blob: b827416ab53c2523cb76352af134b79198d8a9df [file] [log] [blame]
//! Machinery for hygienic macros, inspired by the `MTWT[1]` paper.
//!
//! `[1]` Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. 2012.
//! *Macros that work together: Compile-time bindings, partial expansion,
//! and definition contexts*. J. Funct. Program. 22, 2 (March 2012), 181-216.
//! DOI=10.1017/S0956796812000093 <https://doi.org/10.1017/S0956796812000093>
// Hygiene data is stored in a global variable and accessed via TLS, which
// means that accesses are somewhat expensive. (`HygieneData::with`
// encapsulates a single access.) Therefore, on hot code paths it is worth
// ensuring that multiple HygieneData accesses are combined into a single
// `HygieneData::with`.
//
// This explains why `HygieneData`, `SyntaxContext` and `Mark` have interfaces
// with a certain amount of redundancy in them. For example,
// `SyntaxContext::outer_expn_info` combines `SyntaxContext::outer` and
// `Mark::expn_info` so that two `HygieneData` accesses can be performed within
// a single `HygieneData::with` call.
//
// It also explains why many functions appear in `HygieneData` and again in
// `SyntaxContext` or `Mark`. For example, `HygieneData::outer` and
// `SyntaxContext::outer` do the same thing, but the former is for use within a
// `HygieneData::with` call while the latter is for use outside such a call.
// When modifying this file it is important to understand this distinction,
// because getting it wrong can lead to nested `HygieneData::with` calls that
// trigger runtime aborts. (Fortunately these are obvious and easy to fix.)
use crate::GLOBALS;
use crate::Span;
use crate::edition::Edition;
use crate::symbol::{kw, Symbol};
use serialize::{Encodable, Decodable, Encoder, Decoder};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::sync::Lrc;
use std::{fmt, mem};
/// A SyntaxContext represents a chain of macro expansions (represented by marks).
#[derive(Clone, Copy, PartialEq, Eq, Default, PartialOrd, Ord, Hash)]
pub struct SyntaxContext(u32);
#[derive(Copy, Clone, Debug)]
struct SyntaxContextData {
outer_mark: Mark,
transparency: Transparency,
prev_ctxt: SyntaxContext,
/// This context, but with all transparent and semi-transparent marks filtered away.
opaque: SyntaxContext,
/// This context, but with all transparent marks filtered away.
opaque_and_semitransparent: SyntaxContext,
/// Name of the crate to which `$crate` with this context would resolve.
dollar_crate_name: Symbol,
}
/// A mark is a unique ID associated with a macro expansion.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct Mark(u32);
#[derive(Clone, Debug)]
struct MarkData {
parent: Mark,
default_transparency: Transparency,
expn_info: Option<ExpnInfo>,
}
/// A property of a macro expansion that determines how identifiers
/// produced by that expansion are resolved.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Hash, Debug)]
pub enum Transparency {
/// Identifier produced by a transparent expansion is always resolved at call-site.
/// Call-site spans in procedural macros, hygiene opt-out in `macro` should use this.
Transparent,
/// Identifier produced by a semi-transparent expansion may be resolved
/// either at call-site or at definition-site.
/// If it's a local variable, label or `$crate` then it's resolved at def-site.
/// Otherwise it's resolved at call-site.
/// `macro_rules` macros behave like this, built-in macros currently behave like this too,
/// but that's an implementation detail.
SemiTransparent,
/// Identifier produced by an opaque expansion is always resolved at definition-site.
/// Def-site spans in procedural macros, identifiers from `macro` by default use this.
Opaque,
}
impl Mark {
pub fn fresh(parent: Mark) -> Self {
HygieneData::with(|data| {
data.marks.push(MarkData {
parent,
// By default expansions behave like `macro_rules`.
default_transparency: Transparency::SemiTransparent,
expn_info: None,
});
Mark(data.marks.len() as u32 - 1)
})
}
/// The mark of the theoretical expansion that generates freshly parsed, unexpanded AST.
