blob: 3feea3218d0138b95100fe70211841692509f0a7 [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::marker;
use std::fmt::Debug;
use std::marker::PhantomData;
use snapshot_vec as sv;
#[cfg(test)]
mod tests;
/// This trait is implemented by any type that can serve as a type
/// variable. We call such variables *unification keys*. For example,
/// this trait is implemented by `IntVid`, which represents integral
/// variables.
///
/// Each key type has an associated value type `V`. For example, for
/// `IntVid`, this is `Option<IntVarValue>`, representing some
/// (possibly not yet known) sort of integer.
///
/// Clients are expected to provide implementations of this trait; you
/// can see some examples in the `test` module.
pub trait UnifyKey : Copy + Clone + Debug + PartialEq {
type Value: Clone + PartialEq + Debug;
fn index(&self) -> u32;
fn from_index(u: u32) -> Self;
fn tag(k: Option<Self>) -> &'static str;
}
/// This trait is implemented for unify values that can be
/// combined. This relation should be a monoid.
pub trait Combine {
fn combine(&self, other: &Self) -> Self;
}
impl Combine for () {
fn combine(&self, _other: &()) {}
}
/// Value of a unification key. We implement Tarjan's union-find
/// algorithm: when two keys are unified, one of them is converted
/// into a "redirect" pointing at the other. These redirects form a
/// DAG: the roots of the DAG (nodes that are not redirected) are each
/// associated with a value of type `V` and a rank. The rank is used
/// to keep the DAG relatively balanced, which helps keep the running
/// time of the algorithm under control. For more information, see
/// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure>.
#[derive(PartialEq,Clone,Debug)]
pub struct VarValue<K: UnifyKey> {
parent: K, // if equal to self, this is a root
value: K::Value, // value assigned (only relevant to root)
rank: u32, // max depth (only relevant to root)
}
/// Table of unification keys and their values.
pub struct UnificationTable<K: UnifyKey> {
/// Indicates the current value of each key.
values: sv::SnapshotVec<Delegate<K>>,
}
/// At any time, users may snapshot a unification table. The changes
/// made during the snapshot may either be *committed* or *rolled back*.
pub struct Snapshot<K: UnifyKey> {
// Link snapshot to the key type `K` of the table.
marker: marker::PhantomData<K>,
snapshot: sv::Snapshot,
}
#[derive(Copy, Clone)]
struct Delegate<K>(PhantomData<K>);
impl<K: UnifyKey> VarValue<K> {
fn new_var(key: K, value: K::Value) -> VarValue<K> {
VarValue::new(key, value, 0)
}
fn new(parent: K, value: K::Value, rank: u32) -> VarValue<K> {
VarValue {
parent: parent, // this is a root
value: value,
rank: rank,
}
}
fn redirect(self, to: K) -> VarValue<K> {
VarValue { parent: to, ..self }
}
fn root(self, rank: u32, value: K::Value) -> VarValue<K> {
VarValue {
rank: rank,
value: value,
..self
}
}
/// Returns the key of this node. Only valid if this is a root
/// node, which you yourself must ensure.
fn key(&self) -> K {
self.parent
}
fn parent(&self, self_key: K) -> Option<K> {
self.if_not_self(self.parent, self_key)
}
fn if_not_self(&self, key: K, self_key: K) -> Option<K> {
if key == self_key {
None
} else {
Some(key)
}
}
}
// We can't use V:LatticeValue, much as I would like to,
// because frequently the pattern is that V=Option<U> for some
// other type parameter U, and we have no way to say
// Option<U>:LatticeValue.
impl<K: UnifyKey> UnificationTable<K> {
pub fn new() -> UnificationTable<K> {
UnificationTable { values: sv::SnapshotVec::new() }
}
/// Starts a new snapshot. Each snapshot must be either
/// rolled back or committed in a "LIFO" (stack) order.
pub fn snapshot(&mut self) -> Snapshot<K> {
Snapshot {
marker: marker::PhantomData::<K>,
snapshot: self.values.start_snapshot(),
}
}
/// Reverses all changes since the last snapshot. Also
/// removes any keys that have been created since then.
pub fn rollback_to(&mut self, snapshot: Snapshot<K>) {
debug!("{}: rollback_to()", UnifyKey::tag(None::<K>));
self.values.rollback_to(snapshot.snapshot);
}
/// Commits all changes since the last snapshot. Of course, they
/// can still be undone if there is a snapshot further out.
pub fn commit(&mut self, snapshot: Snapshot<K>) {
debug!("{}: commit()", UnifyKey::tag(None::<K>));
self.values.commit(snapshot.snapshot);
}
pub fn new_key(&mut self, value: K::Value) -> K {
let len = self.values.len();
let key: K = UnifyKey::from_index(len as u32);
self.values.push(VarValue::new_var(key, value));
debug!("{}: created new key: {:?}", UnifyKey::tag(None::<K>), key);
key
}
/// Find the root node for `vid`. This uses the standard
/// union-find algorithm with path compression:
/// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure>.
