen that the section name `.note.rustc`
// was getting shortened to `.note.ru`, and according to the PE and COFF
// specification:
//
// > Executable images do not use a string table and do not support
// > section names longer than 8 characters
//
// https://msdn.microsoft.com/en-us/library/windows/hardware/gg463119.aspx
//
// As a result, we choose a slightly shorter name! As to why
// `.note.rustc` works on MinGW, that's another good question...
".rustc"
} else {
".note.rustc"
}
}
pub fn read_meta_section_name(target: &Target) -> &'static str {
if target.options.is_like_osx {
"__note.rustc"
} else if target.options.is_like_msvc {
".rustc"
} else {
".note.rustc"
}
}
// A diagnostic function for dumping crate metadata to an output stream
pub fn list_file_metadata(target: &Target, path: &Path,
out: &mut io::Write) -> io::Result<()> {
let filename = path.file_name().unwrap().to_str().unwrap();
let flavor = if filename.ends_with(".rlib") { CrateFlavor::Rlib } else { CrateFlavor::Dylib };
match get_metadata_section(target, flavor, path) {
Ok(bytes) => decoder::list_crate_metadata(bytes.as_slice(), out),
Err(msg) => {
write!(out, "{}\n", msg)
}
}
}