blob: 4edbeab5dfb11049cbedf1255d30608c16abcc6f [file] [log] [blame]
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Really Bad Markup Language (rbml) is an internal serialization format of rustc.
//! This is not intended to be used by users.
//!
//! Originally based on the Extensible Binary Markup Language
//! (ebml; http://www.matroska.org/technical/specs/rfc/index.html),
//! it is now a separate format tuned for the rust object metadata.
//!
//! # Encoding
//!
//! RBML document consists of the tag, length and data.
//! The encoded data can contain multiple RBML documents concatenated.
//!
//! **Tags** are a hint for the following data.
//! Tags are a number from 0x000 to 0xfff, where 0xf0 through 0xff is reserved.
//! Tags less than 0xf0 are encoded in one literal byte.
//! Tags greater than 0xff are encoded in two big-endian bytes,
//! where the tag number is ORed with 0xf000. (E.g. tag 0x123 = `f1 23`)
//!
//! **Lengths** encode the length of the following data.
//! It is a variable-length unsigned isize, and one of the following forms:
//!
//! - `80` through `fe` for lengths up to 0x7e;
//! - `40 ff` through `7f ff` for lengths up to 0x3fff;
//! - `20 40 00` through `3f ff ff` for lengths up to 0x1fffff;
//! - `10 20 00 00` through `1f ff ff ff` for lengths up to 0xfffffff.
//!
//! The "overlong" form is allowed so that the length can be encoded
//! without the prior knowledge of the encoded data.
//! For example, the length 0 can be represented either by `80`, `40 00`,
//! `20 00 00` or `10 00 00 00`.
//! The encoder tries to minimize the length if possible.
//! Also, some predefined tags listed below are so commonly used that
//! their lengths are omitted ("implicit length").
//!
//! **Data** can be either binary bytes or zero or more nested RBML documents.
//! Nested documents cannot overflow, and should be entirely contained
//! within a parent document.
//!
//! # Predefined Tags
//!
//! Most RBML tags are defined by the application.
//! (For the rust object metadata, see also `rustc::metadata::common`.)
//! RBML itself does define a set of predefined tags however,
//! intended for the auto-serialization implementation.
//!
//! Predefined tags with an implicit length:
//!
//! - `U8` (`00`): 1-byte unsigned integer.
//! - `U16` (`01`): 2-byte big endian unsigned integer.
//! - `U32` (`02`): 4-byte big endian unsigned integer.
//! - `U64` (`03`): 8-byte big endian unsigned integer.
//! Any of `U*` tags can be used to encode primitive unsigned integer types,
//! as long as it is no greater than the actual size.
//! For example, `u8` can only be represented via the `U8` tag.
//!
//! - `I8` (`04`): 1-byte signed integer.
//! - `I16` (`05`): 2-byte big endian signed integer.
//! - `I32` (`06`): 4-byte big endian signed integer.
//! - `I64` (`07`): 8-byte big endian signed integer.
//! Similar to `U*` tags. Always uses two's complement encoding.
//!
//! - `Bool` (`08`): 1-byte boolean value, `00` for false and `01` for true.
//!
//! - `Char` (`09`): 4-byte big endian Unicode scalar value.
//! Surrogate pairs or out-of-bound values are invalid.
//!
//! - `F32` (`0a`): 4-byte big endian unsigned integer representing
//! IEEE 754 binary32 floating-point format.
//! - `F64` (`0b`): 8-byte big endian unsigned integer representing
//! IEEE 754 binary64 floating-point format.
//!
//! - `Sub8` (`0c`): 1-byte unsigned integer for supplementary information.
//! - `Sub32` (`0d`): 4-byte unsigned integer for supplementary information.
//! Those two tags normally occur as the first subdocument of certain tags,
//! namely `Enum`, `Vec` and `Map`, to provide a variant or size information.
//! They can be used interchangeably.
//!
//! Predefined tags with an explicit length:
//!
//! - `Str` (`10`): A UTF-8-encoded string.
//!
//! - `Enum` (`11`): An enum.
//! The first subdocument should be `Sub*` tags with a variant ID.
//! Subsequent subdocuments, if any, encode variant arguments.
//!
//! - `Vec` (`12`): A vector (sequence).
//! - `VecElt` (`13`): A vector element.
//! The first subdocument should be `Sub*` tags with the number of elements.
//! Subsequent subdocuments should be `VecElt` tag per each element.
//!
//! - `Map` (`14`): A map (associated array).
//! - `MapKey` (`15`): A key part of the map entry.
//! - `MapVal` (`16`): A value part of the map entry.
//! The first subdocument should be `Sub*` tags with the number of entries.
//! Subsequent subdocuments should be an alternating sequence of
//! `MapKey` and `MapVal` tags per each entry.
//!
//! - `Opaque` (`17`): An opaque, custom-format tag.
//! Used to wrap ordinary custom tags or data in the auto-serialized context.
//! Rustc typically uses this to encode type information.
//!
//! First 0x20 tags are reserved by RBML; custom tags start at 0x20.
#![crate_name = "rbml"]
#![unstable(feature = "rustc_private", issue = "27812")]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/",
html_playground_url = "https://play.rust-lang.org/",
test(attr(deny(warnings))))]
#![cfg_attr(not(stage0), deny(warnings))]
#![feature(rustc_private)]
#![feature(staged_api)]
#![feature(question_mark)]
#![cfg_attr(test, feature(test))]
extern crate serialize;
#[cfg(test)]
extern crate serialize as rustc_serialize; // Used by RustcEncodable
#[macro_use]
extern crate log;
#[cfg(test)]
extern crate test;
pub mod opaque;
pub mod leb128;
pub use self::EbmlEncoderTag::*;
pub use self::Error::*;
use std::str;
use std::fmt;
/// Common data structures
#[derive(Clone, Copy)]
pub struct Doc<'a> {
pub data: &'a [u8],
pub start: usize,
pub end: usize,
}
impl<'doc> Doc<'doc> {
pub fn new(data: &'doc [u8]) -> Doc<'doc> {
Doc {
data: data,
start: 0,
end: data.len(),
}
}
pub fn get(&self, tag: usize) -> Doc<'doc> {
reader::get_doc(*self, tag)
}
pub fn is_empty(&self) -> bool {
self.start == self.end
}
pub fn as_str_slice(&self) -> &'doc str {
str::from_utf8(&self.data[self.start..self.end]).unwrap()
}
pub fn as_str(&self) -> String {
self.as_str_slice().to_string()
}
}
pub struct TaggedDoc<'a> {
tag: usize,
pub doc: Doc<'a>,
}
#[derive(Copy, Clone, Debug)]
pub enum EbmlEncoderTag {
// tags 00..1f are reserved for auto-serialization.
