blob: 20f64597b7876fcd7d9c1a6b749f60f7b5fc2b0b [file] [log] [blame]
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Generalized type folding mechanism. The setup is a bit convoluted
//! but allows for convenient usage. Let T be an instance of some
//! "foldable type" (one which implements `TypeFoldable`) and F be an
//! instance of a "folder" (a type which implements `TypeFolder`). Then
//! the setup is intended to be:
//!
//! T.fold_with(F) --calls--> F.fold_T(T) --calls--> T.super_fold_with(F)
//!
//! This way, when you define a new folder F, you can override
//! `fold_T()` to customize the behavior, and invoke `T.super_fold_with()`
//! to get the original behavior. Meanwhile, to actually fold
//! something, you can just write `T.fold_with(F)`, which is
//! convenient. (Note that `fold_with` will also transparently handle
//! things like a `Vec<T>` where T is foldable and so on.)
//!
//! In this ideal setup, the only function that actually *does*
//! anything is `T.super_fold_with()`, which traverses the type `T`.
//! Moreover, `T.super_fold_with()` should only ever call `T.fold_with()`.
//!
//! In some cases, we follow a degenerate pattern where we do not have
//! a `fold_T` method. Instead, `T.fold_with` traverses the structure directly.
//! This is suboptimal because the behavior cannot be overridden, but it's
//! much less work to implement. If you ever *do* need an override that
//! doesn't exist, it's not hard to convert the degenerate pattern into the
//! proper thing.
//!
//! A `TypeFoldable` T can also be visited by a `TypeVisitor` V using similar setup:
//! T.visit_with(V) --calls--> V.visit_T(T) --calls--> T.super_visit_with(V).
//! These methods return true to indicate that the visitor has found what it is looking for
//! and does not need to visit anything else.
use mir::interpret::ConstValue;
use hir::def_id::DefId;
use ty::{self, Binder, Ty, TyCtxt, TypeFlags};
use std::collections::BTreeMap;
use std::fmt;
use util::nodemap::FxHashSet;
/// The TypeFoldable trait is implemented for every type that can be folded.
/// Basically, every type that has a corresponding method in TypeFolder.
///
/// To implement this conveniently, use the
/// `BraceStructTypeFoldableImpl` etc macros found in `macros.rs`.
pub trait TypeFoldable<'tcx>: fmt::Debug + Clone {
fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self;
fn fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self {
self.super_fold_with(folder)
}
fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool;
fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
self.super_visit_with(visitor)
}
/// True if `self` has any late-bound regions that are either
/// bound by `binder` or bound by some binder outside of `binder`.
/// If `binder` is `ty::INNERMOST`, this indicates whether
/// there are any late-bound regions that appear free.
fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
self.visit_with(&mut HasEscapingVarsVisitor { outer_index: binder })
}
/// True if this `self` has any regions that escape `binder` (and
/// hence are not bound by it).
fn has_vars_bound_above(&self, binder: ty::DebruijnIndex) -> bool {
self.has_vars_bound_at_or_above(binder.shifted_in(1))
}
fn has_escaping_bound_vars(&self) -> bool {
self.has_vars_bound_at_or_above(ty::INNERMOST)
}
fn has_type_flags(&self, flags: TypeFlags) -> bool {
self.visit_with(&mut HasTypeFlagsVisitor { flags })
}
fn has_projections(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_PROJECTION)
}
fn references_error(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_TY_ERR)
}
fn has_param_types(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_PARAMS)
}
fn has_self_ty(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_SELF)
}
fn has_infer_types(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_TY_INFER)
}
fn needs_infer(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_TY_INFER | TypeFlags::HAS_RE_INFER)
}
fn has_placeholders(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_RE_PLACEHOLDER | TypeFlags::HAS_TY_PLACEHOLDER)
}
fn needs_subst(&self) -> bool {
self.has_type_flags(TypeFlags::NEEDS_SUBST)
}
fn has_re_placeholders(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_RE_PLACEHOLDER)
}
fn has_closure_types(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_TY_CLOSURE)
}
/// "Free" regions in this context means that it has any region
/// that is not (a) erased or (b) late-bound.
