blob: ddd78f268fadb1e911b2027bd4e293fc6689f206 [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use libc::c_uint;
use llvm::{self, ValueRef, BasicBlockRef};
use llvm::debuginfo::DIScope;
use rustc::ty::{self, TypeFoldable};
use rustc::ty::layout::{LayoutOf, TyLayout};
use rustc::mir::{self, Mir};
use rustc::ty::subst::Substs;
use rustc::infer::TransNormalize;
use rustc::session::config::FullDebugInfo;
use base;
use builder::Builder;
use common::{CodegenCx, Funclet};
use debuginfo::{self, declare_local, VariableAccess, VariableKind, FunctionDebugContext};
use monomorphize::Instance;
use abi::{ArgAttribute, FnType, PassMode};
use syntax_pos::{DUMMY_SP, NO_EXPANSION, BytePos, Span};
use syntax::symbol::keywords;
use std::iter;
use rustc_data_structures::bitvec::BitVector;
use rustc_data_structures::indexed_vec::{IndexVec, Idx};
pub use self::constant::trans_static_initializer;
use self::analyze::CleanupKind;
use self::place::PlaceRef;
use rustc::mir::traversal;
use self::operand::{OperandRef, OperandValue};
/// Master context for translating MIR.
pub struct FunctionCx<'a, 'tcx:'a> {
mir: &'a mir::Mir<'tcx>,
debug_context: debuginfo::FunctionDebugContext,
llfn: ValueRef,
cx: &'a CodegenCx<'a, 'tcx>,
fn_ty: FnType<'tcx>,
/// When unwinding is initiated, we have to store this personality
/// value somewhere so that we can load it and re-use it in the
/// resume instruction. The personality is (afaik) some kind of
/// value used for C++ unwinding, which must filter by type: we
/// don't really care about it very much. Anyway, this value
/// contains an alloca into which the personality is stored and
/// then later loaded when generating the DIVERGE_BLOCK.
personality_slot: Option<PlaceRef<'tcx>>,
/// A `Block` for each MIR `BasicBlock`
blocks: IndexVec<mir::BasicBlock, BasicBlockRef>,
/// The funclet status of each basic block
cleanup_kinds: IndexVec<mir::BasicBlock, analyze::CleanupKind>,
/// When targeting MSVC, this stores the cleanup info for each funclet
/// BB. This is initialized as we compute the funclets' head block in RPO.
funclets: &'a IndexVec<mir::BasicBlock, Option<Funclet>>,
/// This stores the landing-pad block for a given BB, computed lazily on GNU
/// and eagerly on MSVC.
landing_pads: IndexVec<mir::BasicBlock, Option<BasicBlockRef>>,
/// Cached unreachable block
unreachable_block: Option<BasicBlockRef>,
/// The location where each MIR arg/var/tmp/ret is stored. This is
/// usually an `PlaceRef` representing an alloca, but not always:
/// sometimes we can skip the alloca and just store the value
/// directly using an `OperandRef`, which makes for tighter LLVM
/// IR. The conditions for using an `OperandRef` are as follows:
///
/// - the type of the local must be judged "immediate" by `is_llvm_immediate`
/// - the operand must never be referenced indirectly
/// - we should not take its address using the `&` operator
/// - nor should it appear in a place path like `tmp.a`
/// - the operand must be defined by an rvalue that can generate immediate
/// values
///
/// Avoiding allocs can also be important for certain intrinsics,
/// notably `expect`.
locals: IndexVec<mir::Local, LocalRef<'tcx>>,
/// Debug information for MIR scopes.
scopes: IndexVec<mir::VisibilityScope, debuginfo::MirDebugScope>,
/// If this function is being monomorphized, this contains the type substitutions used.
param_substs: &'tcx Substs<'tcx>,
}
impl<'a, 'tcx> FunctionCx<'a, 'tcx> {
pub fn monomorphize<T>(&self, value: &T) -> T
where T: TransNormalize<'tcx>
{
self.cx.tcx.trans_apply_param_substs(self.param_substs, value)
}
pub fn set_debug_loc(&mut self, bx: &Builder, source_info: mir::SourceInfo) {
let (scope, span) = self.debug_loc(source_info);
debuginfo::set_source_location(&self.debug_context, bx, scope, span);
}
pub fn debug_loc(&mut self, source_info: mir::SourceInfo) -> (DIScope, Span) {
// Bail out if debug info emission is not enabled.