#[inline]
pub fn root() -> Self {
Mark(0)
}
#[inline]
pub fn as_u32(self) -> u32 {
self.0
}
#[inline]
pub fn from_u32(raw: u32) -> Mark {
Mark(raw)
}
#[inline]
pub fn parent(self) -> Mark {
HygieneData::with(|data| data.marks[self.0 as usize].parent)
}
#[inline]
pub fn expn_info(self) -> Option<ExpnInfo> {
HygieneData::with(|data| data.expn_info(self))
}
#[inline]
pub fn set_expn_info(self, info: ExpnInfo) {
HygieneData::with(|data| data.marks[self.0 as usize].expn_info = Some(info))
}
#[inline]
pub fn set_default_transparency(self, transparency: Transparency) {
assert_ne!(self, Mark::root());
HygieneData::with(|data| data.marks[self.0 as usize].default_transparency = transparency)
}
pub fn is_descendant_of(self, ancestor: Mark) -> bool {
HygieneData::with(|data| data.is_descendant_of(self, ancestor))
}
/// `mark.outer_is_descendant_of(ctxt)` is equivalent to but faster than
/// `mark.is_descendant_of(ctxt.outer())`.
pub fn outer_is_descendant_of(self, ctxt: SyntaxContext) -> bool {
HygieneData::with(|data| data.is_descendant_of(self, data.outer(ctxt)))
}
/// Computes a mark such that both input marks are descendants of (or equal to) the returned
/// mark. That is, the following holds:
///
/// ```rust
/// let la = least_ancestor(a, b);
/// assert!(a.is_descendant_of(la))
/// assert!(b.is_descendant_of(la))
/// ```
pub fn least_ancestor(mut a: Mark, mut b: Mark) -> Mark {
HygieneData::with(|data| {
// Compute the path from a to the root
let mut a_path = FxHashSet::<Mark>::default();
while a != Mark::root() {
a_path.insert(a);
a = data.marks[a.0 as usize].parent;
}
// While the path from b to the root hasn't intersected, move up the tree
while !a_path.contains(&b) {
b = data.marks[b.0 as usize].parent;
}
b
})
}
// Used for enabling some compatibility fallback in resolve.
#[inline]
pub fn looks_like_proc_macro_derive(self) -> bool {
HygieneData::with(|data| {
let mark_data = &data.marks[self.0 as usize];
if mark_data.default_transparency == Transparency::Opaque {
if let Some(expn_info) = &mark_data.expn_info {
if let ExpnFormat::MacroAttribute(name) = expn_info.format {
if name.as_str().starts_with("derive(") {
return true;
}
}
}
}
false
})
}
}
#[derive(Debug)]
crate struct HygieneData {
marks: Vec<MarkData>,
syntax_contexts: Vec<SyntaxContextData>,
markings: FxHashMap<(SyntaxContext, Mark, Transparency), SyntaxContext>,
}
impl HygieneData {
crate fn new() -> Self {
HygieneData {
marks: vec![MarkData {
parent: Mark::root(),
// If the root is opaque, then loops searching for an opaque mark
// will automatically stop after reaching it.
default_transparency: Transparency::Opaque,
expn_info: None,
}],
syntax_contexts: vec![SyntaxContextData {
outer_mark: Mark::root(),
transparency: Transparency::Opaque,
prev_ctxt: SyntaxContext(0),
opaque: SyntaxContext(0),
opaque_and_semitransparent: SyntaxContext(0),
dollar_crate_name: kw::DollarCrate,
}],
markings: FxHashMap::default(),
}
}
fn with<T, F: FnOnce(&mut HygieneData) -> T>(f: F) -> T {
GLOBALS.with(|globals| f(&mut *globals.hygiene_data.borrow_mut()))
}
fn expn_info(&self, mark: Mark) -> Option<ExpnInfo> {
self.marks[mark.0 as usize].expn_info.clone()
}
