blob: 7547e28625c18eae079f660280d0950e971728c6 [file] [log] [blame]
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Lints in the Rust compiler.
//!
//! This contains lints which can feasibly be implemented as their own
//! AST visitor. Also see `rustc::lint::builtin`, which contains the
//! definitions of lints that are emitted directly inside the main
//! compiler.
//!
//! To add a new lint to rustc, declare it here using `declare_lint!()`.
//! Then add code to emit the new lint in the appropriate circumstances.
//! You can do that in an existing `LintPass` if it makes sense, or in a
//! new `LintPass`, or using `Session::add_lint` elsewhere in the
//! compiler. Only do the latter if the check can't be written cleanly as a
//! `LintPass` (also, note that such lints will need to be defined in
//! `rustc::lint::builtin`, not here).
//!
//! If you define a new `LintPass`, you will also need to add it to the
//! `add_builtin!` or `add_builtin_with_new!` invocation in `lib.rs`.
//! Use the former for unit-like structs and the latter for structs with
//! a `pub fn new()`.
use rustc::hir::def::Def;
use rustc::hir::def_id::DefId;
use middle::stability;
use rustc::cfg;
use rustc::ty::subst::Substs;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::ty::adjustment;
use rustc::traits::{self, ProjectionMode};
use rustc::hir::map as hir_map;
use util::nodemap::{NodeSet};
use lint::{Level, LateContext, LintContext, LintArray, Lint};
use lint::{LintPass, LateLintPass};
use std::collections::HashSet;
use syntax::{ast};
use syntax::attr::{self, AttrMetaMethods, AttributeMethods};
use syntax_pos::{self, Span};
use rustc::hir::{self, PatKind};
use rustc::hir::intravisit::FnKind;
use bad_style::{MethodLateContext, method_context};
// hardwired lints from librustc
pub use lint::builtin::*;
declare_lint! {
WHILE_TRUE,
Warn,
"suggest using `loop { }` instead of `while true { }`"
}
#[derive(Copy, Clone)]
pub struct WhileTrue;
impl LintPass for WhileTrue {
fn get_lints(&self) -> LintArray {
lint_array!(WHILE_TRUE)
}
}
impl LateLintPass for WhileTrue {
fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) {
if let hir::ExprWhile(ref cond, _, _) = e.node {
if let hir::ExprLit(ref lit) = cond.node {
if let ast::LitKind::Bool(true) = lit.node {
cx.span_lint(WHILE_TRUE, e.span,
"denote infinite loops with loop { ... }");
}
}
}
}
}
declare_lint! {
BOX_POINTERS,
Allow,
"use of owned (Box type) heap memory"
}
#[derive(Copy, Clone)]
pub struct BoxPointers;
impl BoxPointers {
fn check_heap_type<'a, 'tcx>(&self, cx: &LateContext<'a, 'tcx>,
span: Span, ty: Ty<'tcx>) {
for leaf_ty in ty.walk() {
if let ty::TyBox(_) = leaf_ty.sty {
let m = format!("type uses owned (Box type) pointers: {}", ty);
cx.span_lint(BOX_POINTERS, span, &m);
}
}
}
}
impl LintPass for BoxPointers {
fn get_lints(&self) -> LintArray {
lint_array!(BOX_POINTERS)
}
}
impl LateLintPass for BoxPointers {
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
match it.node {
hir::ItemFn(..) |
hir::ItemTy(..) |
hir::ItemEnum(..) |
hir::ItemStruct(..) =>
self.check_heap_type(cx, it.span,
cx.tcx.node_id_to_type(it.id)),
_ => ()
}
// If it's a struct, we also have to check the fields' types
match it.node {
hir::ItemStruct(ref struct_def, _) => {
for struct_field in struct_def.fields() {
self.check_heap_type(cx, struct_field.span,
cx.tcx.node_id_to_type(struct_field.id));
}
}
_ => ()
}
}
fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) {
let ty = cx.tcx.node_id_to_type(e.id);
self.check_heap_type(cx, e.span, ty);
}
}
declare_lint! {
NON_SHORTHAND_FIELD_PATTERNS,
Warn,
"using `Struct { x: x }` instead of `Struct { x }`"
}
#[derive(Copy, Clone)]
pub struct NonShorthandFieldPatterns;
impl LintPass for NonShorthandFieldPatterns {
fn get_lints(&self) -> LintArray {
lint_array!(NON_SHORTHAND_FIELD_PATTERNS)
}
}
impl LateLintPass for NonShorthandFieldPatterns {
fn check_pat(&mut self, cx: &LateContext, pat: &hir::Pat) {
if let PatKind::Struct(_, ref field_pats, _) = pat.node {
for fieldpat in field_pats {
if fieldpat.node.is_shorthand {
continue;
}
if let PatKind::Binding(_, ident, None) = fieldpat.node.pat.node {
if ident.node == fieldpat.node.name {
cx.span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span,
&format!("the `{}:` in this pattern is redundant and can \
be removed", ident.node))
}
}
}
}
}
}
declare_lint! {
UNSAFE_CODE,
Allow,
"usage of `unsafe` code"
}
#[derive(Copy, Clone)]
pub struct UnsafeCode;
impl LintPass for UnsafeCode {
fn get_lints(&self) -> LintArray {
lint_array!(UNSAFE_CODE)
}
}
impl LateLintPass for UnsafeCode {
fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) {
if let hir::ExprBlock(ref blk) = e.node {
// Don't warn about generated blocks, that'll just pollute the output.