fn has_free_regions(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
}
/// True if there any any un-erased free regions.
fn has_erasable_regions(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
}
/// Indicates whether this value references only 'global'
/// types/lifetimes that are the same regardless of what fn we are
/// in. This is used for caching.
fn is_global(&self) -> bool {
!self.has_type_flags(TypeFlags::HAS_FREE_LOCAL_NAMES)
}
/// True if there are any late-bound regions
fn has_late_bound_regions(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_RE_LATE_BOUND)
}
/// A visitor that does not recurse into types, works like `fn walk_shallow` in `Ty`.
fn visit_tys_shallow(&self, visit: impl FnMut(Ty<'tcx>) -> bool) -> bool {
pub struct Visitor<F>(F);
impl<'tcx, F: FnMut(Ty<'tcx>) -> bool> TypeVisitor<'tcx> for Visitor<F> {
fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
self.0(ty)
}
}
self.visit_with(&mut Visitor(visit))
}
}
/// The TypeFolder trait defines the actual *folding*. There is a
/// method defined for every foldable type. Each of these has a
/// default implementation that does an "identity" fold. Within each
/// identity fold, it should invoke `foo.fold_with(self)` to fold each
/// sub-item.
pub trait TypeFolder<'gcx: 'tcx, 'tcx> : Sized {
fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx>;
fn fold_binder<T>(&mut self, t: &Binder<T>) -> Binder<T>
where T : TypeFoldable<'tcx>
{
t.super_fold_with(self)
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
t.super_fold_with(self)
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
r.super_fold_with(self)
}
fn fold_const(&mut self, c: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
c.super_fold_with(self)
}
}
pub trait TypeVisitor<'tcx> : Sized {
fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
t.super_visit_with(self)
}
fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
t.super_visit_with(self)
}
fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
r.super_visit_with(self)
}
fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
c.super_visit_with(self)
}
}
///////////////////////////////////////////////////////////////////////////
// Some sample folders
pub struct BottomUpFolder<'a, 'gcx: 'a+'tcx, 'tcx: 'a, F, G>
where F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
{
pub tcx: TyCtxt<'a, 'gcx, 'tcx>,
pub fldop: F,
pub reg_op: G,
}
impl<'a, 'gcx, 'tcx, F, G> TypeFolder<'gcx, 'tcx> for BottomUpFolder<'a, 'gcx, 'tcx, F, G>
where F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
{
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
let t1 = ty.super_fold_with(self);
(self.fldop)(t1)
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
let r = r.super_fold_with(self);
(self.reg_op)(r)
}
}
///////////////////////////////////////////////////////////////////////////
// Region folder
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
/// Collects the free and escaping regions in `value` into `region_set`. Returns
/// whether any late-bound regions were skipped
pub fn collect_regions<T>(self,
value: &T,
region_set: &mut FxHashSet<ty::Region<'tcx>>)
-> bool
where T : TypeFoldable<'tcx>
{
let mut have_bound_regions = false;
self.fold_regions(value, &mut have_bound_regions, |r, d| {
region_set.insert(self.mk_region(r.shifted_out_to_binder(d)));
r
});
have_bound_regions
}
/// Folds the escaping and free regions in `value` using `f`, and
/// sets `skipped_regions` to true if any late-bound region was found
/// and skipped.
pub fn fold_regions<T>(
self,
value: &T,
skipped_regions: &mut bool,
mut f: impl FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
) -> T
where
T : TypeFoldable<'tcx>,
{
value.fold_with(&mut RegionFolder::new(self, skipped_regions, &mut f))
}
/// Invoke `callback` on every region appearing free in `value`.
pub fn for_each_free_region(
self,
value: &impl TypeFoldable<'tcx>,
mut callback: impl FnMut(ty::Region<'tcx>),
) {
self.any_free_region_meets(value, |r| {
callback(r);
false
});
}
/// True if `callback` returns true for every region appearing free in `value`.
