blob: 97fb39c17ea0e58e77aec4bdca3a9ca5cefdd58f [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This module implements only the Sha256 function since that is all that is needed for internal
//! use. This implementation is not intended for external use or for any use where security is
//! important.
use serialize::hex::ToHex;
/// Write a u32 into a vector, which must be 4 bytes long. The value is written in big-endian
/// format.
fn write_u32_be(dst: &mut[u8], input: u32) {
dst[0] = (input >> 24) as u8;
dst[1] = (input >> 16) as u8;
dst[2] = (input >> 8) as u8;
dst[3] = input as u8;
}
/// Read the value of a vector of bytes as a u32 value in big-endian format.
fn read_u32_be(input: &[u8]) -> u32 {
(input[0] as u32) << 24 |
(input[1] as u32) << 16 |
(input[2] as u32) << 8 |
(input[3] as u32)
}
/// Read a vector of bytes into a vector of u32s. The values are read in big-endian format.
fn read_u32v_be(dst: &mut[u32], input: &[u8]) {
assert!(dst.len() * 4 == input.len());
let mut pos = 0;
for chunk in input.chunks(4) {
dst[pos] = read_u32_be(chunk);
pos += 1;
}
}
trait ToBits: Sized {
/// Convert the value in bytes to the number of bits, a tuple where the 1st item is the
/// high-order value and the 2nd item is the low order value.
fn to_bits(self) -> (Self, Self);
}
impl ToBits for u64 {
fn to_bits(self) -> (u64, u64) {
(self >> 61, self << 3)
}
}
/// Adds the specified number of bytes to the bit count. panic!() if this would cause numeric
/// overflow.
fn add_bytes_to_bits(bits: u64, bytes: u64) -> u64 {
let (new_high_bits, new_low_bits) = bytes.to_bits();
if new_high_bits > 0 {
panic!("numeric overflow occurred.")
}
match bits.checked_add(new_low_bits) {
Some(x) => x,
None => panic!("numeric overflow occurred.")
}
}
/// A FixedBuffer, likes its name implies, is a fixed size buffer. When the buffer becomes full, it
/// must be processed. The input() method takes care of processing and then clearing the buffer
/// automatically. However, other methods do not and require the caller to process the buffer. Any
/// method that modifies the buffer directory or provides the caller with bytes that can be modified
/// results in those bytes being marked as used by the buffer.
trait FixedBuffer {
/// Input a vector of bytes. If the buffer becomes full, process it with the provided
/// function and then clear the buffer.
fn input<F>(&mut self, input: &[u8], func: F) where
F: FnMut(&[u8]);
/// Reset the buffer.
fn reset(&mut self);
/// Zero the buffer up until the specified index. The buffer position currently must not be
/// greater than that index.
fn zero_until(&mut self, idx: usize);
/// Get a slice of the buffer of the specified size. There must be at least that many bytes
/// remaining in the buffer.
fn next<'s>(&'s mut self, len: usize) -> &'s mut [u8];
/// Get the current buffer. The buffer must already be full. This clears the buffer as well.
fn full_buffer<'s>(&'s mut self) -> &'s [u8];
/// Get the current position of the buffer.
fn position(&self) -> usize;
/// Get the number of bytes remaining in the buffer until it is full.
fn remaining(&self) -> usize;
/// Get the size of the buffer
fn size(&self) -> usize;
}
/// A FixedBuffer of 64 bytes useful for implementing Sha256 which has a 64 byte blocksize.
struct FixedBuffer64 {
buffer: [u8; 64],
buffer_idx: usize,
}
impl FixedBuffer64 {
/// Create a new FixedBuffer64
fn new() -> FixedBuffer64 {
FixedBuffer64 {
buffer: [0; 64],
buffer_idx: 0
}
}
}
impl FixedBuffer for FixedBuffer64 {
fn input<F>(&mut self, input: &[u8], mut func: F) where
F: FnMut(&[u8]),
{
let mut i = 0;
let size = self.size();
// If there is already data in the buffer, copy as much as we can into it and process
// the data if the buffer becomes full.