if blk.rules == hir::UnsafeBlock(hir::UserProvided) {
cx.span_lint(UNSAFE_CODE, blk.span, "usage of an `unsafe` block");
}
}
}
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
match it.node {
hir::ItemTrait(hir::Unsafety::Unsafe, _, _, _) =>
cx.span_lint(UNSAFE_CODE, it.span, "declaration of an `unsafe` trait"),
hir::ItemImpl(hir::Unsafety::Unsafe, _, _, _, _, _) =>
cx.span_lint(UNSAFE_CODE, it.span, "implementation of an `unsafe` trait"),
_ => return,
}
}
fn check_fn(&mut self, cx: &LateContext, fk: FnKind, _: &hir::FnDecl,
_: &hir::Block, span: Span, _: ast::NodeId) {
match fk {
FnKind::ItemFn(_, _, hir::Unsafety::Unsafe, _, _, _, _) =>
cx.span_lint(UNSAFE_CODE, span, "declaration of an `unsafe` function"),
FnKind::Method(_, sig, _, _) => {
if sig.unsafety == hir::Unsafety::Unsafe {
cx.span_lint(UNSAFE_CODE, span, "implementation of an `unsafe` method")
}
},
_ => (),
}
}
fn check_trait_item(&mut self, cx: &LateContext, trait_item: &hir::TraitItem) {
if let hir::MethodTraitItem(ref sig, None) = trait_item.node {
if sig.unsafety == hir::Unsafety::Unsafe {
cx.span_lint(UNSAFE_CODE, trait_item.span,
"declaration of an `unsafe` method")
}
}
}
}
declare_lint! {
MISSING_DOCS,
Allow,
"detects missing documentation for public members"
}
pub struct MissingDoc {
/// Stack of IDs of struct definitions.
struct_def_stack: Vec<ast::NodeId>,
/// True if inside variant definition
in_variant: bool,
/// Stack of whether #[doc(hidden)] is set
/// at each level which has lint attributes.
doc_hidden_stack: Vec<bool>,
/// Private traits or trait items that leaked through. Don't check their methods.
private_traits: HashSet<ast::NodeId>,
}
impl MissingDoc {
pub fn new() -> MissingDoc {
MissingDoc {
struct_def_stack: vec!(),
in_variant: false,
doc_hidden_stack: vec!(false),
private_traits: HashSet::new(),
}
}
fn doc_hidden(&self) -> bool {
*self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
}
fn check_missing_docs_attrs(&self,
cx: &LateContext,
id: Option<ast::NodeId>,
attrs: &[ast::Attribute],
sp: Span,
desc: &'static str) {
// If we're building a test harness, then warning about
// documentation is probably not really relevant right now.
if cx.sess().opts.test {
return;
}
// `#[doc(hidden)]` disables missing_docs check.
if self.doc_hidden() {
return;
}
// Only check publicly-visible items, using the result from the privacy pass.