fn is_descendant_of(&self, mut mark: Mark, ancestor: Mark) -> bool {
while mark != ancestor {
if mark == Mark::root() {
return false;
}
mark = self.marks[mark.0 as usize].parent;
}
true
}
fn default_transparency(&self, mark: Mark) -> Transparency {
self.marks[mark.0 as usize].default_transparency
}
fn modern(&self, ctxt: SyntaxContext) -> SyntaxContext {
self.syntax_contexts[ctxt.0 as usize].opaque
}
fn modern_and_legacy(&self, ctxt: SyntaxContext) -> SyntaxContext {
self.syntax_contexts[ctxt.0 as usize].opaque_and_semitransparent
}
fn outer(&self, ctxt: SyntaxContext) -> Mark {
self.syntax_contexts[ctxt.0 as usize].outer_mark
}
fn transparency(&self, ctxt: SyntaxContext) -> Transparency {
self.syntax_contexts[ctxt.0 as usize].transparency
}
fn prev_ctxt(&self, ctxt: SyntaxContext) -> SyntaxContext {
self.syntax_contexts[ctxt.0 as usize].prev_ctxt
}
fn remove_mark(&self, ctxt: &mut SyntaxContext) -> Mark {
let outer_mark = self.syntax_contexts[ctxt.0 as usize].outer_mark;
*ctxt = self.prev_ctxt(*ctxt);
outer_mark
}
fn marks(&self, mut ctxt: SyntaxContext) -> Vec<(Mark, Transparency)> {
let mut marks = Vec::new();
while ctxt != SyntaxContext::empty() {
let outer_mark = self.outer(ctxt);
let transparency = self.transparency(ctxt);
let prev_ctxt = self.prev_ctxt(ctxt);
marks.push((outer_mark, transparency));
ctxt = prev_ctxt;
}
marks.reverse();
marks
}
fn walk_chain(&self, mut span: Span, to: SyntaxContext) -> Span {
while span.ctxt() != crate::NO_EXPANSION && span.ctxt() != to {
if let Some(info) = self.expn_info(self.outer(span.ctxt())) {
span = info.call_site;
} else {
break;
}
}
span
}
fn adjust(&self, ctxt: &mut SyntaxContext, expansion: Mark) -> Option<Mark> {
let mut scope = None;
while !self.is_descendant_of(expansion, self.outer(*ctxt)) {
scope = Some(self.remove_mark(ctxt));
}
scope
}
fn apply_mark(&mut self, ctxt: SyntaxContext, mark: Mark) -> SyntaxContext {
assert_ne!(mark, Mark::root());
self.apply_mark_with_transparency(ctxt, mark, self.default_transparency(mark))
}
fn apply_mark_with_transparency(&mut self, ctxt: SyntaxContext, mark: Mark,
transparency: Transparency) -> SyntaxContext {
assert_ne!(mark, Mark::root());
if transparency == Transparency::Opaque {
return self.apply_mark_internal(ctxt, mark, transparency);
}
let call_site_ctxt =
self.expn_info(mark).map_or(SyntaxContext::empty(), |info| info.call_site.ctxt());
let mut call_site_ctxt = if transparency == Transparency::SemiTransparent {
self.modern(call_site_ctxt)
} else {
self.modern_and_legacy(call_site_ctxt)
};
if call_site_ctxt == SyntaxContext::empty() {
return self.apply_mark_internal(ctxt, mark, transparency);
}
// Otherwise, `mark` is a macros 1.0 definition and the call site is in a
// macros 2.0 expansion, i.e., a macros 1.0 invocation is in a macros 2.0 definition.
//
// In this case, the tokens from the macros 1.0 definition inherit the hygiene
// at their invocation. That is, we pretend that the macros 1.0 definition
// was defined at its invocation (i.e., inside the macros 2.0 definition)
// so that the macros 2.0 definition remains hygienic.
//
// See the example at `test/run-pass/hygiene/legacy_interaction.rs`.