// first NUM_IMPLICIT_TAGS tags are implicitly sized and lengths are not encoded.
EsU8 = 0x00, // + 1 byte
EsU16 = 0x01, // + 2 bytes
EsU32 = 0x02, // + 4 bytes
EsU64 = 0x03, // + 8 bytes
EsI8 = 0x04, // + 1 byte
EsI16 = 0x05, // + 2 bytes
EsI32 = 0x06, // + 4 bytes
EsI64 = 0x07, // + 8 bytes
EsBool = 0x08, // + 1 byte
EsChar = 0x09, // + 4 bytes
EsF32 = 0x0a, // + 4 bytes
EsF64 = 0x0b, // + 8 bytes
EsSub8 = 0x0c, // + 1 byte
EsSub32 = 0x0d, // + 4 bytes
// 0x0e and 0x0f are reserved
EsStr = 0x10,
EsEnum = 0x11, // encodes the variant id as the first EsSub*
EsVec = 0x12, // encodes the # of elements as the first EsSub*
EsVecElt = 0x13,
EsMap = 0x14, // encodes the # of pairs as the first EsSub*
EsMapKey = 0x15,
EsMapVal = 0x16,
EsOpaque = 0x17,
}
const NUM_TAGS: usize = 0x1000;
const NUM_IMPLICIT_TAGS: usize = 0x0e;
#[cfg_attr(rustfmt, rustfmt_skip)]
static TAG_IMPLICIT_LEN: [i8; NUM_IMPLICIT_TAGS] = [
1, 2, 4, 8, // EsU*
1, 2, 4, 8, // ESI*
1, // EsBool
4, // EsChar
4, 8, // EsF*
1, 4, // EsSub*
];
#[derive(Debug)]
pub enum Error {
IntTooBig(usize),
InvalidTag(usize),
Expected(String),
IoError(std::io::Error),
ApplicationError(String),
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// FIXME: this should be a more useful display form
fmt::Debug::fmt(self, f)
}
}
// --------------------------------------
pub mod reader {
use std::char;
use std::isize;
use std::mem::transmute;
use serialize;
use super::opaque;
use super::{ApplicationError, EsVec, EsMap, EsEnum, EsSub8, EsSub32, EsVecElt, EsMapKey,
EsU64, EsU32, EsU16, EsU8, EsI64, EsI32, EsI16, EsI8, EsBool, EsF64, EsF32,
EsChar, EsStr, EsMapVal, EsOpaque, EbmlEncoderTag, Doc, TaggedDoc, Error,
IntTooBig, InvalidTag, Expected, NUM_IMPLICIT_TAGS, TAG_IMPLICIT_LEN};
pub type DecodeResult<T> = Result<T, Error>;
// rbml reading
macro_rules! try_or {
($e:expr, $r:expr) => (
match $e {
Ok(e) => e,
Err(e) => {
debug!("ignored error: {:?}", e);
return $r
}
}
)
}
#[derive(Copy, Clone)]
pub struct Res {
pub val: usize,
pub next: usize,
}
pub fn tag_at(data: &[u8], start: usize) -> DecodeResult<Res> {
let v = data[start] as usize;
if v < 0xf0 {
Ok(Res {
val: v,
next: start + 1,
})
} else if v > 0xf0 {
Ok(Res {
val: ((v & 0xf) << 8) | data[start + 1] as usize,
next: start + 2,
})
} else {
// every tag starting with byte 0xf0 is an overlong form, which is prohibited.
Err(InvalidTag(v))
}
}
#[inline(never)]
fn vuint_at_slow(data: &[u8], start: usize) -> DecodeResult<Res> {
let a = data[start];
if a & 0x80 != 0 {
return Ok(Res {
val: (a & 0x7f) as usize,
next: start + 1,
});
}
if a & 0x40 != 0 {
return Ok(Res {
val: ((a & 0x3f) as usize) << 8 | (data[start + 1] as usize),
next: start + 2,
});
}
if a & 0x20 != 0 {
return Ok(Res {
val: ((a & 0x1f) as usize) << 16 | (data[start + 1] as usize) << 8 |
(data[start + 2] as usize),
next: start + 3,
});
}
if a & 0x10 != 0 {
return Ok(Res {
val: ((a & 0x0f) as usize) << 24 | (data[start + 1] as usize) << 16 |
(data[start + 2] as usize) << 8 |
(data[start + 3] as usize),
next: start + 4,
});
}
Err(IntTooBig(a as usize))
}
pub fn vuint_at(data: &[u8], start: usize) -> DecodeResult<Res> {
if data.len() - start < 4 {
return vuint_at_slow(data, start);
}
// Lookup table for parsing EBML Element IDs as per
// http://ebml.sourceforge.net/specs/ The Element IDs are parsed by
// reading a big endian u32 positioned at data[start]. Using the four
// most significant bits of the u32 we lookup in the table below how
// the element ID should be derived from it.
//
// The table stores tuples (shift, mask) where shift is the number the
// u32 should be right shifted with and mask is the value the right
// shifted value should be masked with. If for example the most
// significant bit is set this means it's a class A ID and the u32
// should be right shifted with 24 and masked with 0x7f. Therefore we
// store (24, 0x7f) at index 0x8 - 0xF (four bit numbers where the most
// significant bit is set).