// It's an option so the crate root can also use this function (it doesn't
// have a NodeId).
if let Some(id) = id {
if !cx.access_levels.is_exported(id) {
return;
}
}
let has_doc = attrs.iter().any(|a| a.is_value_str() && a.name() == "doc");
if !has_doc {
cx.span_lint(MISSING_DOCS, sp,
&format!("missing documentation for {}", desc));
}
}
}
impl LintPass for MissingDoc {
fn get_lints(&self) -> LintArray {
lint_array!(MISSING_DOCS)
}
}
impl LateLintPass for MissingDoc {
fn enter_lint_attrs(&mut self, _: &LateContext, attrs: &[ast::Attribute]) {
let doc_hidden = self.doc_hidden() || attrs.iter().any(|attr| {
attr.check_name("doc") && match attr.meta_item_list() {
None => false,
Some(l) => attr::contains_name(&l[..], "hidden"),
}
});
self.doc_hidden_stack.push(doc_hidden);
}
fn exit_lint_attrs(&mut self, _: &LateContext, _: &[ast::Attribute]) {
self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
}
fn check_struct_def(&mut self, _: &LateContext, _: &hir::VariantData,
_: ast::Name, _: &hir::Generics, item_id: ast::NodeId) {
self.struct_def_stack.push(item_id);
}
fn check_struct_def_post(&mut self, _: &LateContext, _: &hir::VariantData,
_: ast::Name, _: &hir::Generics, item_id: ast::NodeId) {
let popped = self.struct_def_stack.pop().expect("empty struct_def_stack");
assert!(popped == item_id);
}
fn check_crate(&mut self, cx: &LateContext, krate: &hir::Crate) {
self.check_missing_docs_attrs(cx, None, &krate.attrs, krate.span, "crate");
}
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
let desc = match it.node {
hir::ItemFn(..) => "a function",
hir::ItemMod(..) => "a module",
hir::ItemEnum(..) => "an enum",
hir::ItemStruct(..) => "a struct",
hir::ItemTrait(_, _, _, ref items) => {
// Issue #11592, traits are always considered exported, even when private.
if it.vis == hir::Visibility::Inherited {
self.private_traits.insert(it.id);
for itm in items {
self.private_traits.insert(itm.id);
}
return
}
"a trait"
},
hir::ItemTy(..) => "a type alias",
hir::ItemImpl(_, _, _, Some(ref trait_ref), _, ref impl_items) => {
// If the trait is private, add the impl items to private_traits so they don't get
// reported for missing docs.
let real_trait = cx.tcx.expect_def(trait_ref.ref_id).def_id();
if let Some(node_id) = cx.tcx.map.as_local_node_id(real_trait) {
match cx.tcx.map.find(node_id) {
Some(hir_map::NodeItem(item)) => if item.vis == hir::Visibility::Inherited {
for itm in impl_items {
self.private_traits.insert(itm.id);
}
},
_ => { }
}
}
return
},
hir::ItemConst(..) => "a constant",
hir::ItemStatic(..) => "a static",
_ => return
};
self.check_missing_docs_attrs(cx, Some(it.id), &it.attrs, it.span, desc);
}
fn check_trait_item(&mut self, cx: &LateContext, trait_item: &hir::TraitItem) {
if self.private_traits.contains(&trait_item.id) { return }
let desc = match trait_item.node {
hir::ConstTraitItem(..) => "an associated constant",
hir::MethodTraitItem(..) => "a trait method",
hir::TypeTraitItem(..) => "an associated type",
};
self.check_missing_docs_attrs(cx, Some(trait_item.id),
&trait_item.attrs,
trait_item.span, desc);
}
fn check_impl_item(&mut self, cx: &LateContext, impl_item: &hir::ImplItem) {
// If the method is an impl for a trait, don't doc.
if method_context(cx, impl_item.id, impl_item.span) == MethodLateContext::TraitImpl {
return;
}
let desc = match impl_item.node {
hir::ImplItemKind::Const(..) => "an associated constant",
hir::ImplItemKind::Method(..) => "a method",
hir::ImplItemKind::Type(_) => "an associated type",
};
self.check_missing_docs_attrs(cx, Some(impl_item.id),
&impl_item.attrs,
impl_item.span, desc);
}
fn check_struct_field(&mut self, cx: &LateContext, sf: &hir::StructField) {
if !sf.is_positional() {
if sf.vis == hir::Public || self.in_variant {
let cur_struct_def = *self.struct_def_stack.last()
