blob: 275f38b2f787d469a8596be0b0d6bcce64fc3b19 [file] [log] [blame]
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A contiguous growable array type with heap-allocated contents, written
//! `Vec<T>` but pronounced 'vector.'
//!
//! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
//! `O(1)` pop (from the end).
//!
//! # Examples
//!
//! You can explicitly create a `Vec<T>` with `new()`:
//!
//! ```
//! let v: Vec<i32> = Vec::new();
//! ```
//!
//! ...or by using the `vec!` macro:
//!
//! ```
//! let v: Vec<i32> = vec![];
//!
//! let v = vec![1, 2, 3, 4, 5];
//!
//! let v = vec![0; 10]; // ten zeroes
//! ```
//!
//! You can `push` values onto the end of a vector (which will grow the vector
//! as needed):
//!
//! ```
//! let mut v = vec![1, 2];
//!
//! v.push(3);
//! ```
//!
//! Popping values works in much the same way:
//!
//! ```
//! let mut v = vec![1, 2];
//!
//! let two = v.pop();
//! ```
//!
//! Vectors also support indexing (through the `Index` and `IndexMut` traits):
//!
//! ```
//! let mut v = vec![1, 2, 3];
//! let three = v[2];
//! v[1] = v[1] + 5;
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
use alloc::boxed::Box;
use alloc::heap::EMPTY;
use alloc::raw_vec::RawVec;
use borrow::ToOwned;
use borrow::Cow;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{self, Hash};
use core::intrinsics::{arith_offset, assume};
use core::iter::FromIterator;
use core::mem;
use core::ops::{Index, IndexMut};
use core::ops;
use core::ptr;
use core::ptr::Shared;
use core::slice;
use super::SpecExtend;
use super::range::RangeArgument;
/// A contiguous growable array type, written `Vec<T>` but pronounced 'vector.'
///
/// # Examples
///
/// ```
/// let mut vec = Vec::new();
/// vec.push(1);
/// vec.push(2);
///
/// assert_eq!(vec.len(), 2);
/// assert_eq!(vec[0], 1);
///
/// assert_eq!(vec.pop(), Some(2));
/// assert_eq!(vec.len(), 1);
///
/// vec[0] = 7;
/// assert_eq!(vec[0], 7);
///
/// vec.extend([1, 2, 3].iter().cloned());
///
/// for x in &vec {
/// println!("{}", x);
/// }
/// assert_eq!(vec, [7, 1, 2, 3]);
/// ```
///
/// The `vec!` macro is provided to make initialization more convenient:
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.push(4);
/// assert_eq!(vec, [1, 2, 3, 4]);
/// ```
///
/// It can also initialize each element of a `Vec<T>` with a given value:
///
/// ```
/// let vec = vec![0; 5];
/// assert_eq!(vec, [0, 0, 0, 0, 0]);
/// ```
///
/// Use a `Vec<T>` as an efficient stack:
///
/// ```
/// let mut stack = Vec::new();
///
/// stack.push(1);
/// stack.push(2);
/// stack.push(3);
///
/// while let Some(top) = stack.pop() {
/// // Prints 3, 2, 1
/// println!("{}", top);
/// }
/// ```
///
/// # Indexing
///
/// The Vec type allows to access values by index, because it implements the
/// `Index` trait. An example will be more explicit:
///
/// ```
/// let v = vec!(0, 2, 4, 6);
/// println!("{}", v[1]); // it will display '2'
/// ```
///
/// However be careful: if you try to access an index which isn't in the Vec,
/// your software will panic! You cannot do this:
///
/// ```ignore
/// let v = vec!(0, 2, 4, 6);
/// println!("{}", v[6]); // it will panic!
/// ```
///
/// In conclusion: always check if the index you want to get really exists
/// before doing it.
///
/// # Slicing
///
/// A Vec can be mutable. Slices, on the other hand, are read-only objects.
/// To get a slice, use "&". Example:
///
/// ```
/// fn read_slice(slice: &[usize]) {
/// // ...
/// }
///
/// let v = vec!(0, 1);
/// read_slice(&v);
///
/// // ... and that's all!
/// // you can also do it like this:
/// let x : &[usize] = &v;
/// ```
///
/// In Rust, it's more common to pass slices as arguments rather than vectors
/// when you just want to provide a read access. The same goes for String and
/// &str.
///
/// # Capacity and reallocation
///
/// The capacity of a vector is the amount of space allocated for any future
/// elements that will be added onto the vector. This is not to be confused with
/// the *length* of a vector, which specifies the number of actual elements
/// within the vector. If a vector's length exceeds its capacity, its capacity
/// will automatically be increased, but its elements will have to be
/// reallocated.
///
/// For example, a vector with capacity 10 and length 0 would be an empty vector
/// with space for 10 more elements. Pushing 10 or fewer elements onto the
/// vector will not change its capacity or cause reallocation to occur. However,
/// if the vector's length is increased to 11, it will have to reallocate, which
/// can be slow. For this reason, it is recommended to use `Vec::with_capacity`
/// whenever possible to specify how big the vector is expected to get.
///
/// # Guarantees
///
/// Due to its incredibly fundamental nature, Vec makes a lot of guarantees
/// about its design. This ensures that it's as low-overhead as possible in
/// the general case, and can be correctly manipulated in primitive ways
/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
/// If additional type parameters are added (e.g. to support custom allocators),
/// overriding their defaults may change the behavior.
///
/// Most fundamentally, Vec is and always will be a (pointer, capacity, length)
/// triplet. No more, no less. The order of these fields is completely
/// unspecified, and you should use the appropriate methods to modify these.