match self.debug_context {
FunctionDebugContext::DebugInfoDisabled |
FunctionDebugContext::FunctionWithoutDebugInfo => {
return (self.scopes[source_info.scope].scope_metadata, source_info.span);
}
FunctionDebugContext::RegularContext(_) =>{}
}
// In order to have a good line stepping behavior in debugger, we overwrite debug
// locations of macro expansions with that of the outermost expansion site
// (unless the crate is being compiled with `-Z debug-macros`).
if source_info.span.ctxt() == NO_EXPANSION ||
self.cx.sess().opts.debugging_opts.debug_macros {
let scope = self.scope_metadata_for_loc(source_info.scope, source_info.span.lo());
(scope, source_info.span)
} else {
// Walk up the macro expansion chain until we reach a non-expanded span.
// We also stop at the function body level because no line stepping can occur
// at the level above that.
let mut span = source_info.span;
while span.ctxt() != NO_EXPANSION && span.ctxt() != self.mir.span.ctxt() {
if let Some(info) = span.ctxt().outer().expn_info() {
span = info.call_site;
} else {
break;
}
}
let scope = self.scope_metadata_for_loc(source_info.scope, span.lo());
// Use span of the outermost expansion site, while keeping the original lexical scope.
(scope, span)
}
}
// DILocations inherit source file name from the parent DIScope. Due to macro expansions
// it may so happen that the current span belongs to a different file than the DIScope
// corresponding to span's containing visibility scope. If so, we need to create a DIScope
// "extension" into that file.
fn scope_metadata_for_loc(&self, scope_id: mir::VisibilityScope, pos: BytePos)
-> llvm::debuginfo::DIScope {
let scope_metadata = self.scopes[scope_id].scope_metadata;
if pos < self.scopes[scope_id].file_start_pos ||
pos >= self.scopes[scope_id].file_end_pos {
let cm = self.cx.sess().codemap();
let defining_crate = self.debug_context.get_ref(DUMMY_SP).defining_crate;
debuginfo::extend_scope_to_file(self.cx,
scope_metadata,
&cm.lookup_char_pos(pos).file,
defining_crate)
} else {
scope_metadata
}
}
}
enum LocalRef<'tcx> {
Place(PlaceRef<'tcx>),
Operand(Option<OperandRef<'tcx>>),
}
impl<'a, 'tcx> LocalRef<'tcx> {
fn new_operand(cx: &CodegenCx<'a, 'tcx>, layout: TyLayout<'tcx>) -> LocalRef<'tcx> {
if layout.is_zst() {
// Zero-size temporaries aren't always initialized, which
// doesn't matter because they don't contain data, but
// we need something in the operand.
LocalRef::Operand(Some(OperandRef::new_zst(cx, layout)))
} else {
LocalRef::Operand(None)
}
}
}
///////////////////////////////////////////////////////////////////////////
pub fn trans_mir<'a, 'tcx: 'a>(
cx: &'a CodegenCx<'a, 'tcx>,
llfn: ValueRef,
mir: &'a Mir<'tcx>,
instance: Instance<'tcx>,
sig: ty::FnSig<'tcx>,
) {
let fn_ty = FnType::new(cx, sig, &[]);
debug!("fn_ty: {:?}", fn_ty);
let debug_context =
debuginfo::create_function_debug_context(cx, instance, sig, llfn, mir);
let bx = Builder::new_block(cx, llfn, "start");
if mir.basic_blocks().iter().any(|bb| bb.is_cleanup) {
bx.set_personality_fn(cx.eh_personality());
}
let cleanup_kinds = analyze::cleanup_kinds(&mir);
// Allocate a `Block` for every basic block, except
// the start block, if nothing loops back to it.
let reentrant_start_block = !mir.predecessors_for(mir::START_BLOCK).is_empty();
let block_bxs: IndexVec<mir::BasicBlock, BasicBlockRef> =
mir.basic_blocks().indices().map(|bb| {
if bb == mir::START_BLOCK && !reentrant_start_block {
bx.llbb()
} else {
bx.build_sibling_block(&format!("{:?}", bb)).llbb()
}
}).collect();
// Compute debuginfo scopes from MIR scopes.