.expect("empty struct_def_stack");
self.check_missing_docs_attrs(cx, Some(cur_struct_def),
&sf.attrs, sf.span,
"a struct field")
}
}
}
fn check_variant(&mut self, cx: &LateContext, v: &hir::Variant, _: &hir::Generics) {
self.check_missing_docs_attrs(cx, Some(v.node.data.id()),
&v.node.attrs, v.span, "a variant");
assert!(!self.in_variant);
self.in_variant = true;
}
fn check_variant_post(&mut self, _: &LateContext, _: &hir::Variant, _: &hir::Generics) {
assert!(self.in_variant);
self.in_variant = false;
}
}
declare_lint! {
pub MISSING_COPY_IMPLEMENTATIONS,
Allow,
"detects potentially-forgotten implementations of `Copy`"
}
#[derive(Copy, Clone)]
pub struct MissingCopyImplementations;
impl LintPass for MissingCopyImplementations {
fn get_lints(&self) -> LintArray {
lint_array!(MISSING_COPY_IMPLEMENTATIONS)
}
}
impl LateLintPass for MissingCopyImplementations {
fn check_item(&mut self, cx: &LateContext, item: &hir::Item) {
if !cx.access_levels.is_reachable(item.id) {
return;
}
let (def, ty) = match item.node {
hir::ItemStruct(_, ref ast_generics) => {
if ast_generics.is_parameterized() {
return;
}
let def = cx.tcx.lookup_adt_def(cx.tcx.map.local_def_id(item.id));
(def, cx.tcx.mk_struct(def,
cx.tcx.mk_substs(Substs::empty())))
}
hir::ItemEnum(_, ref ast_generics) => {
if ast_generics.is_parameterized() {
return;
}
let def = cx.tcx.lookup_adt_def(cx.tcx.map.local_def_id(item.id));
(def, cx.tcx.mk_enum(def,
cx.tcx.mk_substs(Substs::empty())))
}
_ => return,
};
if def.has_dtor() { return; }
let parameter_environment = cx.tcx.empty_parameter_environment();
// FIXME (@jroesch) should probably inver this so that the parameter env still impls this
// method
if !ty.moves_by_default(cx.tcx, &parameter_environment, item.span) {
return;
}
if parameter_environment.can_type_implement_copy(cx.tcx, ty, item.span).is_ok() {
cx.span_lint(MISSING_COPY_IMPLEMENTATIONS,
item.span,
"type could implement `Copy`; consider adding `impl \
Copy`")
}
}
}
declare_lint! {
MISSING_DEBUG_IMPLEMENTATIONS,
Allow,
"detects missing implementations of fmt::Debug"
}
pub struct MissingDebugImplementations {
impling_types: Option<NodeSet>,
}
impl MissingDebugImplementations {
pub fn new() -> MissingDebugImplementations {
MissingDebugImplementations {
impling_types: None,
}
}
}
impl LintPass for MissingDebugImplementations {
fn get_lints(&self) -> LintArray {
lint_array!(MISSING_DEBUG_IMPLEMENTATIONS)
}
}
impl LateLintPass for MissingDebugImplementations {
fn check_item(&mut self, cx: &LateContext, item: &hir::Item) {
if !cx.access_levels.is_reachable(item.id) {
return;
}
match item.node {
hir::ItemStruct(..) | hir::ItemEnum(..) => {},
_ => return,
}
let debug = match cx.tcx.lang_items.debug_trait() {
Some(debug) => debug,
None => return,
};
if self.impling_types.is_none() {
let debug_def = cx.tcx.lookup_trait_def(debug);
let mut impls = NodeSet();
debug_def.for_each_impl(cx.tcx, |d| {
if let Some(n) = cx.tcx.map.as_local_node_id(d) {
if let Some(ty_def) = cx.tcx.node_id_to_type(n).ty_to_def_id() {
if let Some(node_id) = cx.tcx.map.as_local_node_id(ty_def) {
impls.insert(node_id);
}
}
}
});
self.impling_types = Some(impls);
debug!("{:?}", self.impling_types);
}
if !self.impling_types.as_ref().unwrap().contains(&item.id) {
cx.span_lint(MISSING_DEBUG_IMPLEMENTATIONS,
item.span,
"type does not implement `fmt::Debug`; consider adding #[derive(Debug)] \
or a manual implementation")
}
}
}
declare_lint! {
DEPRECATED,
Warn,
"detects use of deprecated items"
}
/// Checks for use of items with `#[deprecated]` or `#[rustc_deprecated]` attributes
#[derive(Copy, Clone)]
pub struct Deprecated;
impl Deprecated {
fn lint(&self, cx: &LateContext, _id: DefId, span: Span,
stability: &Option<&attr::Stability>, deprecation: &Option<attr::Deprecation>) {
// Deprecated attributes apply in-crate and cross-crate.