/// The pointer will never be null, so this type is null-pointer-optimized.
///
/// However, the pointer may not actually point to allocated memory. In particular,
/// if you construct a Vec with capacity 0 via `Vec::new()`, `vec![]`,
/// `Vec::with_capacity(0)`, or by calling `shrink_to_fit()` on an empty Vec, it
/// will not allocate memory. Similarly, if you store zero-sized types inside
/// a Vec, it will not allocate space for them. *Note that in this case the
/// Vec may not report a `capacity()` of 0*. Vec will allocate if and only
/// if `mem::size_of::<T>() * capacity() > 0`. In general, Vec's allocation
/// details are subtle enough that it is strongly recommended that you only
/// free memory allocated by a Vec by creating a new Vec and dropping it.
///
/// If a Vec *has* allocated memory, then the memory it points to is on the heap
/// (as defined by the allocator Rust is configured to use by default), and its
/// pointer points to `len()` initialized elements in order (what you would see
/// if you coerced it to a slice), followed by `capacity() - len()` logically
/// uninitialized elements.
///
/// Vec will never perform a "small optimization" where elements are actually
/// stored on the stack for two reasons:
///
/// * It would make it more difficult for unsafe code to correctly manipulate
/// a Vec. The contents of a Vec wouldn't have a stable address if it were
/// only moved, and it would be more difficult to determine if a Vec had
/// actually allocated memory.
///
/// * It would penalize the general case, incurring an additional branch
/// on every access.
///
/// Vec will never automatically shrink itself, even if completely empty. This
/// ensures no unnecessary allocations or deallocations occur. Emptying a Vec
/// and then filling it back up to the same `len()` should incur no calls to
/// the allocator. If you wish to free up unused memory, use `shrink_to_fit`.
///
/// `push` and `insert` will never (re)allocate if the reported capacity is
/// sufficient. `push` and `insert` *will* (re)allocate if `len() == capacity()`.
/// That is, the reported capacity is completely accurate, and can be relied on.
/// It can even be used to manually free the memory allocated by a Vec if
/// desired. Bulk insertion methods *may* reallocate, even when not necessary.
///
/// Vec does not guarantee any particular growth strategy when reallocating
/// when full, nor when `reserve` is called. The current strategy is basic
/// and it may prove desirable to use a non-constant growth factor. Whatever
/// strategy is used will of course guarantee `O(1)` amortized `push`.
///
/// `vec![x; n]`, `vec![a, b, c, d]`, and `Vec::with_capacity(n)`, will all
/// produce a Vec with exactly the requested capacity. If `len() == capacity()`,
/// (as is the case for the `vec!` macro), then a `Vec<T>` can be converted
/// to and from a `Box<[T]>` without reallocating or moving the elements.
///
/// Vec will not specifically overwrite any data that is removed from it,
/// but also won't specifically preserve it. Its uninitialized memory is
/// scratch space that it may use however it wants. It will generally just do
/// whatever is most efficient or otherwise easy to implement. Do not rely on
/// removed data to be erased for security purposes. Even if you drop a Vec, its
/// buffer may simply be reused by another Vec. Even if you zero a Vec's memory
/// first, that may not actually happen because the optimizer does not consider
/// this a side-effect that must be preserved.
///
/// Vec does not currently guarantee the order in which elements are dropped
/// (the order has changed in the past, and may change again).
///
#[unsafe_no_drop_flag]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Vec<T> {
buf: RawVec<T>,
len: usize,
}
////////////////////////////////////////////////////////////////////////////////
// Inherent methods
////////////////////////////////////////////////////////////////////////////////
impl<T> Vec<T> {
/// Constructs a new, empty `Vec<T>`.
///
/// The vector will not allocate until elements are pushed onto it.
///
/// # Examples
///
/// ```
/// # #![allow(unused_mut)]
/// let mut vec: Vec<i32> = Vec::new();
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new() -> Vec<T> {
Vec {
buf: RawVec::new(),
len: 0,
}
}
/// Constructs a new, empty `Vec<T>` with the specified capacity.
///
/// The vector will be able to hold exactly `capacity` elements without
/// reallocating. If `capacity` is 0, the vector will not allocate.
///
/// It is important to note that this function does not specify the *length*
/// of the returned vector, but only the *capacity*. (For an explanation of
/// the difference between length and capacity, see the main `Vec<T>` docs
/// above, 'Capacity and reallocation'.)
///
/// # Examples
///
/// ```
/// let mut vec = Vec::with_capacity(10);
///
/// // The vector contains no items, even though it has capacity for more
/// assert_eq!(vec.len(), 0);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// vec.push(i);
/// }
///
/// // ...but this may make the vector reallocate
/// vec.push(11);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn with_capacity(capacity: usize) -> Vec<T> {
Vec {
buf: RawVec::with_capacity(capacity),
len: 0,
}
}
/// Creates a `Vec<T>` directly from the raw components of another vector.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * `ptr` needs to have been previously allocated via `String`/`Vec<T>`
/// (at least, it's highly likely to be incorrect if it wasn't).
/// * `length` needs to be less than or equal to `capacity`.
/// * `capacity` needs to be the capacity that the pointer was allocated with.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal datastructures.
///
/// The ownership of `ptr` is effectively transferred to the
/// `Vec<T>` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// # Examples
///
/// ```
/// use std::ptr;
/// use std::mem;
///
/// fn main() {
/// let mut v = vec![1, 2, 3];
///
/// // Pull out the various important pieces of information about `v`
/// let p = v.as_mut_ptr();
/// let len = v.len();
/// let cap = v.capacity();
///
/// unsafe {
/// // Cast `v` into the void: no destructor run, so we are in
/// // complete control of the allocation to which `p` points.