pub fn all_free_regions_meet(
self,
value: &impl TypeFoldable<'tcx>,
mut callback: impl FnMut(ty::Region<'tcx>) -> bool,
) -> bool {
!self.any_free_region_meets(value, |r| !callback(r))
}
/// True if `callback` returns true for some region appearing free in `value`.
pub fn any_free_region_meets(
self,
value: &impl TypeFoldable<'tcx>,
callback: impl FnMut(ty::Region<'tcx>) -> bool,
) -> bool {
return value.visit_with(&mut RegionVisitor {
outer_index: ty::INNERMOST,
callback
});
struct RegionVisitor<F> {
/// The index of a binder *just outside* the things we have
/// traversed. If we encounter a bound region bound by this
/// binder or one outer to it, it appears free. Example:
///
/// ```
/// for<'a> fn(for<'b> fn(), T)
/// ^ ^ ^ ^
/// | | | | here, would be shifted in 1
/// | | | here, would be shifted in 2
/// | | here, would be INNERMOST shifted in by 1
/// | here, initially, binder would be INNERMOST
/// ```
///
/// You see that, initially, *any* bound value is free,
/// because we've not traversed any binders. As we pass
/// through a binder, we shift the `outer_index` by 1 to
/// account for the new binder that encloses us.
outer_index: ty::DebruijnIndex,
callback: F,
}
impl<'tcx, F> TypeVisitor<'tcx> for RegionVisitor<F>
where F: FnMut(ty::Region<'tcx>) -> bool
{
fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
self.outer_index.shift_in(1);
let result = t.skip_binder().visit_with(self);
self.outer_index.shift_out(1);
result
}
fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
match *r {
ty::ReLateBound(debruijn, _) if debruijn < self.outer_index => {
false // ignore bound regions, keep visiting
}
_ => (self.callback)(r),
}
}
fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
// We're only interested in types involving regions
if ty.flags.intersects(TypeFlags::HAS_FREE_REGIONS) {
ty.super_visit_with(self)
} else {
false // keep visiting
}
}
}
}
}
/// Folds over the substructure of a type, visiting its component
/// types and all regions that occur *free* within it.
///
/// That is, `Ty` can contain function or method types that bind
/// regions at the call site (`ReLateBound`), and occurrences of
/// regions (aka "lifetimes") that are bound within a type are not
/// visited by this folder; only regions that occur free will be
/// visited by `fld_r`.
pub struct RegionFolder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
tcx: TyCtxt<'a, 'gcx, 'tcx>,
skipped_regions: &'a mut bool,
/// Stores the index of a binder *just outside* the stuff we have
/// visited. So this begins as INNERMOST; when we pass through a
/// binder, it is incremented (via `shift_in`).
current_index: ty::DebruijnIndex,
/// Callback invokes for each free region. The `DebruijnIndex`
/// points to the binder *just outside* the ones we have passed
/// through.
fold_region_fn: &'a mut (dyn FnMut(
ty::Region<'tcx>,
ty::DebruijnIndex,
) -> ty::Region<'tcx> + 'a),
}
impl<'a, 'gcx, 'tcx> RegionFolder<'a, 'gcx, 'tcx> {
#[inline]
pub fn new(
tcx: TyCtxt<'a, 'gcx, 'tcx>,
skipped_regions: &'a mut bool,
fold_region_fn: &'a mut dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
) -> RegionFolder<'a, 'gcx, 'tcx> {
RegionFolder {
tcx,
skipped_regions,
current_index: ty::INNERMOST,
fold_region_fn,
}
}
}
impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for RegionFolder<'a, 'gcx, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }
fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
self.current_index.shift_in(1);
let t = t.super_fold_with(self);
self.current_index.shift_out(1);
t
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match *r {
ty::ReLateBound(debruijn, _) if debruijn < self.current_index => {
debug!("RegionFolder.fold_region({:?}) skipped bound region (current index={:?})",
r, self.current_index);
*self.skipped_regions = true;
r
}
_ => {
debug!("RegionFolder.fold_region({:?}) folding free region (current_index={:?})",
r, self.current_index);
(self.fold_region_fn)(r, self.current_index)
}
}
}
}
///////////////////////////////////////////////////////////////////////////
// Bound vars replacer
/// Replaces the escaping bound vars (late bound regions or bound types) in a type.