if let Some(&attr::Stability{rustc_depr: Some(attr::RustcDeprecation{ref reason, ..}), ..})
= *stability {
output(cx, DEPRECATED, span, Some(&reason))
} else if let Some(attr::Deprecation{ref note, ..}) = *deprecation {
output(cx, DEPRECATED, span, note.as_ref().map(|x| &**x))
}
fn output(cx: &LateContext, lint: &'static Lint, span: Span, note: Option<&str>) {
let msg = if let Some(note) = note {
format!("use of deprecated item: {}", note)
} else {
format!("use of deprecated item")
};
cx.span_lint(lint, span, &msg);
}
}
}
impl LintPass for Deprecated {
fn get_lints(&self) -> LintArray {
lint_array!(DEPRECATED)
}
}
impl LateLintPass for Deprecated {
fn check_item(&mut self, cx: &LateContext, item: &hir::Item) {
stability::check_item(cx.tcx, item, false,
&mut |id, sp, stab, depr|
self.lint(cx, id, sp, &stab, &depr));
}
fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) {
stability::check_expr(cx.tcx, e,
&mut |id, sp, stab, depr|
self.lint(cx, id, sp, &stab, &depr));
}
fn check_path(&mut self, cx: &LateContext, path: &hir::Path, id: ast::NodeId) {
stability::check_path(cx.tcx, path, id,
&mut |id, sp, stab, depr|
self.lint(cx, id, sp, &stab, &depr));
}
fn check_path_list_item(&mut self, cx: &LateContext, item: &hir::PathListItem) {
stability::check_path_list_item(cx.tcx, item,
&mut |id, sp, stab, depr|
self.lint(cx, id, sp, &stab, &depr));
}
fn check_pat(&mut self, cx: &LateContext, pat: &hir::Pat) {
stability::check_pat(cx.tcx, pat,
&mut |id, sp, stab, depr|
self.lint(cx, id, sp, &stab, &depr));
}
}
declare_lint! {
pub UNCONDITIONAL_RECURSION,
Warn,
"functions that cannot return without calling themselves"
}
#[derive(Copy, Clone)]
pub struct UnconditionalRecursion;
impl LintPass for UnconditionalRecursion {
fn get_lints(&self) -> LintArray {
lint_array![UNCONDITIONAL_RECURSION]
}
}
impl LateLintPass for UnconditionalRecursion {
fn check_fn(&mut self, cx: &LateContext, fn_kind: FnKind, _: &hir::FnDecl,
blk: &hir::Block, sp: Span, id: ast::NodeId) {
let method = match fn_kind {
FnKind::ItemFn(..) => None,
FnKind::Method(..) => {
cx.tcx.impl_or_trait_item(cx.tcx.map.local_def_id(id)).as_opt_method()
}
// closures can't recur, so they don't matter.
FnKind::Closure(_) => return
};
// Walk through this function (say `f`) looking to see if
// every possible path references itself, i.e. the function is
// called recursively unconditionally. This is done by trying
// to find a path from the entry node to the exit node that
// *doesn't* call `f` by traversing from the entry while
// pretending that calls of `f` are sinks (i.e. ignoring any
// exit edges from them).
//
// NB. this has an edge case with non-returning statements,
// like `loop {}` or `panic!()`: control flow never reaches
// the exit node through these, so one can have a function
// that never actually calls itselfs but is still picked up by
// this lint:
//
// fn f(cond: bool) {
// if !cond { panic!() } // could come from `assert!(cond)`
// f(false)
// }
//
// In general, functions of that form may be able to call
// itself a finite number of times and then diverge. The lint
// considers this to be an error for two reasons, (a) it is
// easier to implement, and (b) it seems rare to actually want
// to have behaviour like the above, rather than
// e.g. accidentally recurring after an assert.
let cfg = cfg::CFG::new(cx.tcx, blk);
let mut work_queue = vec![cfg.entry];
let mut reached_exit_without_self_call = false;
let mut self_call_spans = vec![];
let mut visited = HashSet::new();
while let Some(idx) = work_queue.pop() {
if idx == cfg.exit {
// found a path!
reached_exit_without_self_call = true;
break;
}
let cfg_id = idx.node_id();
if visited.contains(&cfg_id) {
// already done
continue;
}
visited.insert(cfg_id);
let node_id = cfg.graph.node_data(idx).id();
// is this a recursive call?
let self_recursive = if node_id != ast::DUMMY_NODE_ID {
match method {
Some(ref method) => {
expr_refers_to_this_method(cx.tcx, method, node_id)
}
None => expr_refers_to_this_fn(cx.tcx, id, node_id)
}
} else {
false
};
if self_recursive {
self_call_spans.push(cx.tcx.map.span(node_id));
// this is a self call, so we shouldn't explore past
// this node in the CFG.
continue;
}
// add the successors of this node to explore the graph further.