/// mem::forget(v);
///
/// // Overwrite memory with 4, 5, 6
/// for i in 0..len as isize {
/// ptr::write(p.offset(i), 4 + i);
/// }
///
/// // Put everything back together into a Vec
/// let rebuilt = Vec::from_raw_parts(p, len, cap);
/// assert_eq!(rebuilt, [4, 5, 6]);
/// }
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec<T> {
Vec {
buf: RawVec::from_raw_parts(ptr, capacity),
len: length,
}
}
/// Returns the number of elements the vector can hold without
/// reallocating.
///
/// # Examples
///
/// ```
/// let vec: Vec<i32> = Vec::with_capacity(10);
/// assert_eq!(vec.capacity(), 10);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn capacity(&self) -> usize {
self.buf.cap()
}
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the given `Vec<T>`. The collection may reserve more space to avoid
/// frequent reallocations.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1];
/// vec.reserve(10);
/// assert!(vec.capacity() >= 11);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn reserve(&mut self, additional: usize) {
self.buf.reserve(self.len, additional);
}
/// Reserves the minimum capacity for exactly `additional` more elements to
/// be inserted in the given `Vec<T>`. Does nothing if the capacity is already
/// sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore capacity can not be relied upon to be precisely
/// minimal. Prefer `reserve` if future insertions are expected.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1];
/// vec.reserve_exact(10);
/// assert!(vec.capacity() >= 11);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn reserve_exact(&mut self, additional: usize) {
self.buf.reserve_exact(self.len, additional);
}
/// Shrinks the capacity of the vector as much as possible.
///
/// It will drop down as close as possible to the length but the allocator
/// may still inform the vector that there is space for a few more elements.
///
/// # Examples
///
/// ```
/// let mut vec = Vec::with_capacity(10);
/// vec.extend([1, 2, 3].iter().cloned());
/// assert_eq!(vec.capacity(), 10);
/// vec.shrink_to_fit();
/// assert!(vec.capacity() >= 3);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn shrink_to_fit(&mut self) {
self.buf.shrink_to_fit(self.len);
}
/// Converts the vector into Box<[T]>.
///
/// Note that this will drop any excess capacity. Calling this and
/// converting back to a vector with `into_vec()` is equivalent to calling
/// `shrink_to_fit()`.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn into_boxed_slice(mut self) -> Box<[T]> {
unsafe {
self.shrink_to_fit();
let buf = ptr::read(&self.buf);
mem::forget(self);
buf.into_box()
}
}
/// Shortens the vector, keeping the first `len` elements and dropping
/// the rest.
///
/// If `len` is greater than the vector's current length, this has no
/// effect.
///
/// The [`drain`] method can emulate `truncate`, but causes the excess
/// elements to be returned instead of dropped.
///
/// # Examples
///
/// Truncating a five element vector to two elements:
///
/// ```
/// let mut vec = vec![1, 2, 3, 4, 5];
/// vec.truncate(2);
/// assert_eq!(vec, [1, 2]);
/// ```
///
/// No truncation occurs when `len` is greater than the vector's current
/// length:
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.truncate(8);
/// assert_eq!(vec, [1, 2, 3]);
/// ```
///
/// Truncating when `len == 0` is equivalent to calling the [`clear`]
/// method.
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.truncate(0);
/// assert_eq!(vec, []);
/// ```
///
/// [`clear`]: #method.clear
/// [`drain`]: #method.drain
#[stable(feature = "rust1", since = "1.0.0")]
pub fn truncate(&mut self, len: usize) {
unsafe {
// drop any extra elements
while len < self.len {
// decrement len before the drop_in_place(), so a panic on Drop
// doesn't re-drop the just-failed value.
self.len -= 1;
let len = self.len;
ptr::drop_in_place(self.get_unchecked_mut(len));
}
}
}
/// Extracts a slice containing the entire vector.
///
/// Equivalent to `&s[..]`.
///
/// # Examples
///
/// ```
/// use std::io::{self, Write};
/// let buffer = vec![1, 2, 3, 5, 8];
/// io::sink().write(buffer.as_slice()).unwrap();
/// ```
#[inline]
#[stable(feature = "vec_as_slice", since = "1.7.0")]
pub fn as_slice(&self) -> &[T] {
self
}
/// Extracts a mutable slice of the entire vector.
///
/// Equivalent to `&mut s[..]`.
///
/// # Examples
///
/// ```
/// use std::io::{self, Read};
/// let mut buffer = vec![0; 3];
/// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
/// ```
#[inline]
#[stable(feature = "vec_as_slice", since = "1.7.0")]
pub fn as_mut_slice(&mut self) -> &mut [T] {
self
}
/// Sets the length of a vector.
///
/// This will explicitly set the size of the vector, without actually
/// modifying its buffers, so it is up to the caller to ensure that the
/// vector is actually the specified size.
///
/// # Examples
///
/// ```
/// use std::ptr;
///
/// let mut vec = vec!['r', 'u', 's', 't'];
///
/// unsafe {
/// ptr::drop_in_place(&mut vec[3]);
/// vec.set_len(3);
/// }
/// assert_eq!(vec, ['r', 'u', 's']);
/// ```
///
/// In this example, there is a memory leak since the memory locations
/// owned by the inner vectors were not freed prior to the `set_len` call:
///
/// ```
/// let mut vec = vec![vec![1, 0, 0],
/// vec![0, 1, 0],
/// vec![0, 0, 1]];
/// unsafe {
/// vec.set_len(0);
/// }
/// ```
///
/// In this example, the vector gets expanded from zero to four items
/// without any memory allocations occurring, resulting in vector
/// values of unallocated memory:
///
/// ```
/// let mut vec: Vec<char> = Vec::new();
///
/// unsafe {
/// vec.set_len(4);
/// }
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn set_len(&mut self, len: usize) {
self.len = len;
}
/// Removes an element from anywhere in the vector and return it, replacing
/// it with the last element.