if self.buffer_idx != 0 {
let buffer_remaining = size - self.buffer_idx;
if input.len() >= buffer_remaining {
self.buffer[self.buffer_idx..size]
.copy_from_slice(&input[..buffer_remaining]);
self.buffer_idx = 0;
func(&self.buffer);
i += buffer_remaining;
} else {
self.buffer[self.buffer_idx..self.buffer_idx + input.len()]
.copy_from_slice(input);
self.buffer_idx += input.len();
return;
}
}
// While we have at least a full buffer size chunk's worth of data, process that data
// without copying it into the buffer
while input.len() - i >= size {
func(&input[i..i + size]);
i += size;
}
// Copy any input data into the buffer. At this point in the method, the amount of
// data left in the input vector will be less than the buffer size and the buffer will
// be empty.
let input_remaining = input.len() - i;
self.buffer[..input_remaining].copy_from_slice(&input[i..]);
self.buffer_idx += input_remaining;
}
fn reset(&mut self) {
self.buffer_idx = 0;
}
fn zero_until(&mut self, idx: usize) {
assert!(idx >= self.buffer_idx);
for slot in self.buffer[self.buffer_idx..idx].iter_mut() {
*slot = 0;
}
self.buffer_idx = idx;
}
fn next<'s>(&'s mut self, len: usize) -> &'s mut [u8] {
self.buffer_idx += len;
&mut self.buffer[self.buffer_idx - len..self.buffer_idx]
}
fn full_buffer<'s>(&'s mut self) -> &'s [u8] {
assert!(self.buffer_idx == 64);
self.buffer_idx = 0;
&self.buffer[..64]
}
fn position(&self) -> usize { self.buffer_idx }
fn remaining(&self) -> usize { 64 - self.buffer_idx }
fn size(&self) -> usize { 64 }
}
/// The StandardPadding trait adds a method useful for Sha256 to a FixedBuffer struct.
trait StandardPadding {
/// Add padding to the buffer. The buffer must not be full when this method is called and is
/// guaranteed to have exactly rem remaining bytes when it returns. If there are not at least
/// rem bytes available, the buffer will be zero padded, processed, cleared, and then filled
/// with zeros again until only rem bytes are remaining.
fn standard_padding<F>(&mut self, rem: usize, func: F) where F: FnMut(&[u8]);
}
impl <T: FixedBuffer> StandardPadding for T {
fn standard_padding<F>(&mut self, rem: usize, mut func: F) where F: FnMut(&[u8]) {
let size = self.size();
self.next(1)[0] = 128;
if self.remaining() < rem {
self.zero_until(size);
func(self.full_buffer());
}
self.zero_until(size - rem);
}
}
/// The Digest trait specifies an interface common to digest functions, such as SHA-1 and the SHA-2
/// family of digest functions.
pub trait Digest {
/// Provide message data.
///
/// # Arguments
///
/// * input - A vector of message data
fn input(&mut self, input: &[u8]);
/// Retrieve the digest result. This method may be called multiple times.
///
/// # Arguments
///
/// * out - the vector to hold the result. Must be large enough to contain output_bits().
fn result(&mut self, out: &mut [u8]);
/// Reset the digest. This method must be called after result() and before supplying more
/// data.
fn reset(&mut self);
/// Get the output size in bits.
fn output_bits(&self) -> usize;
/// Convenience function that feeds a string into a digest.
///
/// # Arguments
///
/// * `input` The string to feed into the digest
fn input_str(&mut self, input: &str) {
self.input(input.as_bytes());
}
/// Convenience function that retrieves the result of a digest as a
/// newly allocated vec of bytes.
fn result_bytes(&mut self) -> Vec<u8> {
let mut buf = vec![0; (self.output_bits()+7)/8];
self.result(&mut buf);
buf
}
/// Convenience function that retrieves the result of a digest as a
/// String in hexadecimal format.