let scopes = debuginfo::create_mir_scopes(cx, mir, &debug_context);
let (landing_pads, funclets) = create_funclets(&bx, &cleanup_kinds, &block_bxs);
let mut fx = FunctionCx {
mir,
llfn,
fn_ty,
cx,
personality_slot: None,
blocks: block_bxs,
unreachable_block: None,
cleanup_kinds,
landing_pads,
funclets: &funclets,
scopes,
locals: IndexVec::new(),
debug_context,
param_substs: {
assert!(!instance.substs.needs_infer());
instance.substs
},
};
let memory_locals = analyze::memory_locals(&fx);
// Allocate variable and temp allocas
fx.locals = {
let args = arg_local_refs(&bx, &fx, &fx.scopes, &memory_locals);
let mut allocate_local = |local| {
let decl = &mir.local_decls[local];
let layout = bx.cx.layout_of(fx.monomorphize(&decl.ty));
assert!(!layout.ty.has_erasable_regions());
if let Some(name) = decl.name {
// User variable
let debug_scope = fx.scopes[decl.source_info.scope];
let dbg = debug_scope.is_valid() && bx.sess().opts.debuginfo == FullDebugInfo;
if !memory_locals.contains(local.index()) && !dbg {
debug!("alloc: {:?} ({}) -> operand", local, name);
return LocalRef::new_operand(bx.cx, layout);
}
debug!("alloc: {:?} ({}) -> place", local, name);
let place = PlaceRef::alloca(&bx, layout, &name.as_str());
if dbg {
let (scope, span) = fx.debug_loc(decl.source_info);
declare_local(&bx, &fx.debug_context, name, layout.ty, scope,
VariableAccess::DirectVariable { alloca: place.llval },
VariableKind::LocalVariable, span);
}
LocalRef::Place(place)
} else {
// Temporary or return place
if local == mir::RETURN_PLACE && fx.fn_ty.ret.is_indirect() {
debug!("alloc: {:?} (return place) -> place", local);
let llretptr = llvm::get_param(llfn, 0);
LocalRef::Place(PlaceRef::new_sized(llretptr, layout, layout.align))
} else if memory_locals.contains(local.index()) {
debug!("alloc: {:?} -> place", local);
LocalRef::Place(PlaceRef::alloca(&bx, layout, &format!("{:?}", local)))
} else {
// If this is an immediate local, we do not create an
// alloca in advance. Instead we wait until we see the
// definition and update the operand there.
debug!("alloc: {:?} -> operand", local);
LocalRef::new_operand(bx.cx, layout)
}
}
};
let retptr = allocate_local(mir::RETURN_PLACE);
iter::once(retptr)
.chain(args.into_iter())
.chain(mir.vars_and_temps_iter().map(allocate_local))
.collect()
};
// Branch to the START block, if it's not the entry block.
if reentrant_start_block {
bx.br(fx.blocks[mir::START_BLOCK]);
}
// Up until here, IR instructions for this function have explicitly not been annotated with
// source code location, so we don't step into call setup code. From here on, source location
// emitting should be enabled.
debuginfo::start_emitting_source_locations(&fx.debug_context);
let rpo = traversal::reverse_postorder(&mir);
let mut visited = BitVector::new(mir.basic_blocks().len());
// Translate the body of each block using reverse postorder
for (bb, _) in rpo {
visited.insert(bb.index());
fx.trans_block(bb);
}
// Remove blocks that haven't been visited, or have no
// predecessors.
for bb in mir.basic_blocks().indices() {
// Unreachable block
if !visited.contains(bb.index()) {
debug!("trans_mir: block {:?} was not visited", bb);
unsafe {
llvm::LLVMDeleteBasicBlock(fx.blocks[bb]);
}
}
}
}
fn create_funclets<'a, 'tcx>(
bx: &Builder<'a, 'tcx>,
cleanup_kinds: &IndexVec<mir::BasicBlock, CleanupKind>,
block_bxs: &IndexVec<mir::BasicBlock, BasicBlockRef>)
-> (IndexVec<mir::BasicBlock, Option<BasicBlockRef>>,
IndexVec<mir::BasicBlock, Option<Funclet>>)
{
block_bxs.iter_enumerated().zip(cleanup_kinds).map(|((bb, &llbb), cleanup_kind)| {
match *cleanup_kind {
CleanupKind::Funclet if base::wants_msvc_seh(bx.sess()) => {
let cleanup_bx = bx.build_sibling_block(&format!("funclet_{:?}", bb));
let cleanup = cleanup_bx.cleanup_pad(None, &[]);
cleanup_bx.br(llbb);
(Some(cleanup_bx.llbb()), Some(Funclet::new(cleanup)))
}
_ => (None, None)
}
}).unzip()
}
/// Produce, for each argument, a `ValueRef` pointing at the
/// argument's value. As arguments are places, these are always
/// indirect.