///
/// This does not preserve ordering, but is O(1).
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// let mut v = vec!["foo", "bar", "baz", "qux"];
///
/// assert_eq!(v.swap_remove(1), "bar");
/// assert_eq!(v, ["foo", "qux", "baz"]);
///
/// assert_eq!(v.swap_remove(0), "foo");
/// assert_eq!(v, ["baz", "qux"]);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn swap_remove(&mut self, index: usize) -> T {
let length = self.len();
self.swap(index, length - 1);
self.pop().unwrap()
}
/// Inserts an element at position `index` within the vector, shifting all
/// elements after it to the right.
///
/// # Panics
///
/// Panics if `index` is greater than the vector's length.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.insert(1, 4);
/// assert_eq!(vec, [1, 4, 2, 3]);
/// vec.insert(4, 5);
/// assert_eq!(vec, [1, 4, 2, 3, 5]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn insert(&mut self, index: usize, element: T) {
let len = self.len();
assert!(index <= len);
// space for the new element
if len == self.buf.cap() {
self.buf.double();
}
unsafe {
// infallible
// The spot to put the new value
{
let p = self.as_mut_ptr().offset(index as isize);
// Shift everything over to make space. (Duplicating the
// `index`th element into two consecutive places.)
ptr::copy(p, p.offset(1), len - index);
// Write it in, overwriting the first copy of the `index`th
// element.
ptr::write(p, element);
}
self.set_len(len + 1);
}
}
/// Removes and returns the element at position `index` within the vector,
/// shifting all elements after it to the left.
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// let mut v = vec![1, 2, 3];
/// assert_eq!(v.remove(1), 2);
/// assert_eq!(v, [1, 3]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn remove(&mut self, index: usize) -> T {
let len = self.len();
assert!(index < len);
unsafe {
// infallible
let ret;
{
// the place we are taking from.
let ptr = self.as_mut_ptr().offset(index as isize);
// copy it out, unsafely having a copy of the value on
// the stack and in the vector at the same time.
ret = ptr::read(ptr);
// Shift everything down to fill in that spot.
ptr::copy(ptr.offset(1), ptr, len - index - 1);
}
self.set_len(len - 1);
ret
}
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` such that `f(&e)` returns false.
/// This method operates in place and preserves the order of the retained
/// elements.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3, 4];
/// vec.retain(|&x| x%2 == 0);
/// assert_eq!(vec, [2, 4]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn retain<F>(&mut self, mut f: F)
where F: FnMut(&T) -> bool
{
let len = self.len();
let mut del = 0;
{
let v = &mut **self;
for i in 0..len {
if !f(&v[i]) {
del += 1;
} else if del > 0 {
v.swap(i - del, i);
}
}
}
if del > 0 {
self.truncate(len - del);
}
}
/// Appends an element to the back of a collection.
///
/// # Panics
///
/// Panics if the number of elements in the vector overflows a `usize`.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2];
/// vec.push(3);
/// assert_eq!(vec, [1, 2, 3]);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push(&mut self, value: T) {
// This will panic or abort if we would allocate > isize::MAX bytes
// or if the length increment would overflow for zero-sized types.
if self.len == self.buf.cap() {
self.buf.double();
}
unsafe {
let end = self.as_mut_ptr().offset(self.len as isize);
ptr::write(end, value);
self.len += 1;
}
}
/// Removes the last element from a vector and returns it, or `None` if it
/// is empty.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// assert_eq!(vec.pop(), Some(3));
/// assert_eq!(vec, [1, 2]);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop(&mut self) -> Option<T> {
if self.len == 0 {
None
} else {
unsafe {
self.len -= 1;
Some(ptr::read(self.get_unchecked(self.len())))
}
}
}
/// Moves all the elements of `other` into `Self`, leaving `other` empty.
///
/// # Panics
///
/// Panics if the number of elements in the vector overflows a `usize`.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// let mut vec2 = vec![4, 5, 6];
/// vec.append(&mut vec2);
/// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
/// assert_eq!(vec2, []);
/// ```
#[inline]
#[stable(feature = "append", since = "1.4.0")]
pub fn append(&mut self, other: &mut Self) {
self.reserve(other.len());
let len = self.len();
unsafe {
ptr::copy_nonoverlapping(other.as_ptr(), self.get_unchecked_mut(len), other.len());
}
self.len += other.len();
unsafe {
other.set_len(0);
}
}
/// Create a draining iterator that removes the specified range in the vector
/// and yields the removed items.
///
/// Note 1: The element range is removed even if the iterator is not
/// consumed until the end.
///
/// Note 2: It is unspecified how many elements are removed from the vector,
/// if the `Drain` value is leaked.
///
/// # Panics
///
/// Panics if the starting point is greater than the end point or if
/// the end point is greater than the length of the vector.
///
/// # Examples
///
/// ```
/// let mut v = vec![1, 2, 3];
/// let u: Vec<_> = v.drain(1..).collect();
/// assert_eq!(v, &[1]);
/// assert_eq!(u, &[2, 3]);
///
/// // A full range clears the vector
/// v.drain(..);
/// assert_eq!(v, &[]);
/// ```
#[stable(feature = "drain", since = "1.6.0")]
pub fn drain<R>(&mut self, range: R) -> Drain<T>
where R: RangeArgument<usize>
{
// Memory safety
//
// When the Drain is first created, it shortens the length of
// the source vector to make sure no uninitalized or moved-from elements
// are accessible at all if the Drain's destructor never gets to run.