struct BoundVarReplacer<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
tcx: TyCtxt<'a, 'gcx, 'tcx>,
/// As with `RegionFolder`, represents the index of a binder *just outside*
/// the ones we have visited.
current_index: ty::DebruijnIndex,
fld_r: &'a mut (dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx> + 'a),
fld_t: &'a mut (dyn FnMut(ty::BoundTy) -> ty::Ty<'tcx> + 'a),
}
impl<'a, 'gcx, 'tcx> BoundVarReplacer<'a, 'gcx, 'tcx> {
fn new<F, G>(
tcx: TyCtxt<'a, 'gcx, 'tcx>,
fld_r: &'a mut F,
fld_t: &'a mut G
) -> Self
where F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
G: FnMut(ty::BoundTy) -> ty::Ty<'tcx>
{
BoundVarReplacer {
tcx,
current_index: ty::INNERMOST,
fld_r,
fld_t,
}
}
}
impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for BoundVarReplacer<'a, 'gcx, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }
fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
self.current_index.shift_in(1);
let t = t.super_fold_with(self);
self.current_index.shift_out(1);
t
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
match t.sty {
ty::Bound(debruijn, bound_ty) => {
if debruijn == self.current_index {
let fld_t = &mut self.fld_t;
let ty = fld_t(bound_ty);
ty::fold::shift_vars(
self.tcx,
&ty,
self.current_index.as_u32()
)
} else {
t
}
}
_ => {
if !t.has_vars_bound_at_or_above(self.current_index) {
// Nothing more to substitute.
t
} else {
t.super_fold_with(self)
}
}
}
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match *r {
ty::ReLateBound(debruijn, br) if debruijn == self.current_index => {
let fld_r = &mut self.fld_r;
let region = fld_r(br);
if let ty::ReLateBound(debruijn1, br) = *region {
// If the callback returns a late-bound region,
// that region should always use the INNERMOST
// debruijn index. Then we adjust it to the
// correct depth.
assert_eq!(debruijn1, ty::INNERMOST);
self.tcx.mk_region(ty::ReLateBound(debruijn, br))
} else {
region
}
}
_ => r
}
}
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
/// Replace all regions bound by the given `Binder` with the
/// results returned by the closure; the closure is expected to
/// return a free region (relative to this binder), and hence the
/// binder is removed in the return type. The closure is invoked
/// once for each unique `BoundRegion`; multiple references to the
/// same `BoundRegion` will reuse the previous result. A map is
/// returned at the end with each bound region and the free region
/// that replaced it.
///
/// This method only replaces late bound regions and the result may still
/// contain escaping bound types.
pub fn replace_late_bound_regions<T, F>(
self,
value: &Binder<T>,
fld_r: F
) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
where F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
T: TypeFoldable<'tcx>
{
// identity for bound types
let fld_t = |bound_ty| self.mk_ty(ty::Bound(ty::INNERMOST, bound_ty));
self.replace_escaping_bound_vars(value.skip_binder(), fld_r, fld_t)
}
/// Replace all escaping bound vars. The `fld_r` closure replaces escaping
/// bound regions while the `fld_t` closure replaces escaping bound types.
pub fn replace_escaping_bound_vars<T, F, G>(
self,
value: &T,
mut fld_r: F,
mut fld_t: G
) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
where F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
G: FnMut(ty::BoundTy) -> ty::Ty<'tcx>,
T: TypeFoldable<'tcx>
{
let mut map = BTreeMap::new();
if !value.has_escaping_bound_vars() {
(value.clone(), map)
} else {
let mut real_fld_r = |br| {
*map.entry(br).or_insert_with(|| fld_r(br))
};
let mut replacer = BoundVarReplacer::new(self, &mut real_fld_r, &mut fld_t);
let result = value.fold_with(&mut replacer);
(result, map)
}
}
/// Replace all types or regions bound by the given `Binder`. The `fld_r`
/// closure replaces bound regions while the `fld_t` closure replaces bound
/// types.