for (mark, transparency) in self.marks(ctxt) {
call_site_ctxt = self.apply_mark_internal(call_site_ctxt, mark, transparency);
}
self.apply_mark_internal(call_site_ctxt, mark, transparency)
}
fn apply_mark_internal(&mut self, ctxt: SyntaxContext, mark: Mark, transparency: Transparency)
-> SyntaxContext {
let syntax_contexts = &mut self.syntax_contexts;
let mut opaque = syntax_contexts[ctxt.0 as usize].opaque;
let mut opaque_and_semitransparent =
syntax_contexts[ctxt.0 as usize].opaque_and_semitransparent;
if transparency >= Transparency::Opaque {
let prev_ctxt = opaque;
opaque = *self.markings.entry((prev_ctxt, mark, transparency)).or_insert_with(|| {
let new_opaque = SyntaxContext(syntax_contexts.len() as u32);
syntax_contexts.push(SyntaxContextData {
outer_mark: mark,
transparency,
prev_ctxt,
opaque: new_opaque,
opaque_and_semitransparent: new_opaque,
dollar_crate_name: kw::DollarCrate,
});
new_opaque
});
}
if transparency >= Transparency::SemiTransparent {
let prev_ctxt = opaque_and_semitransparent;
opaque_and_semitransparent =
*self.markings.entry((prev_ctxt, mark, transparency)).or_insert_with(|| {
let new_opaque_and_semitransparent =
SyntaxContext(syntax_contexts.len() as u32);
syntax_contexts.push(SyntaxContextData {
outer_mark: mark,
transparency,
prev_ctxt,
opaque,
opaque_and_semitransparent: new_opaque_and_semitransparent,
dollar_crate_name: kw::DollarCrate,
});
new_opaque_and_semitransparent
});
}
let prev_ctxt = ctxt;
*self.markings.entry((prev_ctxt, mark, transparency)).or_insert_with(|| {
let new_opaque_and_semitransparent_and_transparent =
SyntaxContext(syntax_contexts.len() as u32);
syntax_contexts.push(SyntaxContextData {
outer_mark: mark,
transparency,
prev_ctxt,
opaque,
opaque_and_semitransparent,
dollar_crate_name: kw::DollarCrate,
});
new_opaque_and_semitransparent_and_transparent
})
}
}
pub fn clear_markings() {
HygieneData::with(|data| data.markings = FxHashMap::default());
}
pub fn walk_chain(span: Span, to: SyntaxContext) -> Span {
HygieneData::with(|data| data.walk_chain(span, to))
}
impl SyntaxContext {
#[inline]
pub const fn empty() -> Self {
SyntaxContext(0)
}
#[inline]
crate fn as_u32(self) -> u32 {
self.0
}
#[inline]
crate fn from_u32(raw: u32) -> SyntaxContext {
SyntaxContext(raw)
}
// Allocate a new SyntaxContext with the given ExpnInfo. This is used when
// deserializing Spans from the incr. comp. cache.
// FIXME(mw): This method does not restore MarkData::parent or
// SyntaxContextData::prev_ctxt or SyntaxContextData::opaque. These things
// don't seem to be used after HIR lowering, so everything should be fine
// as long as incremental compilation does not kick in before that.
pub fn allocate_directly(expansion_info: ExpnInfo) -> Self {
HygieneData::with(|data| {
data.marks.push(MarkData {
parent: Mark::root(),
default_transparency: Transparency::SemiTransparent,
expn_info: Some(expansion_info),
});
let mark = Mark(data.marks.len() as u32 - 1);
data.syntax_contexts.push(SyntaxContextData {
outer_mark: mark,
transparency: Transparency::SemiTransparent,
prev_ctxt: SyntaxContext::empty(),
opaque: SyntaxContext::empty(),
opaque_and_semitransparent: SyntaxContext::empty(),
dollar_crate_name: kw::DollarCrate,
});
SyntaxContext(data.syntax_contexts.len() as u32 - 1)
})
}
/// Extend a syntax context with a given mark and default transparency for that mark.
pub fn apply_mark(self, mark: Mark) -> SyntaxContext {
HygieneData::with(|data| data.apply_mark(self, mark))
}
/// Extend a syntax context with a given mark and transparency
pub fn apply_mark_with_transparency(self, mark: Mark, transparency: Transparency)
-> SyntaxContext {
HygieneData::with(|data| data.apply_mark_with_transparency(self, mark, transparency))
}
/// Pulls a single mark off of the syntax context. This effectively moves the
/// context up one macro definition level. That is, if we have a nested macro
/// definition as follows:
///
/// ```rust
/// macro_rules! f {
/// macro_rules! g {
/// ...
/// }
/// }
/// ```
///
/// and we have a SyntaxContext that is referring to something declared by an invocation
/// of g (call it g1), calling remove_mark will result in the SyntaxContext for the
/// invocation of f that created g1.
/// Returns the mark that was removed.
pub fn remove_mark(&mut self) -> Mark {
HygieneData::with(|data| data.remove_mark(self))
}
pub fn marks(self) -> Vec<(Mark, Transparency)> {
HygieneData::with(|data| data.marks(self))
}
/// Adjust this context for resolution in a scope created by the given expansion.