//
// By storing the number of shifts and masks in a table instead of
// checking in order if the most significant bit is set, the second
// most significant bit is set etc. we can replace up to three
// "and+branch" with a single table lookup which gives us a measured
// speedup of around 2x on x86_64.
static SHIFT_MASK_TABLE: [(usize, u32); 16] = [(0, 0x0),
(0, 0x0fffffff),
(8, 0x1fffff),
(8, 0x1fffff),
(16, 0x3fff),
(16, 0x3fff),
(16, 0x3fff),
(16, 0x3fff),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f),
(24, 0x7f)];
unsafe {
let ptr = data.as_ptr().offset(start as isize) as *const u32;
let val = u32::from_be(*ptr);
let i = (val >> 28) as usize;
let (shift, mask) = SHIFT_MASK_TABLE[i];
Ok(Res {
val: ((val >> shift) & mask) as usize,
next: start + ((32 - shift) >> 3),
})
}
}
pub fn tag_len_at(data: &[u8], tag: Res) -> DecodeResult<Res> {
if tag.val < NUM_IMPLICIT_TAGS && TAG_IMPLICIT_LEN[tag.val] >= 0 {
Ok(Res {
val: TAG_IMPLICIT_LEN[tag.val] as usize,
next: tag.next,
})
} else {
vuint_at(data, tag.next)
}
}
pub fn doc_at<'a>(data: &'a [u8], start: usize) -> DecodeResult<TaggedDoc<'a>> {
let elt_tag = tag_at(data, start)?;
let elt_size = tag_len_at(data, elt_tag)?;
let end = elt_size.next + elt_size.val;
Ok(TaggedDoc {
tag: elt_tag.val,
doc: Doc {
data: data,
start: elt_size.next,
end: end,
},
})
}
pub fn maybe_get_doc<'a>(d: Doc<'a>, tg: usize) -> Option<Doc<'a>> {
let mut pos = d.start;
while pos < d.end {
let elt_tag = try_or!(tag_at(d.data, pos), None);
let elt_size = try_or!(tag_len_at(d.data, elt_tag), None);
pos = elt_size.next + elt_size.val;
if elt_tag.val == tg {
return Some(Doc {
data: d.data,
start: elt_size.next,
end: pos,
});
}
}
None
}
pub fn get_doc<'a>(d: Doc<'a>, tg: usize) -> Doc<'a> {
match maybe_get_doc(d, tg) {
Some(d) => d,
None => {
error!("failed to find block with tag {:?}", tg);
panic!();
}
}
}
pub fn docs<'a>(d: Doc<'a>) -> DocsIterator<'a> {
DocsIterator { d: d }
}
pub struct DocsIterator<'a> {
d: Doc<'a>,
}
impl<'a> Iterator for DocsIterator<'a> {
type Item = (usize, Doc<'a>);
fn next(&mut self) -> Option<(usize, Doc<'a>)> {
if self.d.start >= self.d.end {
return None;
}
let elt_tag = try_or!(tag_at(self.d.data, self.d.start), {
self.d.start = self.d.end;
None
});
let elt_size = try_or!(tag_len_at(self.d.data, elt_tag), {
self.d.start = self.d.end;
None
});
let end = elt_size.next + elt_size.val;
let doc = Doc {
data: self.d.data,
start: elt_size.next,
end: end,
};
self.d.start = end;
return Some((elt_tag.val, doc));
}
}
pub fn tagged_docs<'a>(d: Doc<'a>, tag: usize) -> TaggedDocsIterator<'a> {
TaggedDocsIterator {
iter: docs(d),
tag: tag,
}
}
pub struct TaggedDocsIterator<'a> {
iter: DocsIterator<'a>,
tag: usize,
}
impl<'a> Iterator for TaggedDocsIterator<'a> {
type Item = Doc<'a>;
fn next(&mut self) -> Option<Doc<'a>> {
while let Some((tag, doc)) = self.iter.next() {
if tag == self.tag {
return Some(doc);
}
}
None
}
}
pub fn with_doc_data<T, F>(d: Doc, f: F) -> T
where F: FnOnce(&[u8]) -> T
{
f(&d.data[d.start..d.end])
}
pub fn doc_as_u8(d: Doc) -> u8 {
assert_eq!(d.end, d.start + 1);
d.data[d.start]
}
pub fn doc_as_u64(d: Doc) -> u64 {
if d.end >= 8 {
// For performance, we read 8 big-endian bytes,
// and mask off the junk if there is any. This
// obviously won't work on the first 8 bytes
// of a file - we will fall of the start
// of the page and segfault.