//
// Drain will ptr::read out the values to remove.
// When finished, remaining tail of the vec is copied back to cover
// the hole, and the vector length is restored to the new length.
//
let len = self.len();
let start = *range.start().unwrap_or(&0);
let end = *range.end().unwrap_or(&len);
assert!(start <= end);
assert!(end <= len);
unsafe {
// set self.vec length's to start, to be safe in case Drain is leaked
self.set_len(start);
// Use the borrow in the IterMut to indicate borrowing behavior of the
// whole Drain iterator (like &mut T).
let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().offset(start as isize),
end - start);
Drain {
tail_start: end,
tail_len: len - end,
iter: range_slice.iter(),
vec: Shared::new(self as *mut _),
}
}
}
/// Clears the vector, removing all values.
///
/// # Examples
///
/// ```
/// let mut v = vec![1, 2, 3];
///
/// v.clear();
///
/// assert!(v.is_empty());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn clear(&mut self) {
self.truncate(0)
}
/// Returns the number of elements in the vector.
///
/// # Examples
///
/// ```
/// let a = vec![1, 2, 3];
/// assert_eq!(a.len(), 3);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn len(&self) -> usize {
self.len
}
/// Returns `true` if the vector contains no elements.
///
/// # Examples
///
/// ```
/// let mut v = Vec::new();
/// assert!(v.is_empty());
///
/// v.push(1);
/// assert!(!v.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Splits the collection into two at the given index.
///
/// Returns a newly allocated `Self`. `self` contains elements `[0, at)`,
/// and the returned `Self` contains elements `[at, len)`.
///
/// Note that the capacity of `self` does not change.
///
/// # Panics
///
/// Panics if `at > len`.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1,2,3];
/// let vec2 = vec.split_off(1);
/// assert_eq!(vec, [1]);
/// assert_eq!(vec2, [2, 3]);
/// ```
#[inline]
#[stable(feature = "split_off", since = "1.4.0")]
pub fn split_off(&mut self, at: usize) -> Self {
assert!(at <= self.len(), "`at` out of bounds");
let other_len = self.len - at;
let mut other = Vec::with_capacity(other_len);
// Unsafely `set_len` and copy items to `other`.
unsafe {
self.set_len(at);
other.set_len(other_len);
ptr::copy_nonoverlapping(self.as_ptr().offset(at as isize),
other.as_mut_ptr(),
other.len());
}
other
}
}
impl<T: Clone> Vec<T> {
/// Resizes the `Vec` in-place so that `len()` is equal to `new_len`.
///
/// If `new_len` is greater than `len()`, the `Vec` is extended by the
/// difference, with each additional slot filled with `value`.
/// If `new_len` is less than `len()`, the `Vec` is simply truncated.
///
/// # Examples
///
/// ```
/// let mut vec = vec!["hello"];
/// vec.resize(3, "world");
/// assert_eq!(vec, ["hello", "world", "world"]);
///
/// let mut vec = vec![1, 2, 3, 4];
/// vec.resize(2, 0);
/// assert_eq!(vec, [1, 2]);
/// ```
#[stable(feature = "vec_resize", since = "1.5.0")]
pub fn resize(&mut self, new_len: usize, value: T) {
let len = self.len();
if new_len > len {
self.extend_with_element(new_len - len, value);
} else {
self.truncate(new_len);
}
}
/// Extend the vector by `n` additional clones of `value`.
fn extend_with_element(&mut self, n: usize, value: T) {
self.reserve(n);
unsafe {
let len = self.len();
let mut ptr = self.as_mut_ptr().offset(len as isize);
// Write all elements except the last one
for i in 1..n {
ptr::write(ptr, value.clone());
ptr = ptr.offset(1);
// Increment the length in every step in case clone() panics
self.set_len(len + i);
}
if n > 0 {
// We can write the last element directly without cloning needlessly
ptr::write(ptr, value);
self.set_len(len + n);
}
}
}
/// Clones and appends all elements in a slice to the `Vec`.
///
/// Iterates over the slice `other`, clones each element, and then appends
/// it to this `Vec`. The `other` vector is traversed in-order.
///
/// Note that this function is same as `extend` except that it is
/// specialized to work with slices instead. If and when Rust gets
/// specialization this function will likely be deprecated (but still
/// available).
///
/// # Examples
///
/// ```
/// let mut vec = vec![1];
/// vec.extend_from_slice(&[2, 3, 4]);
/// assert_eq!(vec, [1, 2, 3, 4]);
/// ```
#[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
pub fn extend_from_slice(&mut self, other: &[T]) {
self.reserve(other.len());
for i in 0..other.len() {
let len = self.len();
// Unsafe code so this can be optimised to a memcpy (or something
// similarly fast) when T is Copy. LLVM is easily confused, so any
// extra operations during the loop can prevent this optimisation.
unsafe {
ptr::write(self.get_unchecked_mut(len), other.get_unchecked(i).clone());
self.set_len(len + 1);
}
}
}
}
impl<T: PartialEq> Vec<T> {
/// Removes consecutive repeated elements in the vector.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 2, 3, 2];
///
/// vec.dedup();
///
/// assert_eq!(vec, [1, 2, 3, 2]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn dedup(&mut self) {
unsafe {
// Although we have a mutable reference to `self`, we cannot make
// *arbitrary* changes. The `PartialEq` comparisons could panic, so we
// must ensure that the vector is in a valid state at all time.