fn result_str(&mut self) -> String {
self.result_bytes().to_hex().to_string()
}
}
// A structure that represents that state of a digest computation for the SHA-2 512 family of digest
// functions
struct Engine256State {
h0: u32,
h1: u32,
h2: u32,
h3: u32,
h4: u32,
h5: u32,
h6: u32,
h7: u32,
}
impl Engine256State {
fn new(h: &[u32; 8]) -> Engine256State {
Engine256State {
h0: h[0],
h1: h[1],
h2: h[2],
h3: h[3],
h4: h[4],
h5: h[5],
h6: h[6],
h7: h[7]
}
}
fn reset(&mut self, h: &[u32; 8]) {
self.h0 = h[0];
self.h1 = h[1];
self.h2 = h[2];
self.h3 = h[3];
self.h4 = h[4];
self.h5 = h[5];
self.h6 = h[6];
self.h7 = h[7];
}
fn process_block(&mut self, data: &[u8]) {
fn ch(x: u32, y: u32, z: u32) -> u32 {
((x & y) ^ ((!x) & z))
}
fn maj(x: u32, y: u32, z: u32) -> u32 {
((x & y) ^ (x & z) ^ (y & z))
}
fn sum0(x: u32) -> u32 {
((x >> 2) | (x << 30)) ^ ((x >> 13) | (x << 19)) ^ ((x >> 22) | (x << 10))
}
fn sum1(x: u32) -> u32 {
((x >> 6) | (x << 26)) ^ ((x >> 11) | (x << 21)) ^ ((x >> 25) | (x << 7))
}
fn sigma0(x: u32) -> u32 {
((x >> 7) | (x << 25)) ^ ((x >> 18) | (x << 14)) ^ (x >> 3)
}
fn sigma1(x: u32) -> u32 {
((x >> 17) | (x << 15)) ^ ((x >> 19) | (x << 13)) ^ (x >> 10)
}
let mut a = self.h0;
let mut b = self.h1;
let mut c = self.h2;
let mut d = self.h3;
let mut e = self.h4;
let mut f = self.h5;
let mut g = self.h6;
let mut h = self.h7;
let mut w = [0; 64];
// Sha-512 and Sha-256 use basically the same calculations which are implemented
// by these macros. Inlining the calculations seems to result in better generated code.
macro_rules! schedule_round { ($t:expr) => (
w[$t] = sigma1(w[$t - 2]).wrapping_add(w[$t - 7])
.wrapping_add(sigma0(w[$t - 15])).wrapping_add(w[$t - 16]);
)
}
macro_rules! sha2_round {
($A:ident, $B:ident, $C:ident, $D:ident,
$E:ident, $F:ident, $G:ident, $H:ident, $K:ident, $t:expr) => (
{
$H = $H.wrapping_add(sum1($E)).wrapping_add(ch($E, $F, $G))
.wrapping_add($K[$t]).wrapping_add(w[$t]);
$D = $D.wrapping_add($H);
$H = $H.wrapping_add(sum0($A)).wrapping_add(maj($A, $B, $C));
}
)
}
read_u32v_be(&mut w[0..16], data);
// Putting the message schedule inside the same loop as the round calculations allows for
// the compiler to generate better code.