let mut b = [0; 8];
b.copy_from_slice(&d.data[d.end - 8..d.end]);
let data = unsafe { (*(b.as_ptr() as *const u64)).to_be() };
let len = d.end - d.start;
if len < 8 {
data & ((1 << (len * 8)) - 1)
} else {
data
}
} else {
let mut result = 0;
for b in &d.data[d.start..d.end] {
result = (result << 8) + (*b as u64);
}
result
}
}
#[inline]
pub fn doc_as_u16(d: Doc) -> u16 {
doc_as_u64(d) as u16
}
#[inline]
pub fn doc_as_u32(d: Doc) -> u32 {
doc_as_u64(d) as u32
}
#[inline]
pub fn doc_as_i8(d: Doc) -> i8 {
doc_as_u8(d) as i8
}
#[inline]
pub fn doc_as_i16(d: Doc) -> i16 {
doc_as_u16(d) as i16
}
#[inline]
pub fn doc_as_i32(d: Doc) -> i32 {
doc_as_u32(d) as i32
}
#[inline]
pub fn doc_as_i64(d: Doc) -> i64 {
doc_as_u64(d) as i64
}
pub struct Decoder<'a> {
parent: Doc<'a>,
pos: usize,
}
impl<'doc> Decoder<'doc> {
pub fn new(d: Doc<'doc>) -> Decoder<'doc> {
Decoder {
parent: d,
pos: d.start,
}
}
fn next_doc(&mut self, exp_tag: EbmlEncoderTag) -> DecodeResult<Doc<'doc>> {
debug!(". next_doc(exp_tag={:?})", exp_tag);
if self.pos >= self.parent.end {
return Err(Expected(format!("no more documents in current node!")));
}
let TaggedDoc { tag: r_tag, doc: r_doc } = doc_at(self.parent.data, self.pos)?;
debug!("self.parent={:?}-{:?} self.pos={:?} r_tag={:?} r_doc={:?}-{:?}",
self.parent.start,
self.parent.end,
self.pos,
r_tag,
r_doc.start,
r_doc.end);
if r_tag != (exp_tag as usize) {
return Err(Expected(format!("expected EBML doc with tag {:?} but found tag {:?}",
exp_tag,
r_tag)));
}
if r_doc.end > self.parent.end {
return Err(Expected(format!("invalid EBML, child extends to {:#x}, parent to \
{:#x}",
r_doc.end,
self.parent.end)));
}
self.pos = r_doc.end;
Ok(r_doc)
}
fn push_doc<T, F>(&mut self, exp_tag: EbmlEncoderTag, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
let d = self.next_doc(exp_tag)?;
let old_parent = self.parent;
let old_pos = self.pos;
self.parent = d;
self.pos = d.start;
let r = f(self)?;
self.parent = old_parent;
self.pos = old_pos;
Ok(r)
}
fn _next_sub(&mut self) -> DecodeResult<usize> {
// empty vector/map optimization
if self.parent.is_empty() {
return Ok(0);
}
let TaggedDoc { tag: r_tag, doc: r_doc } = doc_at(self.parent.data, self.pos)?;
let r = if r_tag == (EsSub8 as usize) {
doc_as_u8(r_doc) as usize
} else if r_tag == (EsSub32 as usize) {
doc_as_u32(r_doc) as usize
} else {
return Err(Expected(format!("expected EBML doc with tag {:?} or {:?} but found \
tag {:?}",
EsSub8,
EsSub32,
r_tag)));
};
if r_doc.end > self.parent.end {
return Err(Expected(format!("invalid EBML, child extends to {:#x}, parent to \
{:#x}",
r_doc.end,
self.parent.end)));
}
self.pos = r_doc.end;
debug!("_next_sub result={:?}", r);
Ok(r)
}
// variable-length unsigned integer with different tags.
// `first_tag` should be a tag for u8 or i8.
// `last_tag` should be the largest allowed integer tag with the matching signedness.
// all tags between them should be valid, in the order of u8, u16, u32 and u64.
fn _next_int(&mut self,
first_tag: EbmlEncoderTag,
last_tag: EbmlEncoderTag)
-> DecodeResult<u64> {
if self.pos >= self.parent.end {
return Err(Expected(format!("no more documents in current node!")));
}
let TaggedDoc { tag: r_tag, doc: r_doc } = doc_at(self.parent.data, self.pos)?;
let r = if first_tag as usize <= r_tag && r_tag <= last_tag as usize {
match r_tag - first_tag as usize {
0 => doc_as_u8(r_doc) as u64,
1 => doc_as_u16(r_doc) as u64,
2 => doc_as_u32(r_doc) as u64,
3 => doc_as_u64(r_doc),
_ => unreachable!(),
}
} else {
return Err(Expected(format!("expected EBML doc with tag {:?} through {:?} but \
found tag {:?}",
first_tag,
last_tag,
r_tag)));
};
if r_doc.end > self.parent.end {
return Err(Expected(format!("invalid EBML, child extends to {:#x}, parent to \
{:#x}",
r_doc.end,
self.parent.end)));
}
self.pos = r_doc.end;
debug!("_next_int({:?}, {:?}) result={:?}", first_tag, last_tag, r);
Ok(r)
}
pub fn read_opaque<R, F>(&mut self, op: F) -> DecodeResult<R>
where F: FnOnce(&mut opaque::Decoder, Doc) -> DecodeResult<R>
{
let doc = self.next_doc(EsOpaque)?;
let result = {
let mut opaque_decoder = opaque::Decoder::new(doc.data, doc.start);
op(&mut opaque_decoder, doc)?
};
Ok(result)
}
pub fn position(&self) -> usize {
self.pos
}
pub fn advance(&mut self, bytes: usize) {
self.pos += bytes;
}
}
impl<'doc> serialize::Decoder for Decoder<'doc> {
type Error = Error;
fn read_nil(&mut self) -> DecodeResult<()> {
Ok(())
}
fn read_u64(&mut self) -> DecodeResult<u64> {
self._next_int(EsU8, EsU64)
}
fn read_u32(&mut self) -> DecodeResult<u32> {
Ok(self._next_int(EsU8, EsU32)? as u32)
}
fn read_u16(&mut self) -> DecodeResult<u16> {
Ok(self._next_int(EsU8, EsU16)? as u16)
}
fn read_u8(&mut self) -> DecodeResult<u8> {
Ok(doc_as_u8(self.next_doc(EsU8)?))