///
/// NB. This is a building-block operation and you would probably
/// prefer to call `probe` below.
fn get(&mut self, vid: K) -> VarValue<K> {
let index = vid.index() as usize;
let mut value: VarValue<K> = self.values.get(index).clone();
match value.parent(vid) {
Some(redirect) => {
let root: VarValue<K> = self.get(redirect);
if root.key() != redirect {
// Path compression
value.parent = root.key();
self.values.set(index, value);
}
root
}
None => value,
}
}
fn is_root(&self, key: K) -> bool {
let index = key.index() as usize;
self.values.get(index).parent(key).is_none()
}
/// Sets the value for `vid` to `new_value`. `vid` MUST be a root
/// node! This is an internal operation used to impl other things.
fn set(&mut self, key: K, new_value: VarValue<K>) {
assert!(self.is_root(key));
debug!("Updating variable {:?} to {:?}", key, new_value);
let index = key.index() as usize;
self.values.set(index, new_value);
}
/// Either redirects `node_a` to `node_b` or vice versa, depending
/// on the relative rank. The value associated with the new root
/// will be `new_value`.
///
/// NB: This is the "union" operation of "union-find". It is
/// really more of a building block. If the values associated with
/// your key are non-trivial, you would probably prefer to call
/// `unify_var_var` below.
fn unify(&mut self, root_a: VarValue<K>, root_b: VarValue<K>, new_value: K::Value) -> K {
debug!("unify(root_a(id={:?}, rank={:?}), root_b(id={:?}, rank={:?}))",
root_a.key(),
root_a.rank,
root_b.key(),
root_b.rank);
if root_a.rank > root_b.rank {
// a has greater rank, so a should become b's parent,
// i.e., b should redirect to a.
self.redirect_root(root_a.rank, root_b, root_a, new_value)
} else if root_a.rank < root_b.rank {
// b has greater rank, so a should redirect to b.
self.redirect_root(root_b.rank, root_a, root_b, new_value)
} else {
// If equal, redirect one to the other and increment the
// other's rank.
self.redirect_root(root_a.rank + 1, root_a, root_b, new_value)
}
}
fn redirect_root(&mut self,
new_rank: u32,
old_root: VarValue<K>,
new_root: VarValue<K>,
new_value: K::Value) -> K {
let old_root_key = old_root.key();
let new_root_key = new_root.key();
self.set(old_root_key, old_root.redirect(new_root_key));
self.set(new_root_key, new_root.root(new_rank, new_value));
new_root_key
}
}
impl<K: UnifyKey> sv::SnapshotVecDelegate for Delegate<K> {
type Value = VarValue<K>;
type Undo = ();
fn reverse(_: &mut Vec<VarValue<K>>, _: ()) {}
}
// # Base union-find algorithm, where we are just making sets
impl<'tcx, K: UnifyKey> UnificationTable<K>
where K::Value: Combine
{
pub fn union(&mut self, a_id: K, b_id: K) -> K {
let node_a = self.get(a_id);
let node_b = self.get(b_id);
let a_id = node_a.key();
let b_id = node_b.key();
if a_id != b_id {
let new_value = node_a.value.combine(&node_b.value);
self.unify(node_a, node_b, new_value)
} else {
a_id
}
}
pub fn find(&mut self, id: K) -> K {
self.get(id).key()
}
pub fn find_value(&mut self, id: K) -> K::Value {
self.get(id).value
}
pub fn unioned(&mut self, a_id: K, b_id: K) -> bool {
self.find(a_id) == self.find(b_id)
}
}
// # Non-subtyping unification
//
// Code to handle keys which carry a value, like ints,
// floats---anything that doesn't have a subtyping relationship we
// need to worry about.
impl<'tcx, K, V> UnificationTable<K>
where K: UnifyKey<Value = Option<V>>,
V: Clone + PartialEq + Debug
{
pub fn unify_var_var(&mut self, a_id: K, b_id: K) -> Result<K, (V, V)> {
let node_a = self.get(a_id);
let node_b = self.get(b_id);
let a_id = node_a.key();
let b_id = node_b.key();
if a_id == b_id {
return Ok(a_id);
}
let combined = {
match (&node_a.value, &node_b.value) {
(&None, &None) => None,
(&Some(ref v), &None) | (&None, &Some(ref v)) => Some(v.clone()),
(&Some(ref v1), &Some(ref v2)) => {
if *v1 != *v2 {
return Err((v1.clone(), v2.clone()));
}
Some(v1.clone())
}
}
};
Ok(self.unify(node_a, node_b, combined))
}
/// Sets the value of the key `a_id` to `b`. Because simple keys do not have any subtyping
/// relationships, if `a_id` already has a value, it must be the same as `b`.
pub fn unify_var_value(&mut self, a_id: K, b: V) -> Result<(), (V, V)> {
let mut node_a = self.get(a_id);
match node_a.value {
None => {
node_a.value = Some(b);
self.set(node_a.key(), node_a);
Ok(())
}
Some(ref a_t) => {
if *a_t == b {
Ok(())
} else {
Err((a_t.clone(), b))
}
}
}
}
pub fn has_value(&mut self, id: K) -> bool {
self.get(id).value.is_some()
}
pub fn probe(&mut self, a_id: K) -> Option<V> {
self.get(a_id).value.clone()
}
pub fn unsolved_variables(&mut self) -> Vec<K> {
self.values
.iter()
.filter_map(|vv| {
if vv.value.is_some() {
None
} else {
Some(vv.key())
}
})
.collect()
}
}