//
// The way that we handle this is by using swaps; we iterate
// over all the elements, swapping as we go so that at the end
// the elements we wish to keep are in the front, and those we
// wish to reject are at the back. We can then truncate the
// vector. This operation is still O(n).
//
// Example: We start in this state, where `r` represents "next
// read" and `w` represents "next_write`.
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], this is not a duplicate, so
// we swap self[r] and self[w] (no effect as r==w) and then increment both
// r and w, leaving us with:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], this value is a duplicate,
// so we increment `r` but leave everything else unchanged:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], this is not a duplicate,
// so swap self[r] and self[w] and advance r and w:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 2 | 1 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Not a duplicate, repeat:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 2 | 3 | 1 | 3 |
// +---+---+---+---+---+---+
// w
//
// Duplicate, advance r. End of vec. Truncate to w.
let ln = self.len();
if ln <= 1 {
return;
}
// Avoid bounds checks by using raw pointers.
let p = self.as_mut_ptr();
let mut r: usize = 1;
let mut w: usize = 1;
while r < ln {
let p_r = p.offset(r as isize);
let p_wm1 = p.offset((w - 1) as isize);
if *p_r != *p_wm1 {
if r != w {
let p_w = p_wm1.offset(1);
mem::swap(&mut *p_r, &mut *p_w);
}
w += 1;
}
r += 1;
}
self.truncate(w);
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Internal methods and functions
////////////////////////////////////////////////////////////////////////////////
#[doc(hidden)]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
let mut v = Vec::with_capacity(n);
v.extend_with_element(n, elem);
v
}
////////////////////////////////////////////////////////////////////////////////
// Common trait implementations for Vec
////////////////////////////////////////////////////////////////////////////////
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for Vec<T> {
#[cfg(not(test))]
fn clone(&self) -> Vec<T> {
<[T]>::to_vec(&**self)
}
// HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
// required for this method definition, is not available. Instead use the
// `slice::to_vec` function which is only available with cfg(test)
// NB see the slice::hack module in slice.rs for more information
#[cfg(test)]
fn clone(&self) -> Vec<T> {
::slice::to_vec(&**self)
}
fn clone_from(&mut self, other: &Vec<T>) {
// drop anything in self that will not be overwritten
self.truncate(other.len());
let len = self.len();
// reuse the contained values' allocations/resources.
self.clone_from_slice(&other[..len]);
// self.len <= other.len due to the truncate above, so the
// slice here is always in-bounds.
self.extend_from_slice(&other[len..]);
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash> Hash for Vec<T> {
#[inline]
fn hash<H: hash::Hasher>(&self, state: &mut H) {
Hash::hash(&**self, state)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Index<usize> for Vec<T> {
type Output = T;
#[inline]
fn index(&self, index: usize) -> &T {
// NB built-in indexing via `&[T]`
&(**self)[index]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> IndexMut<usize> for Vec<T> {
#[inline]
fn index_mut(&mut self, index: usize) -> &mut T {
// NB built-in indexing via `&mut [T]`
&mut (**self)[index]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ops::Index<ops::Range<usize>> for Vec<T> {
type Output = [T];
#[inline]
fn index(&self, index: ops::Range<usize>) -> &[T] {
Index::index(&**self, index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ops::Index<ops::RangeTo<usize>> for Vec<T> {
type Output = [T];
#[inline]
fn index(&self, index: ops::RangeTo<usize>) -> &[T] {
Index::index(&**self, index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ops::Index<ops::RangeFrom<usize>> for Vec<T> {
type Output = [T];
#[inline]
fn index(&self, index: ops::RangeFrom<usize>) -> &[T] {
Index::index(&**self, index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ops::Index<ops::RangeFull> for Vec<T> {
type Output = [T];
#[inline]
fn index(&self, _index: ops::RangeFull) -> &[T] {
self
}
}
#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
impl<T> ops::Index<ops::RangeInclusive<usize>> for Vec<T> {
type Output = [T];
#[inline]
fn index(&self, index: ops::RangeInclusive<usize>) -> &[T] {
Index::index(&**self, index)
}
}
#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
impl<T> ops::Index<ops::RangeToInclusive<usize>> for Vec<T> {
type Output = [T];
#[inline]
fn index(&self, index: ops::RangeToInclusive<usize>) -> &[T] {
Index::index(&**self, index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ops::IndexMut<ops::Range<usize>> for Vec<T> {
#[inline]
fn index_mut(&mut self, index: ops::Range<usize>) -> &mut [T] {
IndexMut::index_mut(&mut **self, index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ops::IndexMut<ops::RangeTo<usize>> for Vec<T> {
#[inline]
fn index_mut(&mut self, index: ops::RangeTo<usize>) -> &mut [T] {
IndexMut::index_mut(&mut **self, index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ops::IndexMut<ops::RangeFrom<usize>> for Vec<T> {
#[inline]
fn index_mut(&mut self, index: ops::RangeFrom<usize>) -> &mut [T] {
IndexMut::index_mut(&mut **self, index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ops::IndexMut<ops::RangeFull> for Vec<T> {
#[inline]
fn index_mut(&mut self, _index: ops::RangeFull) -> &mut [T] {
self
}
}
#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
impl<T> ops::IndexMut<ops::RangeInclusive<usize>> for Vec<T> {
#[inline]
fn index_mut(&mut self, index: ops::RangeInclusive<usize>) -> &mut [T] {
IndexMut::index_mut(&mut **self, index)
}
}
#[unstable(feature = "inclusive_range", reason = "recently added, follows RFC", issue = "28237")]
impl<T> ops::IndexMut<ops::RangeToInclusive<usize>> for Vec<T> {
#[inline]
fn index_mut(&mut self, index: ops::RangeToInclusive<usize>) -> &mut [T] {
IndexMut::index_mut(&mut **self, index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ops::Deref for Vec<T> {
type Target = [T];
fn deref(&self) -> &[T] {
unsafe {
let p = self.buf.ptr();
assume(!p.is_null());
slice::from_raw_parts(p, self.len)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ops::DerefMut for Vec<T> {
fn deref_mut(&mut self) -> &mut [T] {
unsafe {
let ptr = self.buf.ptr();
assume(!ptr.is_null());
slice::from_raw_parts_mut(ptr, self.len)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> FromIterator<T> for Vec<T> {
#[inline]
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
// Unroll the first iteration, as the vector is going to be
// expanded on this iteration in every case when the iterable is not
// empty, but the loop in extend_desugared() is not going to see the
// vector being full in the few subsequent loop iterations.