}
fn read_uint(&mut self) -> DecodeResult<usize> {
let v = self._next_int(EsU8, EsU64)?;
if v > (::std::usize::MAX as u64) {
Err(IntTooBig(v as usize))
} else {
Ok(v as usize)
}
}
fn read_i64(&mut self) -> DecodeResult<i64> {
Ok(self._next_int(EsI8, EsI64)? as i64)
}
fn read_i32(&mut self) -> DecodeResult<i32> {
Ok(self._next_int(EsI8, EsI32)? as i32)
}
fn read_i16(&mut self) -> DecodeResult<i16> {
Ok(self._next_int(EsI8, EsI16)? as i16)
}
fn read_i8(&mut self) -> DecodeResult<i8> {
Ok(doc_as_u8(self.next_doc(EsI8)?) as i8)
}
fn read_int(&mut self) -> DecodeResult<isize> {
let v = self._next_int(EsI8, EsI64)? as i64;
if v > (isize::MAX as i64) || v < (isize::MIN as i64) {
debug!("FIXME \\#6122: Removing this makes this function miscompile");
Err(IntTooBig(v as usize))
} else {
Ok(v as isize)
}
}
fn read_bool(&mut self) -> DecodeResult<bool> {
Ok(doc_as_u8(self.next_doc(EsBool)?) != 0)
}
fn read_f64(&mut self) -> DecodeResult<f64> {
let bits = doc_as_u64(self.next_doc(EsF64)?);
Ok(unsafe { transmute(bits) })
}
fn read_f32(&mut self) -> DecodeResult<f32> {
let bits = doc_as_u32(self.next_doc(EsF32)?);
Ok(unsafe { transmute(bits) })
}
fn read_char(&mut self) -> DecodeResult<char> {
Ok(char::from_u32(doc_as_u32(self.next_doc(EsChar)?)).unwrap())
}
fn read_str(&mut self) -> DecodeResult<String> {
Ok(self.next_doc(EsStr)?.as_str())
}
// Compound types:
fn read_enum<T, F>(&mut self, name: &str, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_enum({})", name);
let doc = self.next_doc(EsEnum)?;
let (old_parent, old_pos) = (self.parent, self.pos);
self.parent = doc;
self.pos = self.parent.start;
let result = f(self)?;
self.parent = old_parent;
self.pos = old_pos;
Ok(result)
}
fn read_enum_variant<T, F>(&mut self, _: &[&str], mut f: F) -> DecodeResult<T>
where F: FnMut(&mut Decoder<'doc>, usize) -> DecodeResult<T>
{
debug!("read_enum_variant()");
let idx = self._next_sub()?;
debug!(" idx={}", idx);
f(self, idx)
}
fn read_enum_variant_arg<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_enum_variant_arg(idx={})", idx);
f(self)
}
fn read_enum_struct_variant<T, F>(&mut self, _: &[&str], mut f: F) -> DecodeResult<T>
where F: FnMut(&mut Decoder<'doc>, usize) -> DecodeResult<T>
{
debug!("read_enum_struct_variant()");
let idx = self._next_sub()?;
debug!(" idx={}", idx);
f(self, idx)
}
fn read_enum_struct_variant_field<T, F>(&mut self,
name: &str,
idx: usize,
f: F)
-> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_enum_struct_variant_arg(name={}, idx={})", name, idx);
f(self)
}
fn read_struct<T, F>(&mut self, name: &str, _: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_struct(name={})", name);
f(self)
}
fn read_struct_field<T, F>(&mut self, name: &str, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_struct_field(name={}, idx={})", name, idx);
f(self)
}
fn read_tuple<T, F>(&mut self, tuple_len: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_tuple()");
self.read_seq(move |d, len| {
if len == tuple_len {
f(d)
} else {
Err(Expected(format!("Expected tuple of length `{}`, found tuple of length \
`{}`",
tuple_len,
len)))
}
})
}
fn read_tuple_arg<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_tuple_arg(idx={})", idx);
self.read_seq_elt(idx, f)
}
fn read_tuple_struct<T, F>(&mut self, name: &str, len: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_tuple_struct(name={})", name);
self.read_tuple(len, f)
}
fn read_tuple_struct_arg<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_tuple_struct_arg(idx={})", idx);
self.read_tuple_arg(idx, f)
}
fn read_option<T, F>(&mut self, mut f: F) -> DecodeResult<T>
where F: FnMut(&mut Decoder<'doc>, bool) -> DecodeResult<T>
{
debug!("read_option()");
self.read_enum("Option", move |this| {
this.read_enum_variant(&["None", "Some"], move |this, idx| {
match idx {
0 => f(this, false),
1 => f(this, true),
_ => Err(Expected(format!("Expected None or Some"))),
}
})
})
}
fn read_seq<T, F>(&mut self, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>, usize) -> DecodeResult<T>
{
debug!("read_seq()");
self.push_doc(EsVec, move |d| {
let len = d._next_sub()?;
debug!(" len={}", len);
f(d, len)
})
}
fn read_seq_elt<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_seq_elt(idx={})", idx);
self.push_doc(EsVecElt, f)
}
fn read_map<T, F>(&mut self, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>, usize) -> DecodeResult<T>
{
debug!("read_map()");
self.push_doc(EsMap, move |d| {
let len = d._next_sub()?;
debug!(" len={}", len);
f(d, len)
})
}
fn read_map_elt_key<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_map_elt_key(idx={})", idx);
self.push_doc(EsMapKey, f)
}
fn read_map_elt_val<T, F>(&mut self, idx: usize, f: F) -> DecodeResult<T>
where F: FnOnce(&mut Decoder<'doc>) -> DecodeResult<T>
{
debug!("read_map_elt_val(idx={})", idx);
self.push_doc(EsMapVal, f)
}
fn error(&mut self, err: &str) -> Error {
ApplicationError(err.to_string())
}
}
}
pub mod writer {
use std::mem;
use std::io::prelude::*;
use std::io::{self, SeekFrom, Cursor};
use super::opaque;
use super::{EsVec, EsMap, EsEnum, EsSub8, EsSub32, EsVecElt, EsMapKey, EsU64, EsU32, EsU16,
EsU8, EsI64, EsI32, EsI16, EsI8, EsBool, EsF64, EsF32, EsChar, EsStr, EsMapVal,
EsOpaque, NUM_IMPLICIT_TAGS, NUM_TAGS};
use serialize;
pub type EncodeResult = io::Result<()>;
// rbml writing
pub struct Encoder<'a> {
pub writer: &'a mut Cursor<Vec<u8>>,
size_positions: Vec<u64>,
relax_limit: u64, // do not move encoded bytes before this position
}
fn write_tag<W: Write>(w: &mut W, n: usize) -> EncodeResult {
if n < 0xf0 {
w.write_all(&[n as u8])
} else if 0x100 <= n && n < NUM_TAGS {
w.write_all(&[0xf0 | (n >> 8) as u8, n as u8])
} else {
Err(io::Error::new(io::ErrorKind::Other, &format!("invalid tag: {}", n)[..]))