for t in (0..48).step_by(8) {
schedule_round!(t + 16);
schedule_round!(t + 17);
schedule_round!(t + 18);
schedule_round!(t + 19);
schedule_round!(t + 20);
schedule_round!(t + 21);
schedule_round!(t + 22);
schedule_round!(t + 23);
sha2_round!(a, b, c, d, e, f, g, h, K32, t);
sha2_round!(h, a, b, c, d, e, f, g, K32, t + 1);
sha2_round!(g, h, a, b, c, d, e, f, K32, t + 2);
sha2_round!(f, g, h, a, b, c, d, e, K32, t + 3);
sha2_round!(e, f, g, h, a, b, c, d, K32, t + 4);
sha2_round!(d, e, f, g, h, a, b, c, K32, t + 5);
sha2_round!(c, d, e, f, g, h, a, b, K32, t + 6);
sha2_round!(b, c, d, e, f, g, h, a, K32, t + 7);
}
for t in (48..64).step_by(8) {
sha2_round!(a, b, c, d, e, f, g, h, K32, t);
sha2_round!(h, a, b, c, d, e, f, g, K32, t + 1);
sha2_round!(g, h, a, b, c, d, e, f, K32, t + 2);
sha2_round!(f, g, h, a, b, c, d, e, K32, t + 3);
sha2_round!(e, f, g, h, a, b, c, d, K32, t + 4);
sha2_round!(d, e, f, g, h, a, b, c, K32, t + 5);
sha2_round!(c, d, e, f, g, h, a, b, K32, t + 6);
sha2_round!(b, c, d, e, f, g, h, a, K32, t + 7);
}
self.h0 = self.h0.wrapping_add(a);
self.h1 = self.h1.wrapping_add(b);
self.h2 = self.h2.wrapping_add(c);
self.h3 = self.h3.wrapping_add(d);
self.h4 = self.h4.wrapping_add(e);
self.h5 = self.h5.wrapping_add(f);
self.h6 = self.h6.wrapping_add(g);
self.h7 = self.h7.wrapping_add(h);
}
}
static K32: [u32; 64] = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
];
// A structure that keeps track of the state of the Sha-256 operation and contains the logic
// necessary to perform the final calculations.
struct Engine256 {
length_bits: u64,
buffer: FixedBuffer64,
state: Engine256State,
finished: bool,
}
impl Engine256 {
fn new(h: &[u32; 8]) -> Engine256 {
Engine256 {
length_bits: 0,
buffer: FixedBuffer64::new(),
state: Engine256State::new(h),
finished: false
}
}
fn reset(&mut self, h: &[u32; 8]) {
self.length_bits = 0;
self.buffer.reset();
self.state.reset(h);
self.finished = false;
}
fn input(&mut self, input: &[u8]) {
assert!(!self.finished);
// Assumes that input.len() can be converted to u64 without overflow
self.length_bits = add_bytes_to_bits(self.length_bits, input.len() as u64);
let self_state = &mut self.state;
self.buffer.input(input, |input: &[u8]| { self_state.process_block(input) });
}
fn finish(&mut self) {
if !self.finished {
let self_state = &mut self.state;
self.buffer.standard_padding(8, |input: &[u8]| { self_state.process_block(input) });
write_u32_be(self.buffer.next(4), (self.length_bits >> 32) as u32 );
write_u32_be(self.buffer.next(4), self.length_bits as u32);
self_state.process_block(self.buffer.full_buffer());
self.finished = true;
}
}
}
/// The SHA-256 hash algorithm
pub struct Sha256 {
engine: Engine256
}
impl Sha256 {
/// Construct a new instance of a SHA-256 digest.
/// Do not – under any circumstances – use this where timing attacks might be possible!
pub fn new() -> Sha256 {
Sha256 {
engine: Engine256::new(&H256)
}
}
}
impl Digest for Sha256 {
fn input(&mut self, d: &[u8]) {
self.engine.input(d);
}
fn result(&mut self, out: &mut [u8]) {
self.engine.finish();
write_u32_be(&mut out[0..4], self.engine.state.h0);
write_u32_be(&mut out[4..8], self.engine.state.h1);
write_u32_be(&mut out[8..12], self.engine.state.h2);
write_u32_be(&mut out[12..16], self.engine.state.h3);
write_u32_be(&mut out[16..20], self.engine.state.h4);
write_u32_be(&mut out[20..24], self.engine.state.h5);
write_u32_be(&mut out[24..28], self.engine.state.h6);
write_u32_be(&mut out[28..32], self.engine.state.h7);
}
fn reset(&mut self) {
