blob: bf82e1d50c47387884bb1f46c24e3c4b7a4296cc [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! An analysis to determine which locals require allocas and
//! which do not.
use rustc_data_structures::bitvec::BitVector;
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use rustc::middle::const_val::ConstVal;
use rustc::mir::{self, Location, TerminatorKind, Literal};
use rustc::mir::visit::{Visitor, PlaceContext};
use rustc::mir::traversal;
use rustc::ty;
use rustc::ty::layout::LayoutOf;
use type_of::LayoutLlvmExt;
use super::FunctionCx;
pub fn memory_locals<'a, 'tcx>(fx: &FunctionCx<'a, 'tcx>) -> BitVector {
let mir = fx.mir;
let mut analyzer = LocalAnalyzer::new(fx);
analyzer.visit_mir(mir);
for (index, ty) in mir.local_decls.iter().map(|l| l.ty).enumerate() {
let ty = fx.monomorphize(&ty);
debug!("local {} has type {:?}", index, ty);
let layout = fx.cx.layout_of(ty);
if layout.is_llvm_immediate() {
// These sorts of types are immediates that we can store
// in an ValueRef without an alloca.
} else if layout.is_llvm_scalar_pair() {
// We allow pairs and uses of any of their 2 fields.
} else {
// These sorts of types require an alloca. Note that
// is_llvm_immediate() may *still* be true, particularly
// for newtypes, but we currently force some types
// (e.g. structs) into an alloca unconditionally, just so
// that we don't have to deal with having two pathways
// (gep vs extractvalue etc).
analyzer.mark_as_memory(mir::Local::new(index));
}
}
analyzer.memory_locals
}
struct LocalAnalyzer<'mir, 'a: 'mir, 'tcx: 'a> {
fx: &'mir FunctionCx<'a, 'tcx>,
memory_locals: BitVector,
seen_assigned: BitVector
}
impl<'mir, 'a, 'tcx> LocalAnalyzer<'mir, 'a, 'tcx> {
fn new(fx: &'mir FunctionCx<'a, 'tcx>) -> LocalAnalyzer<'mir, 'a, 'tcx> {
let mut analyzer = LocalAnalyzer {
fx,
memory_locals: BitVector::new(fx.mir.local_decls.len()),
seen_assigned: BitVector::new(fx.mir.local_decls.len())
};
// Arguments get assigned to by means of the function being called
for idx in 0..fx.mir.arg_count {
analyzer.seen_assigned.insert(idx + 1);
}
analyzer
}
fn mark_as_memory(&mut self, local: mir::Local) {
debug!("marking {:?} as memory", local);
self.memory_locals.insert(local.index());
}
fn mark_assigned(&mut self, local: mir::Local) {
if !self.seen_assigned.insert(local.index()) {
self.mark_as_memory(local);
}
}
}
impl<'mir, 'a, 'tcx> Visitor<'tcx> for LocalAnalyzer<'mir, 'a, 'tcx> {
fn visit_assign(&mut self,
block: mir::BasicBlock,
place: &mir::Place<'tcx>,
rvalue: &mir::Rvalue<'tcx>,
location: Location) {
debug!("visit_assign(block={:?}, place={:?}, rvalue={:?})", block, place, rvalue);
if let mir::Place::Local(index) = *place {
self.mark_assigned(index);
if !self.fx.rvalue_creates_operand(rvalue) {
self.mark_as_memory(index);
}
} else {
self.visit_place(place, PlaceContext::Store, location);
}
self.visit_rvalue(rvalue, location);
}
fn visit_terminator_kind(&mut self,
block: mir::BasicBlock,
kind: &mir::TerminatorKind<'tcx>,
location: Location) {
match *kind {
mir::TerminatorKind::Call {
func: mir::Operand::Constant(box mir::Constant {
literal: Literal::Value {
value: &ty::Const { val: ConstVal::Function(def_id, _), .. }, ..
}, ..
}),
ref args, ..
} if Some(def_id) == self.fx.cx.tcx.lang_items().box_free_fn() => {
// box_free(x) shares with `drop x` the property that it
// is not guaranteed to be statically dominated by the
// definition of x, so x must always be in an alloca.
if let mir::Operand::Move(ref place) = args[0] {
self.visit_place(place, PlaceContext::Drop, location);
}
}
_ => {}
}
self.super_terminator_kind(block, kind, location);
}
fn visit_place(&mut self,
place: &mir::Place<'tcx>,
context: PlaceContext<'tcx>,
location: Location) {
debug!("visit_place(place={:?}, context={:?})", place, context);
let cx = self.fx.cx;
if let mir::Place::Projection(ref proj) = *place {
// Allow uses of projections that are ZSTs or from scalar fields.
let is_consume = match context {
PlaceContext::Copy | PlaceContext::Move => true,
_ => false
};
if is_consume {
let base_ty = proj.base.ty(self.fx.mir, cx.tcx);
let base_ty = self.fx.monomorphize(&base_ty);
// ZSTs don't require any actual memory access.
let elem_ty = base_ty.projection_ty(cx.tcx, &proj.elem).to_ty(cx.tcx);
let elem_ty = self.fx.monomorphize(&elem_ty);
if cx.layout_of(elem_ty).is_zst() {
return;
}
if let mir::ProjectionElem::Field(..) = proj.elem {
let layout = cx.layout_of(base_ty.to_ty(cx.tcx));
if layout.is_llvm_immediate() || layout.is_llvm_scalar_pair() {
// Recurse with the same context, instead of `Projection`,
// potentially stopping at non-operand projections,
// which would trigger `mark_as_memory` on locals.