fn arg_local_refs<'a, 'tcx>(bx: &Builder<'a, 'tcx>,
fx: &FunctionCx<'a, 'tcx>,
scopes: &IndexVec<mir::VisibilityScope, debuginfo::MirDebugScope>,
memory_locals: &BitVector)
-> Vec<LocalRef<'tcx>> {
let mir = fx.mir;
let tcx = bx.tcx();
let mut idx = 0;
let mut llarg_idx = fx.fn_ty.ret.is_indirect() as usize;
// Get the argument scope, if it exists and if we need it.
let arg_scope = scopes[mir::ARGUMENT_VISIBILITY_SCOPE];
let arg_scope = if arg_scope.is_valid() && bx.sess().opts.debuginfo == FullDebugInfo {
Some(arg_scope.scope_metadata)
} else {
None
};
let deref_op = unsafe {
[llvm::LLVMRustDIBuilderCreateOpDeref()]
};
mir.args_iter().enumerate().map(|(arg_index, local)| {
let arg_decl = &mir.local_decls[local];
let name = if let Some(name) = arg_decl.name {
name.as_str().to_string()
} else {
format!("arg{}", arg_index)
};
if Some(local) == mir.spread_arg {
// This argument (e.g. the last argument in the "rust-call" ABI)
// is a tuple that was spread at the ABI level and now we have
// to reconstruct it into a tuple local variable, from multiple
// individual LLVM function arguments.
let arg_ty = fx.monomorphize(&arg_decl.ty);
let tupled_arg_tys = match arg_ty.sty {
ty::TyTuple(ref tys, _) => tys,
_ => bug!("spread argument isn't a tuple?!")
};
let place = PlaceRef::alloca(bx, bx.cx.layout_of(arg_ty), &name);
for i in 0..tupled_arg_tys.len() {
let arg = &fx.fn_ty.args[idx];
idx += 1;
arg.store_fn_arg(bx, &mut llarg_idx, place.project_field(bx, i));
}
// Now that we have one alloca that contains the aggregate value,
// we can create one debuginfo entry for the argument.
arg_scope.map(|scope| {
let variable_access = VariableAccess::DirectVariable {
alloca: place.llval
};
declare_local(
bx,
&fx.debug_context,
arg_decl.name.unwrap_or(keywords::Invalid.name()),
arg_ty, scope,
variable_access,
VariableKind::ArgumentVariable(arg_index + 1),
DUMMY_SP
);
});
return LocalRef::Place(place);
}
let arg = &fx.fn_ty.args[idx];
idx += 1;
if arg.pad.is_some() {
llarg_idx += 1;
}
if arg_scope.is_none() && !memory_locals.contains(local.index()) {
// We don't have to cast or keep the argument in the alloca.
// FIXME(eddyb): We should figure out how to use llvm.dbg.value instead
// of putting everything in allocas just so we can use llvm.dbg.declare.
let local = |op| LocalRef::Operand(Some(op));
match arg.mode {
PassMode::Ignore => {
return local(OperandRef::new_zst(bx.cx, arg.layout));
}
PassMode::Direct(_) => {
let llarg = llvm::get_param(bx.llfn(), llarg_idx as c_uint);
bx.set_value_name(llarg, &name);
llarg_idx += 1;
return local(
OperandRef::from_immediate_or_packed_pair(bx, llarg, arg.layout));
}
PassMode::Pair(..) => {
let a = llvm::get_param(bx.llfn(), llarg_idx as c_uint);
bx.set_value_name(a, &(name.clone() + ".0"));
llarg_idx += 1;
let b = llvm::get_param(bx.llfn(), llarg_idx as c_uint);
bx.set_value_name(b, &(name + ".1"));
llarg_idx += 1;
return local(OperandRef {
val: OperandValue::Pair(a, b),
layout: arg.layout
});
}
_ => {}
}
}
let place = if arg.is_indirect() {
// Don't copy an indirect argument to an alloca, the caller
// already put it in a temporary alloca and gave it up.