self.engine.reset(&H256);
}
fn output_bits(&self) -> usize { 256 }
}
static H256: [u32; 8] = [
0x6a09e667,
0xbb67ae85,
0x3c6ef372,
0xa54ff53a,
0x510e527f,
0x9b05688c,
0x1f83d9ab,
0x5be0cd19
];
#[cfg(test)]
mod tests {
#![allow(deprecated)]
extern crate rand;
use self::rand::Rng;
use self::rand::isaac::IsaacRng;
use serialize::hex::FromHex;
use std::u64;
use super::{Digest, Sha256};
// A normal addition - no overflow occurs
#[test]
fn test_add_bytes_to_bits_ok() {
assert!(super::add_bytes_to_bits(100, 10) == 180);
}
// A simple failure case - adding 1 to the max value
#[test]
#[should_panic]
fn test_add_bytes_to_bits_overflow() {
super::add_bytes_to_bits(u64::MAX, 1);
}
struct Test {
input: String,
output_str: String,
}
fn test_hash<D: Digest>(sh: &mut D, tests: &[Test]) {
// Test that it works when accepting the message all at once
for t in tests {
sh.reset();
sh.input_str(&t.input);
let out_str = sh.result_str();
assert!(out_str == t.output_str);
}
// Test that it works when accepting the message in pieces
for t in tests {
sh.reset();
let len = t.input.len();
let mut left = len;
while left > 0 {
let take = (left + 1) / 2;
sh.input_str(&t.input[len - left..take + len - left]);
left = left - take;
}
let out_str = sh.result_str();
assert!(out_str == t.output_str);
}
}
#[test]
fn test_sha256() {
// Examples from wikipedia
let wikipedia_tests = vec!(
Test {
input: "".to_string(),
output_str: "e3b0c44298fc1c149afb\
f4c8996fb92427ae41e4649b934ca495991b7852b855".to_string()
},
Test {
input: "The quick brown fox jumps over the lazy \
dog".to_string(),
output_str: "d7a8fbb307d7809469ca\
9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592".to_string()
},
Test {
input: "The quick brown fox jumps over the lazy \
dog.".to_string(),
output_str: "ef537f25c895bfa78252\
6529a9b63d97aa631564d5d789c2b765448c8635fb6c".to_string()
});
let tests = wikipedia_tests;
let mut sh: Box<_> = box Sha256::new();
test_hash(&mut *sh, &tests);
}
/// Feed 1,000,000 'a's into the digest with varying input sizes and check that the result is
/// correct.
fn test_digest_1million_random<D: Digest>(digest: &mut D, blocksize: usize, expected: &str) {
let total_size = 1000000;
let buffer = vec![b'a'; blocksize * 2];
let mut rng = IsaacRng::new_unseeded();
let mut count = 0;
digest.reset();
while count < total_size {
let next: usize = rng.gen_range(0, 2 * blocksize + 1);
let remaining = total_size - count;
let size = if next > remaining { remaining } else { next };
digest.input(&buffer[..size]);
count += size;
}
let result_str = digest.result_str();
let result_bytes = digest.result_bytes();
assert_eq!(expected, result_str);
let expected_vec: Vec<u8> = expected.from_hex()
.unwrap()
.into_iter()
.collect();
assert_eq!(expected_vec, result_bytes);
}
#[test]
fn test_1million_random_sha256() {
let mut sh = Sha256::new();
test_digest_1million_random(
&mut sh,
64,
"cdc76e5c9914fb9281a1c7e284d73e67f1809a48a497200e046d39ccc7112cd0");
}
}
#[cfg(test)]
mod bench {
extern crate test;
use self::test::Bencher;
use super::{Sha256, Digest};
#[bench]
pub fn sha256_10(b: &mut Bencher) {
let mut sh = Sha256::new();
let bytes = [1; 10];
b.iter(|| {
sh.input(&bytes);
});
b.bytes = bytes.len() as u64;
}
#[bench]
pub fn sha256_1k(b: &mut Bencher) {
let mut sh = Sha256::new();
let bytes = [1; 1024];
b.iter(|| {
sh.input(&bytes);
});
b.bytes = bytes.len() as u64;
}
#[bench]
pub fn sha256_64k(b: &mut Bencher) {
let mut sh = Sha256::new();
let bytes = [1; 65536];
b.iter(|| {
sh.input(&bytes);
});
b.bytes = bytes.len() as u64;
}
}