pub fn replace_bound_vars<T, F, G>(
self,
value: &Binder<T>,
fld_r: F,
fld_t: G
) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
where F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
G: FnMut(ty::BoundTy) -> ty::Ty<'tcx>,
T: TypeFoldable<'tcx>
{
self.replace_escaping_bound_vars(value.skip_binder(), fld_r, fld_t)
}
/// Replace any late-bound regions bound in `value` with
/// free variants attached to `all_outlive_scope`.
pub fn liberate_late_bound_regions<T>(
&self,
all_outlive_scope: DefId,
value: &ty::Binder<T>
) -> T
where T: TypeFoldable<'tcx> {
self.replace_late_bound_regions(value, |br| {
self.mk_region(ty::ReFree(ty::FreeRegion {
scope: all_outlive_scope,
bound_region: br
}))
}).0
}
/// Flattens multiple binding levels into one. So `for<'a> for<'b> Foo`
/// becomes `for<'a,'b> Foo`.
pub fn flatten_late_bound_regions<T>(self, bound2_value: &Binder<Binder<T>>)
-> Binder<T>
where T: TypeFoldable<'tcx>
{
let bound0_value = bound2_value.skip_binder().skip_binder();
let value = self.fold_regions(bound0_value, &mut false, |region, current_depth| {
match *region {
ty::ReLateBound(debruijn, br) => {
// We assume no regions bound *outside* of the
// binders in `bound2_value` (nmatsakis added in
// the course of this PR; seems like a reasonable
// sanity check though).
assert!(debruijn == current_depth);
self.mk_region(ty::ReLateBound(current_depth, br))
}
_ => {
region
}
}
});
Binder::bind(value)
}
/// Returns a set of all late-bound regions that are constrained
/// by `value`, meaning that if we instantiate those LBR with
/// variables and equate `value` with something else, those
/// variables will also be equated.
pub fn collect_constrained_late_bound_regions<T>(&self, value: &Binder<T>)
-> FxHashSet<ty::BoundRegion>
where T : TypeFoldable<'tcx>
{
self.collect_late_bound_regions(value, true)
}
/// Returns a set of all late-bound regions that appear in `value` anywhere.
pub fn collect_referenced_late_bound_regions<T>(&self, value: &Binder<T>)
-> FxHashSet<ty::BoundRegion>
where T : TypeFoldable<'tcx>
{
self.collect_late_bound_regions(value, false)
}
fn collect_late_bound_regions<T>(&self, value: &Binder<T>, just_constraint: bool)
-> FxHashSet<ty::BoundRegion>
where T : TypeFoldable<'tcx>
{
let mut collector = LateBoundRegionsCollector::new(just_constraint);
let result = value.skip_binder().visit_with(&mut collector);
assert!(!result); // should never have stopped early
collector.regions
}
/// Replace any late-bound regions bound in `value` with `'erased`. Useful in codegen but also
/// method lookup and a few other places where precise region relationships are not required.
pub fn erase_late_bound_regions<T>(self, value: &Binder<T>) -> T
where T : TypeFoldable<'tcx>
{
self.replace_late_bound_regions(value, |_| self.types.re_erased).0
}
/// Rewrite any late-bound regions so that they are anonymous. Region numbers are
/// assigned starting at 1 and increasing monotonically in the order traversed
/// by the fold operation.