// So we get better branch prediction.
let mut iterator = iter.into_iter();
let mut vector = match iterator.next() {
None => return Vec::new(),
Some(element) => {
let (lower, _) = iterator.size_hint();
let mut vector = Vec::with_capacity(lower.saturating_add(1));
unsafe {
ptr::write(vector.get_unchecked_mut(0), element);
vector.set_len(1);
}
vector
}
};
vector.extend_desugared(iterator);
vector
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> IntoIterator for Vec<T> {
type Item = T;
type IntoIter = IntoIter<T>;
/// Creates a consuming iterator, that is, one that moves each value out of
/// the vector (from start to end). The vector cannot be used after calling
/// this.
///
/// # Examples
///
/// ```
/// let v = vec!["a".to_string(), "b".to_string()];
/// for s in v.into_iter() {
/// // s has type String, not &String
/// println!("{}", s);
/// }
/// ```
#[inline]
fn into_iter(mut self) -> IntoIter<T> {
unsafe {
let ptr = self.as_mut_ptr();
assume(!ptr.is_null());
let begin = ptr as *const T;
let end = if mem::size_of::<T>() == 0 {
arith_offset(ptr as *const i8, self.len() as isize) as *const T
} else {
ptr.offset(self.len() as isize) as *const T
};
let buf = ptr::read(&self.buf);
mem::forget(self);
IntoIter {
_buf: buf,
ptr: begin,
end: end,
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> IntoIterator for &'a Vec<T> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> slice::Iter<'a, T> {
self.iter()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> IntoIterator for &'a mut Vec<T> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
fn into_iter(mut self) -> slice::IterMut<'a, T> {
self.iter_mut()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Extend<T> for Vec<T> {
#[inline]
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
<Self as SpecExtend<I>>::spec_extend(self, iter);
}
}
impl<I: IntoIterator> SpecExtend<I> for Vec<I::Item> {
default fn spec_extend(&mut self, iter: I) {
self.extend_desugared(iter.into_iter())
}
}
impl<T> SpecExtend<Vec<T>> for Vec<T> {
fn spec_extend(&mut self, ref mut other: Vec<T>) {
self.append(other);
}
}
impl<T> Vec<T> {
fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
// This function should be the moral equivalent of:
//
// for item in iterator {
// self.push(item);
// }
while let Some(element) = iterator.next() {
let len = self.len();
if len == self.capacity() {
let (lower, _) = iterator.size_hint();
self.reserve(lower.saturating_add(1));
}
unsafe {
ptr::write(self.get_unchecked_mut(len), element);
// NB can't overflow since we would have had to alloc the address space
self.set_len(len + 1);
}
}
}
}
#[stable(feature = "extend_ref", since = "1.2.0")]
impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T> {
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
self.extend(iter.into_iter().cloned());
}
}
macro_rules! __impl_slice_eq1 {
($Lhs: ty, $Rhs: ty) => {
__impl_slice_eq1! { $Lhs, $Rhs, Sized }
};
($Lhs: ty, $Rhs: ty, $Bound: ident) => {
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
#[inline]
fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] }
#[inline]
fn ne(&self, other: &$Rhs) -> bool { self[..] != other[..] }
}
}
}
__impl_slice_eq1! { Vec<A>, Vec<B> }
__impl_slice_eq1! { Vec<A>, &'b [B] }
__impl_slice_eq1! { Vec<A>, &'b mut [B] }
__impl_slice_eq1! { Cow<'a, [A]>, &'b [B], Clone }
__impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B], Clone }
__impl_slice_eq1! { Cow<'a, [A]>, Vec<B>, Clone }
macro_rules! array_impls {
($($N: expr)+) => {
$(
// NOTE: some less important impls are omitted to reduce code bloat
__impl_slice_eq1! { Vec<A>, [B; $N] }
__impl_slice_eq1! { Vec<A>, &'b [B; $N] }
// __impl_slice_eq1! { Vec<A>, &'b mut [B; $N] }
// __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone }
// __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone }
// __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone }
)+
}
}
array_impls! {
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd> PartialOrd for Vec<T> {
#[inline]
fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering> {
PartialOrd::partial_cmp(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Eq> Eq for Vec<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Ord for Vec<T> {
#[inline]
fn cmp(&self, other: &Vec<T>) -> Ordering {
Ord::cmp(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for Vec<T> {
#[unsafe_destructor_blind_to_params]
fn drop(&mut self) {
if self.buf.unsafe_no_drop_flag_needs_drop() {
unsafe {
// use drop for [T]
ptr::drop_in_place(&mut self[..]);
}
}
// RawVec handles deallocation
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for Vec<T> {
fn default() -> Vec<T> {
Vec::new()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug> fmt::Debug for Vec<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> AsRef<Vec<T>> for Vec<T> {
fn as_ref(&self) -> &Vec<T> {
self
}
}
#[stable(feature = "vec_as_mut", since = "1.5.0")]
impl<T> AsMut<Vec<T>> for Vec<T> {
fn as_mut(&mut self) -> &mut Vec<T> {
self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> AsRef<[T]> for Vec<T> {