self.visit_place(&proj.base, context, location);
return;
}
}
}
// A deref projection only reads the pointer, never needs the place.
if let mir::ProjectionElem::Deref = proj.elem {
return self.visit_place(&proj.base, PlaceContext::Copy, location);
}
}
self.super_place(place, context, location);
}
fn visit_local(&mut self,
&index: &mir::Local,
context: PlaceContext<'tcx>,
_: Location) {
match context {
PlaceContext::Call => {
self.mark_assigned(index);
}
PlaceContext::StorageLive |
PlaceContext::StorageDead |
PlaceContext::Validate |
PlaceContext::Copy |
PlaceContext::Move => {}
PlaceContext::Inspect |
PlaceContext::Store |
PlaceContext::AsmOutput |
PlaceContext::Borrow { .. } |
PlaceContext::Projection(..) => {
self.mark_as_memory(index);
}
PlaceContext::Drop => {
let ty = mir::Place::Local(index).ty(self.fx.mir, self.fx.cx.tcx);
let ty = self.fx.monomorphize(&ty.to_ty(self.fx.cx.tcx));
// Only need the place if we're actually dropping it.
if self.fx.cx.type_needs_drop(ty) {
self.mark_as_memory(index);
}
}
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum CleanupKind {
NotCleanup,
Funclet,
Internal { funclet: mir::BasicBlock }
}
impl CleanupKind {
pub fn funclet_bb(self, for_bb: mir::BasicBlock) -> Option<mir::BasicBlock> {
match self {
CleanupKind::NotCleanup => None,
CleanupKind::Funclet => Some(for_bb),
CleanupKind::Internal { funclet } => Some(funclet),
}
}
}
pub fn cleanup_kinds<'a, 'tcx>(mir: &mir::Mir<'tcx>) -> IndexVec<mir::BasicBlock, CleanupKind> {
fn discover_masters<'tcx>(result: &mut IndexVec<mir::BasicBlock, CleanupKind>,
mir: &mir::Mir<'tcx>) {
for (bb, data) in mir.basic_blocks().iter_enumerated() {
match data.terminator().kind {
TerminatorKind::Goto { .. } |
TerminatorKind::Resume |
TerminatorKind::Abort |
TerminatorKind::Return |
TerminatorKind::GeneratorDrop |
TerminatorKind::Unreachable |
TerminatorKind::SwitchInt { .. } |
TerminatorKind::Yield { .. } |
TerminatorKind::FalseEdges { .. } => {
/* nothing to do */
}
TerminatorKind::Call { cleanup: unwind, .. } |
TerminatorKind::Assert { cleanup: unwind, .. } |
TerminatorKind::DropAndReplace { unwind, .. } |
TerminatorKind::Drop { unwind, .. } => {
if let Some(unwind) = unwind {
debug!("cleanup_kinds: {:?}/{:?} registering {:?} as funclet",
bb, data, unwind);
result[unwind] = CleanupKind::Funclet;
}
}
}
}
}
fn propagate<'tcx>(result: &mut IndexVec<mir::BasicBlock, CleanupKind>,
mir: &mir::Mir<'tcx>) {
let mut funclet_succs = IndexVec::from_elem(None, mir.basic_blocks());
let mut set_successor = |funclet: mir::BasicBlock, succ| {
match funclet_succs[funclet] {
ref mut s @ None => {
debug!("set_successor: updating successor of {:?} to {:?}",
funclet, succ);
*s = Some(succ);
},
Some(s) => if s != succ {
span_bug!(mir.span, "funclet {:?} has 2 parents - {:?} and {:?}",
funclet, s, succ);
}
}
};
for (bb, data) in traversal::reverse_postorder(mir) {
let funclet = match result[bb] {
CleanupKind::NotCleanup => continue,
CleanupKind::Funclet => bb,
CleanupKind::Internal { funclet } => funclet,
};
debug!("cleanup_kinds: {:?}/{:?}/{:?} propagating funclet {:?}",
bb, data, result[bb], funclet);
for &succ in data.terminator().successors().iter() {
let kind = result[succ];
debug!("cleanup_kinds: propagating {:?} to {:?}/{:?}",
funclet, succ, kind);
match kind {
CleanupKind::NotCleanup => {
result[succ] = CleanupKind::Internal { funclet: funclet };
}
CleanupKind::Funclet => {
if funclet != succ {
set_successor(funclet, succ);
}
}
CleanupKind::Internal { funclet: succ_funclet } => {
if funclet != succ_funclet {
// `succ` has 2 different funclet going into it, so it must
// be a funclet by itself.
debug!("promoting {:?} to a funclet and updating {:?}", succ,
succ_funclet);
result[succ] = CleanupKind::Funclet;
set_successor(succ_funclet, succ);
set_successor(funclet, succ);
}
}
}
}
}
}
let mut result = IndexVec::from_elem(CleanupKind::NotCleanup, mir.basic_blocks());
discover_masters(&mut result, mir);
propagate(&mut result, mir);
debug!("cleanup_kinds: result={:?}", result);
result
}