}
}
fn write_sized_vuint<W: Write>(w: &mut W, n: usize, size: usize) -> EncodeResult {
match size {
1 => w.write_all(&[0x80 | (n as u8)]),
2 => w.write_all(&[0x40 | ((n >> 8) as u8), n as u8]),
3 => w.write_all(&[0x20 | ((n >> 16) as u8), (n >> 8) as u8, n as u8]),
4 => w.write_all(&[0x10 | ((n >> 24) as u8), (n >> 16) as u8, (n >> 8) as u8, n as u8]),
_ => Err(io::Error::new(io::ErrorKind::Other, &format!("isize too big: {}", n)[..])),
}
}
pub fn write_vuint<W: Write>(w: &mut W, n: usize) -> EncodeResult {
if n < 0x7f {
return write_sized_vuint(w, n, 1);
}
if n < 0x4000 {
return write_sized_vuint(w, n, 2);
}
if n < 0x200000 {
return write_sized_vuint(w, n, 3);
}
if n < 0x10000000 {
return write_sized_vuint(w, n, 4);
}
Err(io::Error::new(io::ErrorKind::Other, &format!("isize too big: {}", n)[..]))
}
impl<'a> Encoder<'a> {
pub fn new(w: &'a mut Cursor<Vec<u8>>) -> Encoder<'a> {
Encoder {
writer: w,
size_positions: vec![],
relax_limit: 0,
}
}
pub fn start_tag(&mut self, tag_id: usize) -> EncodeResult {
debug!("Start tag {:?}", tag_id);
assert!(tag_id >= NUM_IMPLICIT_TAGS);
// Write the enum ID:
write_tag(self.writer, tag_id)?;
// Write a placeholder four-byte size.
let cur_pos = self.writer.seek(SeekFrom::Current(0))?;
self.size_positions.push(cur_pos);
let zeroes: &[u8] = &[0, 0, 0, 0];
self.writer.write_all(zeroes)
}
pub fn end_tag(&mut self) -> EncodeResult {
let last_size_pos = self.size_positions.pop().unwrap();
let cur_pos = self.writer.seek(SeekFrom::Current(0))?;
self.writer.seek(SeekFrom::Start(last_size_pos))?;
let size = (cur_pos - last_size_pos - 4) as usize;
// relax the size encoding for small tags (bigger tags are costly to move).
// we should never try to move the stable positions, however.
const RELAX_MAX_SIZE: usize = 0x100;
if size <= RELAX_MAX_SIZE && last_size_pos >= self.relax_limit {
// we can't alter the buffer in place, so have a temporary buffer
let mut buf = [0u8; RELAX_MAX_SIZE];
{
let last_size_pos = last_size_pos as usize;
let data = &self.writer.get_ref()[last_size_pos + 4..cur_pos as usize];
buf[..size].copy_from_slice(data);
}
// overwrite the size and data and continue
write_vuint(self.writer, size)?;
self.writer.write_all(&buf[..size])?;
} else {
// overwrite the size with an overlong encoding and skip past the data
write_sized_vuint(self.writer, size, 4)?;
self.writer.seek(SeekFrom::Start(cur_pos))?;
}
debug!("End tag (size = {:?})", size);
Ok(())
}
pub fn wr_tag<F>(&mut self, tag_id: usize, blk: F) -> EncodeResult
where F: FnOnce() -> EncodeResult
{
self.start_tag(tag_id)?;
blk()?;
self.end_tag()
}
pub fn wr_tagged_bytes(&mut self, tag_id: usize, b: &[u8]) -> EncodeResult {
assert!(tag_id >= NUM_IMPLICIT_TAGS);
write_tag(self.writer, tag_id)?;
write_vuint(self.writer, b.len())?;
self.writer.write_all(b)
}
pub fn wr_tagged_u64(&mut self, tag_id: usize, v: u64) -> EncodeResult {
let bytes: [u8; 8] = unsafe { mem::transmute(v.to_be()) };
// tagged integers are emitted in big-endian, with no
// leading zeros.
let leading_zero_bytes = v.leading_zeros() / 8;
self.wr_tagged_bytes(tag_id, &bytes[leading_zero_bytes as usize..])
}
#[inline]
pub fn wr_tagged_u32(&mut self, tag_id: usize, v: u32) -> EncodeResult {
self.wr_tagged_u64(tag_id, v as u64)
}
#[inline]
pub fn wr_tagged_u16(&mut self, tag_id: usize, v: u16) -> EncodeResult {
self.wr_tagged_u64(tag_id, v as u64)
}
#[inline]
pub fn wr_tagged_u8(&mut self, tag_id: usize, v: u8) -> EncodeResult {
self.wr_tagged_bytes(tag_id, &[v])
}
#[inline]
pub fn wr_tagged_i64(&mut self, tag_id: usize, v: i64) -> EncodeResult {
self.wr_tagged_u64(tag_id, v as u64)
}
#[inline]
pub fn wr_tagged_i32(&mut self, tag_id: usize, v: i32) -> EncodeResult {
self.wr_tagged_u32(tag_id, v as u32)
}
#[inline]
pub fn wr_tagged_i16(&mut self, tag_id: usize, v: i16) -> EncodeResult {
self.wr_tagged_u16(tag_id, v as u16)
}
#[inline]
pub fn wr_tagged_i8(&mut self, tag_id: usize, v: i8) -> EncodeResult {
self.wr_tagged_bytes(tag_id, &[v as u8])
}
pub fn wr_tagged_str(&mut self, tag_id: usize, v: &str) -> EncodeResult {
self.wr_tagged_bytes(tag_id, v.as_bytes())
}
// for auto-serialization
fn wr_tagged_raw_bytes(&mut self, tag_id: usize, b: &[u8]) -> EncodeResult {
write_tag(self.writer, tag_id)?;
self.writer.write_all(b)
}
fn wr_tagged_raw_u64(&mut self, tag_id: usize, v: u64) -> EncodeResult {
let bytes: [u8; 8] = unsafe { mem::transmute(v.to_be()) };
self.wr_tagged_raw_bytes(tag_id, &bytes)
}
fn wr_tagged_raw_u32(&mut self, tag_id: usize, v: u32) -> EncodeResult {
let bytes: [u8; 4] = unsafe { mem::transmute(v.to_be()) };
self.wr_tagged_raw_bytes(tag_id, &bytes)
}
fn wr_tagged_raw_u16(&mut self, tag_id: usize, v: u16) -> EncodeResult {
let bytes: [u8; 2] = unsafe { mem::transmute(v.to_be()) };
self.wr_tagged_raw_bytes(tag_id, &bytes)
}
fn wr_tagged_raw_u8(&mut self, tag_id: usize, v: u8) -> EncodeResult {
self.wr_tagged_raw_bytes(tag_id, &[v])
}
fn wr_tagged_raw_i64(&mut self, tag_id: usize, v: i64) -> EncodeResult {
self.wr_tagged_raw_u64(tag_id, v as u64)
}
fn wr_tagged_raw_i32(&mut self, tag_id: usize, v: i32) -> EncodeResult {
self.wr_tagged_raw_u32(tag_id, v as u32)
}
fn wr_tagged_raw_i16(&mut self, tag_id: usize, v: i16) -> EncodeResult {
self.wr_tagged_raw_u16(tag_id, v as u16)
}
fn wr_tagged_raw_i8(&mut self, tag_id: usize, v: i8) -> EncodeResult {
self.wr_tagged_raw_bytes(tag_id, &[v as u8])
}
pub fn wr_bytes(&mut self, b: &[u8]) -> EncodeResult {
debug!("Write {:?} bytes", b.len());
self.writer.write_all(b)
}
pub fn wr_str(&mut self, s: &str) -> EncodeResult {
debug!("Write str: {:?}", s);
self.writer.write_all(s.as_bytes())
}
/// Returns the current position while marking it stable, i.e.