///
/// The chief purpose of this function is to canonicalize regions so that two
/// `FnSig`s or `TraitRef`s which are equivalent up to region naming will become
/// structurally identical. For example, `for<'a, 'b> fn(&'a isize, &'b isize)` and
/// `for<'a, 'b> fn(&'b isize, &'a isize)` will become identical after anonymization.
pub fn anonymize_late_bound_regions<T>(self, sig: &Binder<T>) -> Binder<T>
where T : TypeFoldable<'tcx>,
{
let mut counter = 0;
Binder::bind(self.replace_late_bound_regions(sig, |_| {
counter += 1;
self.mk_region(ty::ReLateBound(ty::INNERMOST, ty::BrAnon(counter)))
}).0)
}
}
///////////////////////////////////////////////////////////////////////////
// Shifter
//
// Shifts the De Bruijn indices on all escaping bound vars by a
// fixed amount. Useful in substitution or when otherwise introducing
// a binding level that is not intended to capture the existing bound
// vars. See comment on `shift_vars_through_binders` method in
// `subst.rs` for more details.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
enum Direction {
In,
Out,
}
struct Shifter<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
tcx: TyCtxt<'a, 'gcx, 'tcx>,
current_index: ty::DebruijnIndex,
amount: u32,
direction: Direction,
}
impl Shifter<'a, 'gcx, 'tcx> {
pub fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>, amount: u32, direction: Direction) -> Self {
Shifter {
tcx,
current_index: ty::INNERMOST,
amount,
direction,
}
}
}
impl TypeFolder<'gcx, 'tcx> for Shifter<'a, 'gcx, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }
fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
self.current_index.shift_in(1);
let t = t.super_fold_with(self);
self.current_index.shift_out(1);
t
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
match *r {
ty::ReLateBound(debruijn, br) => {
if self.amount == 0 || debruijn < self.current_index {
r
} else {
let debruijn = match self.direction {
Direction::In => debruijn.shifted_in(self.amount),
Direction::Out => {
assert!(debruijn.as_u32() >= self.amount);
debruijn.shifted_out(self.amount)
}
};
let shifted = ty::ReLateBound(debruijn, br);
self.tcx.mk_region(shifted)
}
}
_ => r
}
}
fn fold_ty(&mut self, ty: ty::Ty<'tcx>) -> ty::Ty<'tcx> {
match ty.sty {
ty::Bound(debruijn, bound_ty) => {
if self.amount == 0 || debruijn < self.current_index {
ty
} else {
let debruijn = match self.direction {
Direction::In => debruijn.shifted_in(self.amount),
Direction::Out => {
assert!(debruijn.as_u32() >= self.amount);
debruijn.shifted_out(self.amount)
}
};
self.tcx.mk_ty(
ty::Bound(debruijn, bound_ty)
)
}
}
_ => ty.super_fold_with(self),
}
}
}
pub fn shift_region<'a, 'gcx, 'tcx>(
tcx: TyCtxt<'a, 'gcx, 'tcx>,
region: ty::Region<'tcx>,
amount: u32
) -> ty::Region<'tcx> {
match region {
ty::ReLateBound(debruijn, br) if amount > 0 => {
tcx.mk_region(ty::ReLateBound(debruijn.shifted_in(amount), *br))
}
_ => {
region
}
}
}
pub fn shift_vars<'a, 'gcx, 'tcx, T>(
tcx: TyCtxt<'a, 'gcx, 'tcx>,
value: &T,
amount: u32
) -> T where T: TypeFoldable<'tcx> {
debug!("shift_vars(value={:?}, amount={})",
value, amount);
value.fold_with(&mut Shifter::new(tcx, amount, Direction::In))
}
pub fn shift_out_vars<'a, 'gcx, 'tcx, T>(
tcx: TyCtxt<'a, 'gcx, 'tcx>,
value: &T,
amount: u32
) -> T where T: TypeFoldable<'tcx> {
debug!("shift_out_vars(value={:?}, amount={})",
value, amount);
value.fold_with(&mut Shifter::new(tcx, amount, Direction::Out))
}
/// An "escaping var" is a bound var whose binder is not part of `t`. A bound var can be a
/// bound region or a bound type.
///
/// So, for example, consider a type like the following, which has two binders:
///
/// for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
/// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
/// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ inner scope
///
/// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
/// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
/// fn type*, that type has an escaping region: `'a`.