for (_, edge) in cfg.graph.outgoing_edges(idx) {
let target_idx = edge.target();
let target_cfg_id = target_idx.node_id();
if !visited.contains(&target_cfg_id) {
work_queue.push(target_idx)
}
}
}
// Check the number of self calls because a function that
// doesn't return (e.g. calls a `-> !` function or `loop { /*
// no break */ }`) shouldn't be linted unless it actually
// recurs.
if !reached_exit_without_self_call && !self_call_spans.is_empty() {
let mut db = cx.struct_span_lint(UNCONDITIONAL_RECURSION, sp,
"function cannot return without recurring");
// FIXME #19668: these could be span_lint_note's instead of this manual guard.
if cx.current_level(UNCONDITIONAL_RECURSION) != Level::Allow {
// offer some help to the programmer.
for call in &self_call_spans {
db.span_note(*call, "recursive call site");
}
db.help("a `loop` may express intention \
better if this is on purpose");
}
db.emit();
}
// all done
return;
// Functions for identifying if the given Expr NodeId `id`
// represents a call to the function `fn_id`/method `method`.
fn expr_refers_to_this_fn(tcx: TyCtxt,
fn_id: ast::NodeId,
id: ast::NodeId) -> bool {
match tcx.map.get(id) {
hir_map::NodeExpr(&hir::Expr { node: hir::ExprCall(ref callee, _), .. }) => {
tcx.expect_def_or_none(callee.id).map_or(false, |def| {
def.def_id() == tcx.map.local_def_id(fn_id)
})
}
_ => false
}
}
// Check if the expression `id` performs a call to `method`.
fn expr_refers_to_this_method<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
method: &ty::Method,
id: ast::NodeId) -> bool {
// Check for method calls and overloaded operators.
let opt_m = tcx.tables.borrow().method_map.get(&ty::MethodCall::expr(id)).cloned();
if let Some(m) = opt_m {
if method_call_refers_to_method(tcx, method, m.def_id, m.substs, id) {
return true;
}
}
// Check for overloaded autoderef method calls.
let opt_adj = tcx.tables.borrow().adjustments.get(&id).cloned();
if let Some(adjustment::AdjustDerefRef(adj)) = opt_adj {
for i in 0..adj.autoderefs {
let method_call = ty::MethodCall::autoderef(id, i as u32);
if let Some(m) = tcx.tables.borrow().method_map
.get(&method_call)
.cloned() {
if method_call_refers_to_method(tcx, method, m.def_id, m.substs, id) {
return true;
}
}
}
}
// Check for calls to methods via explicit paths (e.g. `T::method()`).
match tcx.map.get(id) {
hir_map::NodeExpr(&hir::Expr { node: hir::ExprCall(ref callee, _), .. }) => {
// The callee is an arbitrary expression,
// it doesn't necessarily have a definition.
match tcx.expect_def_or_none(callee.id) {
Some(Def::Method(def_id)) => {
let item_substs = tcx.node_id_item_substs(callee.id);
method_call_refers_to_method(
tcx, method, def_id, &item_substs.substs, id)
}
_ => false
}
}
_ => false
}
}
// Check if the method call to the method with the ID `callee_id`
// and instantiated with `callee_substs` refers to method `method`.
fn method_call_refers_to_method<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
method: &ty::Method,
callee_id: DefId,
callee_substs: &Substs<'tcx>,
expr_id: ast::NodeId) -> bool {
let callee_item = tcx.impl_or_trait_item(callee_id);
match callee_item.container() {
// This is an inherent method, so the `def_id` refers
// directly to the method definition.
ty::ImplContainer(_) => {
callee_id == method.def_id
}
// A trait method, from any number of possible sources.
// Attempt to select a concrete impl before checking.
ty::TraitContainer(trait_def_id) => {
let trait_ref = callee_substs.to_trait_ref(tcx, trait_def_id);
let trait_ref = ty::Binder(trait_ref);
let span = tcx.map.span(expr_id);
let obligation =
traits::Obligation::new(traits::ObligationCause::misc(span, expr_id),
trait_ref.to_poly_trait_predicate());
// unwrap() is ok here b/c `method` is the method
// defined in this crate whose body we are
// checking, so it's always local
let node_id = tcx.map.as_local_node_id(method.def_id).unwrap();
let param_env = Some(ty::ParameterEnvironment::for_item(tcx, node_id));
tcx.infer_ctxt(None, param_env, ProjectionMode::AnyFinal).enter(|infcx| {
let mut selcx = traits::SelectionContext::new(&infcx);
match selcx.select(&obligation) {
// The method comes from a `T: Trait` bound.
// If `T` is `Self`, then this call is inside
// a default method definition.
