blob: fa7c9b782311f955a1c4c637586c13c77be2f05e [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! An iterator over the type substructure.
//! WARNING: this does not keep track of the region depth.
use ty::{self, Ty};
use std::iter::Iterator;
use std::vec::IntoIter;
pub struct TypeWalker<'tcx> {
stack: Vec<Ty<'tcx>>,
last_subtree: usize,
}
impl<'tcx> TypeWalker<'tcx> {
pub fn new(ty: Ty<'tcx>) -> TypeWalker<'tcx> {
TypeWalker { stack: vec!(ty), last_subtree: 1, }
}
/// Skips the subtree of types corresponding to the last type
/// returned by `next()`.
///
/// Example: Imagine you are walking `Foo<Bar<int>, usize>`.
///
/// ```
/// let mut iter: TypeWalker = ...;
/// iter.next(); // yields Foo
/// iter.next(); // yields Bar<int>
/// iter.skip_current_subtree(); // skips int
/// iter.next(); // yields usize
/// ```
pub fn skip_current_subtree(&mut self) {
self.stack.truncate(self.last_subtree);
}
}
impl<'tcx> Iterator for TypeWalker<'tcx> {
type Item = Ty<'tcx>;
fn next(&mut self) -> Option<Ty<'tcx>> {
debug!("next(): stack={:?}", self.stack);
match self.stack.pop() {
None => {
return None;
}
Some(ty) => {
self.last_subtree = self.stack.len();
push_subtypes(&mut self.stack, ty);
debug!("next: stack={:?}", self.stack);
Some(ty)
}
}
}
}
pub fn walk_shallow<'tcx>(ty: Ty<'tcx>) -> IntoIter<Ty<'tcx>> {
let mut stack = vec![];
push_subtypes(&mut stack, ty);
stack.into_iter()
}
fn push_subtypes<'tcx>(stack: &mut Vec<Ty<'tcx>>, parent_ty: Ty<'tcx>) {
match parent_ty.sty {
ty::TyBool | ty::TyChar | ty::TyInt(_) | ty::TyUint(_) | ty::TyFloat(_) |
ty::TyStr | ty::TyInfer(_) | ty::TyParam(_) | ty::TyError => {
}
ty::TyBox(ty) | ty::TyArray(ty, _) | ty::TySlice(ty) => {
stack.push(ty);
}
ty::TyRawPtr(ref mt) | ty::TyRef(_, ref mt) => {
stack.push(mt.ty);
}
ty::TyProjection(ref data) => {
push_reversed(stack, data.trait_ref.substs.types.as_slice());
}
ty::TyTrait(box ty::TraitTy { ref principal, ref bounds }) => {
push_reversed(stack, principal.substs().types.as_slice());
push_reversed(stack, &bounds.projection_bounds.iter().map(|pred| {
pred.0.ty
}).collect::<Vec<_>>());
}
ty::TyEnum(_, ref substs) |
ty::TyStruct(_, ref substs) => {
push_reversed(stack, substs.types.as_slice());
}
ty::TyClosure(_, ref substs) => {
push_reversed(stack, substs.func_substs.types.as_slice());
push_reversed(stack, &substs.upvar_tys);
}
ty::TyTuple(ref ts) => {
push_reversed(stack, ts);
}
ty::TyFnDef(_, substs, ref ft) => {
push_reversed(stack, substs.types.as_slice());
push_sig_subtypes(stack, &ft.sig);
}
ty::TyFnPtr(ref ft) => {
push_sig_subtypes(stack, &ft.sig);
}
}
}
fn push_sig_subtypes<'tcx>(stack: &mut Vec<Ty<'tcx>>, sig: &ty::PolyFnSig<'tcx>) {
match sig.0.output {
ty::FnConverging(output) => { stack.push(output); }
ty::FnDiverging => { }
}
push_reversed(stack, &sig.0.inputs);
}
fn push_reversed<'tcx>(stack: &mut Vec<Ty<'tcx>>, tys: &[Ty<'tcx>]) {
// We push slices on the stack in reverse order so as to
// maintain a pre-order traversal. As of the time of this
// writing, the fact that the traversal is pre-order is not
// known to be significant to any code, but it seems like the
// natural order one would expect (basically, the order of the
// types as they are written).
for &ty in tys.iter().rev() {
stack.push(ty);
}
}