// FIXME: lifetimes
let llarg = llvm::get_param(bx.llfn(), llarg_idx as c_uint);
bx.set_value_name(llarg, &name);
llarg_idx += 1;
PlaceRef::new_sized(llarg, arg.layout, arg.layout.align)
} else {
let tmp = PlaceRef::alloca(bx, arg.layout, &name);
arg.store_fn_arg(bx, &mut llarg_idx, tmp);
tmp
};
arg_scope.map(|scope| {
// Is this a regular argument?
if arg_index > 0 || mir.upvar_decls.is_empty() {
// The Rust ABI passes indirect variables using a pointer and a manual copy, so we
// need to insert a deref here, but the C ABI uses a pointer and a copy using the
// byval attribute, for which LLVM does the deref itself, so we must not add it.
let mut variable_access = VariableAccess::DirectVariable {
alloca: place.llval
};
if let PassMode::Indirect(ref attrs) = arg.mode {
if !attrs.contains(ArgAttribute::ByVal) {
variable_access = VariableAccess::IndirectVariable {
alloca: place.llval,
address_operations: &deref_op,
};
}
}
declare_local(
bx,
&fx.debug_context,
arg_decl.name.unwrap_or(keywords::Invalid.name()),
arg.layout.ty,
scope,
variable_access,
VariableKind::ArgumentVariable(arg_index + 1),
DUMMY_SP
);
return;
}
// Or is it the closure environment?
let (closure_layout, env_ref) = match arg.layout.ty.sty {
ty::TyRef(_, mt) | ty::TyRawPtr(mt) => (bx.cx.layout_of(mt.ty), true),
_ => (arg.layout, false)
};
let upvar_tys = match closure_layout.ty.sty {
ty::TyClosure(def_id, substs) |
ty::TyGenerator(def_id, substs, _) => substs.upvar_tys(def_id, tcx),
_ => bug!("upvar_decls with non-closure arg0 type `{}`", closure_layout.ty)
};
// Store the pointer to closure data in an alloca for debuginfo
// because that's what the llvm.dbg.declare intrinsic expects.
// FIXME(eddyb) this shouldn't be necessary but SROA seems to
// mishandle DW_OP_plus not preceded by DW_OP_deref, i.e. it
// doesn't actually strip the offset when splitting the closure
// environment into its components so it ends up out of bounds.
let env_ptr = if !env_ref {
let scratch = PlaceRef::alloca(bx,
bx.cx.layout_of(tcx.mk_mut_ptr(arg.layout.ty)),
"__debuginfo_env_ptr");
bx.store(place.llval, scratch.llval, scratch.align);
scratch.llval
} else {
place.llval
};
for (i, (decl, ty)) in mir.upvar_decls.iter().zip(upvar_tys).enumerate() {
let byte_offset_of_var_in_env = closure_layout.fields.offset(i).bytes();
let ops = unsafe {
[llvm::LLVMRustDIBuilderCreateOpDeref(),
llvm::LLVMRustDIBuilderCreateOpPlus(),
byte_offset_of_var_in_env as i64,
llvm::LLVMRustDIBuilderCreateOpDeref()]
};
// The environment and the capture can each be indirect.
// FIXME(eddyb) see above why we have to keep
// a pointer in an alloca for debuginfo atm.
let mut ops = if env_ref || true { &ops[..] } else { &ops[1..] };
let ty = if let (true, &ty::TyRef(_, mt)) = (decl.by_ref, &ty.sty) {
mt.ty
} else {
ops = &ops[..ops.len() - 1];
ty
};
let variable_access = VariableAccess::IndirectVariable {
alloca: env_ptr,
address_operations: &ops
};
declare_local(
bx,
&fx.debug_context,
decl.debug_name,
ty,
scope,
variable_access,
VariableKind::CapturedVariable,
DUMMY_SP
);
}
});
LocalRef::Place(place)
}).collect()
}
mod analyze;
mod block;
mod constant;
pub mod place;
pub mod operand;
mod rvalue;
mod statement;