///
/// Note that what I'm calling an "escaping var" is often just called a "free var". However,
/// we already use the term "free var". It refers to the regions or types that we use to represent
/// bound regions or type params on a fn definition while we are type checking its body.
///
/// To clarify, conceptually there is no particular difference between
/// an "escaping" var and a "free" var. However, there is a big
/// difference in practice. Basically, when "entering" a binding
/// level, one is generally required to do some sort of processing to
/// a bound var, such as replacing it with a fresh/placeholder
/// var, or making an entry in the environment to represent the
/// scope to which it is attached, etc. An escaping var represents
/// a bound var for which this processing has not yet been done.
struct HasEscapingVarsVisitor {
/// Anything bound by `outer_index` or "above" is escaping
outer_index: ty::DebruijnIndex,
}
impl<'tcx> TypeVisitor<'tcx> for HasEscapingVarsVisitor {
fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
self.outer_index.shift_in(1);
let result = t.super_visit_with(self);
self.outer_index.shift_out(1);
result
}
fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
// If the outer-exclusive-binder is *strictly greater* than
// `outer_index`, that means that `t` contains some content
// bound at `outer_index` or above (because
// `outer_exclusive_binder` is always 1 higher than the
// content in `t`). Therefore, `t` has some escaping vars.
t.outer_exclusive_binder > self.outer_index
}
fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
// If the region is bound by `outer_index` or anything outside
// of outer index, then it escapes the binders we have
// visited.
r.bound_at_or_above_binder(self.outer_index)
}
}
struct HasTypeFlagsVisitor {
flags: ty::TypeFlags,
}
impl<'tcx> TypeVisitor<'tcx> for HasTypeFlagsVisitor {
fn visit_ty(&mut self, t: Ty<'_>) -> bool {
debug!("HasTypeFlagsVisitor: t={:?} t.flags={:?} self.flags={:?}", t, t.flags, self.flags);
t.flags.intersects(self.flags)
}
fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
let flags = r.type_flags();
debug!("HasTypeFlagsVisitor: r={:?} r.flags={:?} self.flags={:?}", r, flags, self.flags);
flags.intersects(self.flags)
}
fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
if let ConstValue::Unevaluated(..) = c.val {
let projection_flags = TypeFlags::HAS_NORMALIZABLE_PROJECTION |
TypeFlags::HAS_PROJECTION;
if projection_flags.intersects(self.flags) {
return true;
}
}
c.super_visit_with(self)
}
}
/// Collects all the late-bound regions at the innermost binding level
/// into a hash set.
struct LateBoundRegionsCollector {
current_index: ty::DebruijnIndex,
regions: FxHashSet<ty::BoundRegion>,
/// If true, we only want regions that are known to be
/// "constrained" when you equate this type with another type. In
/// particular, if you have e.g. `&'a u32` and `&'b u32`, equating
/// them constraints `'a == 'b`. But if you have `<&'a u32 as
/// Trait>::Foo` and `<&'b u32 as Trait>::Foo`, normalizing those
/// types may mean that `'a` and `'b` don't appear in the results,
/// so they are not considered *constrained*.
just_constrained: bool,
}
impl LateBoundRegionsCollector {
fn new(just_constrained: bool) -> Self {
LateBoundRegionsCollector {
current_index: ty::INNERMOST,
regions: Default::default(),
just_constrained,
}
}
}
impl<'tcx> TypeVisitor<'tcx> for LateBoundRegionsCollector {
fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
self.current_index.shift_in(1);
let result = t.super_visit_with(self);
self.current_index.shift_out(1);
result
}
fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
// if we are only looking for "constrained" region, we have to
// ignore the inputs to a projection, as they may not appear
// in the normalized form
if self.just_constrained {
match t.sty {
ty::Projection(..) | ty::Opaque(..) => { return false; }
_ => { }
}
}
t.super_visit_with(self)
}
fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
if let ty::ReLateBound(debruijn, br) = *r {
if debruijn == self.current_index {
self.regions.insert(br);
}
}
false
}
}