/// For example, consider the following three resolutions of `f`:
///
/// ```rust
/// mod foo { pub fn f() {} } // `f`'s `SyntaxContext` is empty.
/// m!(f);
/// macro m($f:ident) {
/// mod bar {
/// pub fn f() {} // `f`'s `SyntaxContext` has a single `Mark` from `m`.
/// pub fn $f() {} // `$f`'s `SyntaxContext` is empty.
/// }
/// foo::f(); // `f`'s `SyntaxContext` has a single `Mark` from `m`
/// //^ Since `mod foo` is outside this expansion, `adjust` removes the mark from `f`,
/// //| and it resolves to `::foo::f`.
/// bar::f(); // `f`'s `SyntaxContext` has a single `Mark` from `m`
/// //^ Since `mod bar` not outside this expansion, `adjust` does not change `f`,
/// //| and it resolves to `::bar::f`.
/// bar::$f(); // `f`'s `SyntaxContext` is empty.
/// //^ Since `mod bar` is not outside this expansion, `adjust` does not change `$f`,
/// //| and it resolves to `::bar::$f`.
/// }
/// ```
/// This returns the expansion whose definition scope we use to privacy check the resolution,
/// or `None` if we privacy check as usual (i.e., not w.r.t. a macro definition scope).
pub fn adjust(&mut self, expansion: Mark) -> Option<Mark> {
HygieneData::with(|data| data.adjust(self, expansion))
}
/// Like `SyntaxContext::adjust`, but also modernizes `self`.
pub fn modernize_and_adjust(&mut self, expansion: Mark) -> Option<Mark> {
HygieneData::with(|data| {
*self = data.modern(*self);
data.adjust(self, expansion)
})
}
/// Adjust this context for resolution in a scope created by the given expansion
/// via a glob import with the given `SyntaxContext`.
/// For example:
///
/// ```rust
/// m!(f);
/// macro m($i:ident) {
/// mod foo {
/// pub fn f() {} // `f`'s `SyntaxContext` has a single `Mark` from `m`.
/// pub fn $i() {} // `$i`'s `SyntaxContext` is empty.
/// }
/// n(f);
/// macro n($j:ident) {
/// use foo::*;
/// f(); // `f`'s `SyntaxContext` has a mark from `m` and a mark from `n`
/// //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::f`.
/// $i(); // `$i`'s `SyntaxContext` has a mark from `n`
/// //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::$i`.
/// $j(); // `$j`'s `SyntaxContext` has a mark from `m`
/// //^ This cannot be glob-adjusted, so this is a resolution error.
/// }
/// }
/// ```
/// This returns `None` if the context cannot be glob-adjusted.
/// Otherwise, it returns the scope to use when privacy checking (see `adjust` for details).
pub fn glob_adjust(&mut self, expansion: Mark, glob_span: Span) -> Option<Option<Mark>> {
HygieneData::with(|data| {
let mut scope = None;
let mut glob_ctxt = data.modern(glob_span.ctxt());
while !data.is_descendant_of(expansion, data.outer(glob_ctxt)) {
scope = Some(data.remove_mark(&mut glob_ctxt));
if data.remove_mark(self) != scope.unwrap() {
return None;
}
}
if data.adjust(self, expansion).is_some() {
return None;
}
Some(scope)
})
}
/// Undo `glob_adjust` if possible:
///
/// ```rust
/// if let Some(privacy_checking_scope) = self.reverse_glob_adjust(expansion, glob_ctxt) {
/// assert!(self.glob_adjust(expansion, glob_ctxt) == Some(privacy_checking_scope));
/// }
/// ```
pub fn reverse_glob_adjust(&mut self, expansion: Mark, glob_span: Span)
-> Option<Option<Mark>> {
HygieneData::with(|data| {
if data.adjust(self, expansion).is_some() {
return None;
}
let mut glob_ctxt = data.modern(glob_span.ctxt());
let mut marks = Vec::new();
while !data.is_descendant_of(expansion, data.outer(glob_ctxt)) {
marks.push(data.remove_mark(&mut glob_ctxt));
}
let scope = marks.last().cloned();
while let Some(mark) = marks.pop() {
*self = data.apply_mark(*self, mark);
}
Some(scope)
})
}
pub fn hygienic_eq(self, other: SyntaxContext, mark: Mark) -> bool {
HygieneData::with(|data| {
let mut self_modern = data.modern(self);
data.adjust(&mut self_modern, mark);
self_modern == data.modern(other)
})
}
#[inline]
pub fn modern(self) -> SyntaxContext {
HygieneData::with(|data| data.modern(self))
}
#[inline]
pub fn modern_and_legacy(self) -> SyntaxContext {
HygieneData::with(|data| data.modern_and_legacy(self))
}
#[inline]
pub fn outer(self) -> Mark {
HygieneData::with(|data| data.outer(self))
}
/// `ctxt.outer_expn_info()` is equivalent to but faster than
/// `ctxt.outer().expn_info()`.