/// generated bytes so far wouldn't be affected by relaxation.
pub fn mark_stable_position(&mut self) -> u64 {
let pos = self.writer.seek(SeekFrom::Current(0)).unwrap();
if self.relax_limit < pos {
self.relax_limit = pos;
}
pos
}
}
impl<'a> Encoder<'a> {
// used internally to emit things like the vector length and so on
fn _emit_tagged_sub(&mut self, v: usize) -> EncodeResult {
if v as u8 as usize == v {
self.wr_tagged_raw_u8(EsSub8 as usize, v as u8)
} else if v as u32 as usize == v {
self.wr_tagged_raw_u32(EsSub32 as usize, v as u32)
} else {
Err(io::Error::new(io::ErrorKind::Other,
&format!("length or variant id too big: {}", v)[..]))
}
}
pub fn emit_opaque<F>(&mut self, f: F) -> EncodeResult
where F: FnOnce(&mut opaque::Encoder) -> EncodeResult
{
self.start_tag(EsOpaque as usize)?;
{
let mut opaque_encoder = opaque::Encoder::new(self.writer);
f(&mut opaque_encoder)?;
}
self.mark_stable_position();
self.end_tag()
}
}
impl<'a> serialize::Encoder for Encoder<'a> {
type Error = io::Error;
fn emit_nil(&mut self) -> EncodeResult {
Ok(())
}
fn emit_uint(&mut self, v: usize) -> EncodeResult {
self.emit_u64(v as u64)
}
fn emit_u64(&mut self, v: u64) -> EncodeResult {
if v as u32 as u64 == v {
self.emit_u32(v as u32)
} else {
self.wr_tagged_raw_u64(EsU64 as usize, v)
}
}
fn emit_u32(&mut self, v: u32) -> EncodeResult {
if v as u16 as u32 == v {
self.emit_u16(v as u16)
} else {
self.wr_tagged_raw_u32(EsU32 as usize, v)
}
}
fn emit_u16(&mut self, v: u16) -> EncodeResult {
if v as u8 as u16 == v {
self.emit_u8(v as u8)
} else {
self.wr_tagged_raw_u16(EsU16 as usize, v)
}
}
fn emit_u8(&mut self, v: u8) -> EncodeResult {
self.wr_tagged_raw_u8(EsU8 as usize, v)
}
fn emit_int(&mut self, v: isize) -> EncodeResult {
self.emit_i64(v as i64)
}
fn emit_i64(&mut self, v: i64) -> EncodeResult {
if v as i32 as i64 == v {
self.emit_i32(v as i32)
} else {
self.wr_tagged_raw_i64(EsI64 as usize, v)
}
}
fn emit_i32(&mut self, v: i32) -> EncodeResult {
if v as i16 as i32 == v {
self.emit_i16(v as i16)
} else {
self.wr_tagged_raw_i32(EsI32 as usize, v)
}
}
fn emit_i16(&mut self, v: i16) -> EncodeResult {
if v as i8 as i16 == v {
self.emit_i8(v as i8)
} else {
self.wr_tagged_raw_i16(EsI16 as usize, v)
}
}
fn emit_i8(&mut self, v: i8) -> EncodeResult {
self.wr_tagged_raw_i8(EsI8 as usize, v)
}
fn emit_bool(&mut self, v: bool) -> EncodeResult {
self.wr_tagged_raw_u8(EsBool as usize, v as u8)
}
fn emit_f64(&mut self, v: f64) -> EncodeResult {
let bits = unsafe { mem::transmute(v) };
self.wr_tagged_raw_u64(EsF64 as usize, bits)
}
fn emit_f32(&mut self, v: f32) -> EncodeResult {
let bits = unsafe { mem::transmute(v) };
self.wr_tagged_raw_u32(EsF32 as usize, bits)
}
fn emit_char(&mut self, v: char) -> EncodeResult {
self.wr_tagged_raw_u32(EsChar as usize, v as u32)
}
fn emit_str(&mut self, v: &str) -> EncodeResult {
self.wr_tagged_str(EsStr as usize, v)
}
fn emit_enum<F>(&mut self, _name: &str, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.start_tag(EsEnum as usize)?;
f(self)?;
self.end_tag()
}
fn emit_enum_variant<F>(&mut self, _: &str, v_id: usize, _: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self._emit_tagged_sub(v_id)?;
f(self)
}
fn emit_enum_variant_arg<F>(&mut self, _: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
f(self)
}
fn emit_enum_struct_variant<F>(&mut self,
v_name: &str,
v_id: usize,
cnt: usize,
f: F)
-> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_enum_variant(v_name, v_id, cnt, f)
}
fn emit_enum_struct_variant_field<F>(&mut self, _: &str, idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_enum_variant_arg(idx, f)
}
fn emit_struct<F>(&mut self, _: &str, _len: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
f(self)
}
fn emit_struct_field<F>(&mut self, _name: &str, _: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
f(self)
}
fn emit_tuple<F>(&mut self, len: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_seq(len, f)
}
fn emit_tuple_arg<F>(&mut self, idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_seq_elt(idx, f)
}
fn emit_tuple_struct<F>(&mut self, _: &str, len: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_seq(len, f)
}
fn emit_tuple_struct_arg<F>(&mut self, idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_seq_elt(idx, f)