Ok(Some(traits::VtableParam(_))) => {
let self_ty = callee_substs.self_ty();
let on_self = self_ty.map_or(false, |t| t.is_self());
// We can only be recurring in a default
// method if we're being called literally
// on the `Self` type.
on_self && callee_id == method.def_id
}
// The `impl` is known, so we check that with a
// special case:
Ok(Some(traits::VtableImpl(vtable_impl))) => {
let container = ty::ImplContainer(vtable_impl.impl_def_id);
// It matches if it comes from the same impl,
// and has the same method name.
container == method.container
&& callee_item.name() == method.name
}
// There's no way to know if this call is
// recursive, so we assume it's not.
_ => false
}
})
}
}
}
}
}
declare_lint! {
PLUGIN_AS_LIBRARY,
Warn,
"compiler plugin used as ordinary library in non-plugin crate"
}
#[derive(Copy, Clone)]
pub struct PluginAsLibrary;
impl LintPass for PluginAsLibrary {
fn get_lints(&self) -> LintArray {
lint_array![PLUGIN_AS_LIBRARY]
}
}
impl LateLintPass for PluginAsLibrary {
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
if cx.sess().plugin_registrar_fn.get().is_some() {
// We're compiling a plugin; it's fine to link other plugins.
return;
}
match it.node {
hir::ItemExternCrate(..) => (),
_ => return,
};
let prfn = match cx.sess().cstore.extern_mod_stmt_cnum(it.id) {
Some(cnum) => cx.sess().cstore.plugin_registrar_fn(cnum),
None => {
// Probably means we aren't linking the crate for some reason.
//
// Not sure if / when this could happen.
return;
}
};
if prfn.is_some() {
cx.span_lint(PLUGIN_AS_LIBRARY, it.span,
"compiler plugin used as an ordinary library");
}
}
}
declare_lint! {
PRIVATE_NO_MANGLE_FNS,
Warn,
"functions marked #[no_mangle] should be exported"
}
declare_lint! {
PRIVATE_NO_MANGLE_STATICS,
Warn,
"statics marked #[no_mangle] should be exported"
}
declare_lint! {
NO_MANGLE_CONST_ITEMS,
Deny,
"const items will not have their symbols exported"
}
declare_lint! {
NO_MANGLE_GENERIC_ITEMS,
Warn,
"generic items must be mangled"
}
#[derive(Copy, Clone)]
pub struct InvalidNoMangleItems;
impl LintPass for InvalidNoMangleItems {
fn get_lints(&self) -> LintArray {
lint_array!(PRIVATE_NO_MANGLE_FNS,
PRIVATE_NO_MANGLE_STATICS,
NO_MANGLE_CONST_ITEMS,
NO_MANGLE_GENERIC_ITEMS)
}
}
impl LateLintPass for InvalidNoMangleItems {
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
match it.node {
hir::ItemFn(_, _, _, _, ref generics, _) => {
if attr::contains_name(&it.attrs, "no_mangle") {
if !cx.access_levels.is_reachable(it.id) {
let msg = format!("function {} is marked #[no_mangle], but not exported",
it.name);
cx.span_lint(PRIVATE_NO_MANGLE_FNS, it.span, &msg);
}
if generics.is_parameterized() {
cx.span_lint(NO_MANGLE_GENERIC_ITEMS,
it.span,
"generic functions must be mangled");
}
}
},
hir::ItemStatic(..) => {
if attr::contains_name(&it.attrs, "no_mangle") &&
!cx.access_levels.is_reachable(it.id) {
let msg = format!("static {} is marked #[no_mangle], but not exported",
it.name);
cx.span_lint(PRIVATE_NO_MANGLE_STATICS, it.span, &msg);
}
},
hir::ItemConst(..) => {
if attr::contains_name(&it.attrs, "no_mangle") {
// Const items do not refer to a particular location in memory, and therefore
// don't have anything to attach a symbol to
let msg = "const items should never be #[no_mangle], consider instead using \
`pub static`";
cx.span_lint(NO_MANGLE_CONST_ITEMS, it.span, msg);
}
}
_ => {},
}
}
}
#[derive(Clone, Copy)]
pub struct MutableTransmutes;
declare_lint! {
MUTABLE_TRANSMUTES,
Deny,
"mutating transmuted &mut T from &T may cause undefined behavior"
}