fn as_ref(&self) -> &[T] {
self
}
}
#[stable(feature = "vec_as_mut", since = "1.5.0")]
impl<T> AsMut<[T]> for Vec<T> {
fn as_mut(&mut self) -> &mut [T] {
self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: Clone> From<&'a [T]> for Vec<T> {
#[cfg(not(test))]
fn from(s: &'a [T]) -> Vec<T> {
s.to_vec()
}
#[cfg(test)]
fn from(s: &'a [T]) -> Vec<T> {
::slice::to_vec(s)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> From<&'a str> for Vec<u8> {
fn from(s: &'a str) -> Vec<u8> {
From::from(s.as_bytes())
}
}
////////////////////////////////////////////////////////////////////////////////
// Clone-on-write
////////////////////////////////////////////////////////////////////////////////
#[stable(feature = "cow_from_vec", since = "1.7.0")]
impl<'a, T: Clone> From<&'a [T]> for Cow<'a, [T]> {
fn from(s: &'a [T]) -> Cow<'a, [T]> {
Cow::Borrowed(s)
}
}
#[stable(feature = "cow_from_vec", since = "1.7.0")]
impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]> {
fn from(v: Vec<T>) -> Cow<'a, [T]> {
Cow::Owned(v)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> FromIterator<T> for Cow<'a, [T]> where T: Clone {
fn from_iter<I: IntoIterator<Item = T>>(it: I) -> Cow<'a, [T]> {
Cow::Owned(FromIterator::from_iter(it))
}
}
////////////////////////////////////////////////////////////////////////////////
// Iterators
////////////////////////////////////////////////////////////////////////////////
/// An iterator that moves out of a vector.
///
/// This `struct` is created by the `into_iter` method on [`Vec`][`Vec`] (provided
/// by the [`IntoIterator`] trait).
///
/// [`Vec`]: struct.Vec.html
/// [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<T> {
_buf: RawVec<T>,
ptr: *const T,
end: *const T,
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for IntoIter<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Sync> Sync for IntoIter<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Iterator for IntoIter<T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
unsafe {
if self.ptr == self.end {
None
} else {
if mem::size_of::<T>() == 0 {
// purposefully don't use 'ptr.offset' because for
// vectors with 0-size elements this would return the
// same pointer.
self.ptr = arith_offset(self.ptr as *const i8, 1) as *const T;
// Use a non-null pointer value
Some(ptr::read(EMPTY as *mut T))
} else {
let old = self.ptr;
self.ptr = self.ptr.offset(1);
Some(ptr::read(old))
}
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let diff = (self.end as usize) - (self.ptr as usize);
let size = mem::size_of::<T>();
let exact = diff /
(if size == 0 {
1
} else {
size
});
(exact, Some(exact))
}
#[inline]
fn count(self) -> usize {
self.len()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> DoubleEndedIterator for IntoIter<T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
unsafe {
if self.end == self.ptr {
None
} else {
if mem::size_of::<T>() == 0 {
// See above for why 'ptr.offset' isn't used
self.end = arith_offset(self.end as *const i8, -1) as *const T;
// Use a non-null pointer value
Some(ptr::read(EMPTY as *mut T))
} else {
self.end = self.end.offset(-1);
Some(ptr::read(self.end))
}
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for IntoIter<T> {}
#[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
impl<T: Clone> Clone for IntoIter<T> {
fn clone(&self) -> IntoIter<T> {
unsafe {
slice::from_raw_parts(self.ptr, self.len()).to_owned().into_iter()
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for IntoIter<T> {
#[unsafe_destructor_blind_to_params]
fn drop(&mut self) {
// destroy the remaining elements
for _x in self {}
// RawVec handles deallocation
}
}
/// A draining iterator for `Vec<T>`.
///
/// This `struct` is created by the [`drain`] method on [`Vec`].
///
/// [`drain`]: struct.Vec.html#method.drain
/// [`Vec`]: struct.Vec.html
#[stable(feature = "drain", since = "1.6.0")]
pub struct Drain<'a, T: 'a> {
/// Index of tail to preserve
tail_start: usize,
/// Length of tail
tail_len: usize,
/// Current remaining range to remove
iter: slice::Iter<'a, T>,
vec: Shared<Vec<T>>,
}
#[stable(feature = "drain", since = "1.6.0")]
unsafe impl<'a, T: Sync> Sync for Drain<'a, T> {}
#[stable(feature = "drain", since = "1.6.0")]
unsafe impl<'a, T: Send> Send for Drain<'a, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Drain<'a, T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) })
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) })
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Drop for Drain<'a, T> {
fn drop(&mut self) {
// exhaust self first
while let Some(_) = self.next() {}
if self.tail_len > 0 {
unsafe {
let source_vec = &mut **self.vec;
// memmove back untouched tail, update to new length
let start = source_vec.len();
let tail = self.tail_start;
let src = source_vec.as_ptr().offset(tail as isize);
let dst = source_vec.as_mut_ptr().offset(start as isize);
ptr::copy(src, dst, self.tail_len);
source_vec.set_len(start + self.tail_len);
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> ExactSizeIterator for Drain<'a, T> {}