}
fn emit_option<F>(&mut self, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_enum("Option", f)
}
fn emit_option_none(&mut self) -> EncodeResult {
self.emit_enum_variant("None", 0, 0, |_| Ok(()))
}
fn emit_option_some<F>(&mut self, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.emit_enum_variant("Some", 1, 1, f)
}
fn emit_seq<F>(&mut self, len: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
if len == 0 {
// empty vector optimization
return self.wr_tagged_bytes(EsVec as usize, &[]);
}
self.start_tag(EsVec as usize)?;
self._emit_tagged_sub(len)?;
f(self)?;
self.end_tag()
}
fn emit_seq_elt<F>(&mut self, _idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.start_tag(EsVecElt as usize)?;
f(self)?;
self.end_tag()
}
fn emit_map<F>(&mut self, len: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
if len == 0 {
// empty map optimization
return self.wr_tagged_bytes(EsMap as usize, &[]);
}
self.start_tag(EsMap as usize)?;
self._emit_tagged_sub(len)?;
f(self)?;
self.end_tag()
}
fn emit_map_elt_key<F>(&mut self, _idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.start_tag(EsMapKey as usize)?;
f(self)?;
self.end_tag()
}
fn emit_map_elt_val<F>(&mut self, _idx: usize, f: F) -> EncodeResult
where F: FnOnce(&mut Encoder<'a>) -> EncodeResult
{
self.start_tag(EsMapVal as usize)?;
f(self)?;
self.end_tag()
}
}
}
// ___________________________________________________________________________
// Testing
#[cfg(test)]
mod tests {
use super::{Doc, reader, writer};
use serialize::{Encodable, Decodable};
use std::io::Cursor;
#[test]
fn test_vuint_at() {
let data = &[
0x80,
0xff,
0x40, 0x00,
0x7f, 0xff,
0x20, 0x00, 0x00,
0x3f, 0xff, 0xff,
0x10, 0x00, 0x00, 0x00,
0x1f, 0xff, 0xff, 0xff
];
let mut res: reader::Res;
// Class A
res = reader::vuint_at(data, 0).unwrap();
assert_eq!(res.val, 0);
assert_eq!(res.next, 1);
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, (1 << 7) - 1);
assert_eq!(res.next, 2);
// Class B
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, 0);
assert_eq!(res.next, 4);
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, (1 << 14) - 1);
assert_eq!(res.next, 6);
// Class C
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, 0);
assert_eq!(res.next, 9);
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, (1 << 21) - 1);
assert_eq!(res.next, 12);
// Class D
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, 0);
assert_eq!(res.next, 16);
res = reader::vuint_at(data, res.next).unwrap();
assert_eq!(res.val, (1 << 28) - 1);
assert_eq!(res.next, 20);
}
#[test]
fn test_option_int() {
fn test_v(v: Option<isize>) {
debug!("v == {:?}", v);
let mut wr = Cursor::new(Vec::new());
{
let mut rbml_w = writer::Encoder::new(&mut wr);
let _ = v.encode(&mut rbml_w);
}
let rbml_doc = Doc::new(wr.get_ref());
let mut deser = reader::Decoder::new(rbml_doc);
let v1 = Decodable::decode(&mut deser).unwrap();
debug!("v1 == {:?}", v1);
assert_eq!(v, v1);
}
test_v(Some(22));
test_v(None);
test_v(Some(3));
}
}
#[cfg(test)]
mod bench {
#![allow(non_snake_case)]
use test::Bencher;
use super::reader;
#[bench]
pub fn vuint_at_A_aligned(b: &mut Bencher) {
let data = (0..4 * 100)
.map(|i| {
match i % 2 {
0 => 0x80,
_ => i as u8,
}
})
.collect::<Vec<_>>();
let mut sum = 0;
b.iter(|| {
let mut i = 0;
while i < data.len() {
sum += reader::vuint_at(&data, i).unwrap().val;
i += 4;
}
});
}
#[bench]
pub fn vuint_at_A_unaligned(b: &mut Bencher) {
let data = (0..4 * 100 + 1)
.map(|i| {
match i % 2 {
1 => 0x80,
_ => i as u8,
}
})
.collect::<Vec<_>>();
let mut sum = 0;
b.iter(|| {
let mut i = 1;
while i < data.len() {
sum += reader::vuint_at(&data, i).unwrap().val;
i += 4;
}
});
}
#[bench]
pub fn vuint_at_D_aligned(b: &mut Bencher) {
let data = (0..4 * 100)
.map(|i| {
match i % 4 {
0 => 0x10,
3 => i as u8,
_ => 0,
}
})
.collect::<Vec<_>>();
let mut sum = 0;
b.iter(|| {
let mut i = 0;
while i < data.len() {
sum += reader::vuint_at(&data, i).unwrap().val;
i += 4;
}
});
}
#[bench]
pub fn vuint_at_D_unaligned(b: &mut Bencher) {
let data = (0..4 * 100 + 1)
.map(|i| {
match i % 4 {
1 => 0x10,
0 => i as u8,
_ => 0,
}
})
.collect::<Vec<_>>();
let mut sum = 0;
b.iter(|| {
let mut i = 1;
while i < data.len() {
sum += reader::vuint_at(&data, i).unwrap().val;
i += 4;
}
});
}
}