impl LintPass for MutableTransmutes {
fn get_lints(&self) -> LintArray {
lint_array!(MUTABLE_TRANSMUTES)
}
}
impl LateLintPass for MutableTransmutes {
fn check_expr(&mut self, cx: &LateContext, expr: &hir::Expr) {
use syntax::abi::Abi::RustIntrinsic;
let msg = "mutating transmuted &mut T from &T may cause undefined behavior,\
consider instead using an UnsafeCell";
match get_transmute_from_to(cx, expr) {
Some((&ty::TyRef(_, from_mt), &ty::TyRef(_, to_mt))) => {
if to_mt.mutbl == hir::Mutability::MutMutable
&& from_mt.mutbl == hir::Mutability::MutImmutable {
cx.span_lint(MUTABLE_TRANSMUTES, expr.span, msg);
}
}
_ => ()
}
fn get_transmute_from_to<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &hir::Expr)
-> Option<(&'tcx ty::TypeVariants<'tcx>, &'tcx ty::TypeVariants<'tcx>)> {
match expr.node {
hir::ExprPath(..) => (),
_ => return None
}
if let Def::Fn(did) = cx.tcx.expect_def(expr.id) {
if !def_id_is_transmute(cx, did) {
return None;
}
let typ = cx.tcx.node_id_to_type(expr.id);
match typ.sty {
ty::TyFnDef(_, _, ref bare_fn) if bare_fn.abi == RustIntrinsic => {
if let ty::FnConverging(to) = bare_fn.sig.0.output {
let from = bare_fn.sig.0.inputs[0];
return Some((&from.sty, &to.sty));
}
},
_ => ()
}
}
None
}
fn def_id_is_transmute(cx: &LateContext, def_id: DefId) -> bool {
match cx.tcx.lookup_item_type(def_id).ty.sty {
ty::TyFnDef(_, _, ref bfty) if bfty.abi == RustIntrinsic => (),
_ => return false
}
cx.tcx.item_name(def_id).as_str() == "transmute"
}
}
}
/// Forbids using the `#[feature(...)]` attribute
#[derive(Copy, Clone)]
pub struct UnstableFeatures;
declare_lint! {
UNSTABLE_FEATURES,
Allow,
"enabling unstable features (deprecated. do not use)"
}
impl LintPass for UnstableFeatures {
fn get_lints(&self) -> LintArray {
lint_array!(UNSTABLE_FEATURES)
}
}
impl LateLintPass for UnstableFeatures {
fn check_attribute(&mut self, ctx: &LateContext, attr: &ast::Attribute) {
if attr::contains_name(&[attr.meta().clone()], "feature") {
if let Some(items) = attr.meta().meta_item_list() {
for item in items {
ctx.span_lint(UNSTABLE_FEATURES, item.span(), "unstable feature");
}
}
}
}
}
/// Lints for attempts to impl Drop on types that have `#[repr(C)]`
/// attribute (see issue #24585).
#[derive(Copy, Clone)]
pub struct DropWithReprExtern;
declare_lint! {
DROP_WITH_REPR_EXTERN,
Warn,
"use of #[repr(C)] on a type that implements Drop"
}
impl LintPass for DropWithReprExtern {
fn get_lints(&self) -> LintArray {
lint_array!(DROP_WITH_REPR_EXTERN)
}
}
impl LateLintPass for DropWithReprExtern {
fn check_crate(&mut self, ctx: &LateContext, _: &hir::Crate) {
let drop_trait = match ctx.tcx.lang_items.drop_trait() {
Some(id) => ctx.tcx.lookup_trait_def(id), None => { return }
};
drop_trait.for_each_impl(ctx.tcx, |drop_impl_did| {
if !drop_impl_did.is_local() {
return;
}
let dtor_self_type = ctx.tcx.lookup_item_type(drop_impl_did).ty;
match dtor_self_type.sty {
ty::TyEnum(self_type_def, _) |
ty::TyStruct(self_type_def, _) => {
let self_type_did = self_type_def.did;
let hints = ctx.tcx.lookup_repr_hints(self_type_did);
if hints.iter().any(|attr| *attr == attr::ReprExtern) &&
self_type_def.dtor_kind().has_drop_flag() {
let drop_impl_span = ctx.tcx.map.def_id_span(drop_impl_did,
syntax_pos::DUMMY_SP);
let self_defn_span = ctx.tcx.map.def_id_span(self_type_did,
syntax_pos::DUMMY_SP);
ctx.span_lint_note(DROP_WITH_REPR_EXTERN,
drop_impl_span,
"implementing Drop adds hidden state to types, \
possibly conflicting with `#[repr(C)]`",
self_defn_span,
"the `#[repr(C)]` attribute is attached here");
}
}
_ => {}
}
})
}
}