#[inline]
pub fn outer_expn_info(self) -> Option<ExpnInfo> {
HygieneData::with(|data| data.expn_info(data.outer(self)))
}
/// `ctxt.outer_and_expn_info()` is equivalent to but faster than
/// `{ let outer = ctxt.outer(); (outer, outer.expn_info()) }`.
#[inline]
pub fn outer_and_expn_info(self) -> (Mark, Option<ExpnInfo>) {
HygieneData::with(|data| {
let outer = data.outer(self);
(outer, data.expn_info(outer))
})
}
pub fn dollar_crate_name(self) -> Symbol {
HygieneData::with(|data| data.syntax_contexts[self.0 as usize].dollar_crate_name)
}
pub fn set_dollar_crate_name(self, dollar_crate_name: Symbol) {
HygieneData::with(|data| {
let prev_dollar_crate_name = mem::replace(
&mut data.syntax_contexts[self.0 as usize].dollar_crate_name, dollar_crate_name
);
assert!(dollar_crate_name == prev_dollar_crate_name ||
prev_dollar_crate_name == kw::DollarCrate,
"$crate name is reset for a syntax context");
})
}
}
impl fmt::Debug for SyntaxContext {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "#{}", self.0)
}
}
/// Extra information for tracking spans of macro and syntax sugar expansion
#[derive(Clone, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct ExpnInfo {
/// The location of the actual macro invocation or syntax sugar , e.g.
/// `let x = foo!();` or `if let Some(y) = x {}`
///
/// This may recursively refer to other macro invocations, e.g., if
/// `foo!()` invoked `bar!()` internally, and there was an
/// expression inside `bar!`; the call_site of the expression in
/// the expansion would point to the `bar!` invocation; that
/// call_site span would have its own ExpnInfo, with the call_site
/// pointing to the `foo!` invocation.
pub call_site: Span,
/// The span of the macro definition itself. The macro may not
/// have a sensible definition span (e.g., something defined
/// completely inside libsyntax) in which case this is None.
/// This span serves only informational purpose and is not used for resolution.
pub def_site: Option<Span>,
/// The format with which the macro was invoked.
pub format: ExpnFormat,
/// List of #[unstable]/feature-gated features that the macro is allowed to use
/// internally without forcing the whole crate to opt-in
/// to them.
pub allow_internal_unstable: Option<Lrc<[Symbol]>>,
/// Whether the macro is allowed to use `unsafe` internally
/// even if the user crate has `#![forbid(unsafe_code)]`.
pub allow_internal_unsafe: bool,
/// Enables the macro helper hack (`ident!(...)` -> `$crate::ident!(...)`)
/// for a given macro.
pub local_inner_macros: bool,
/// Edition of the crate in which the macro is defined.
pub edition: Edition,
}
/// The source of expansion.
#[derive(Clone, Hash, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum ExpnFormat {
/// e.g., #[derive(...)] <item>
MacroAttribute(Symbol),
/// e.g., `format!()`
MacroBang(Symbol),
/// Desugaring done by the compiler during HIR lowering.
CompilerDesugaring(CompilerDesugaringKind)
}
impl ExpnFormat {
pub fn name(&self) -> Symbol {
match *self {
ExpnFormat::MacroBang(name) | ExpnFormat::MacroAttribute(name) => name,
ExpnFormat::CompilerDesugaring(kind) => kind.name(),
}
}
}
/// The kind of compiler desugaring.
#[derive(Clone, Copy, Hash, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum CompilerDesugaringKind {
/// We desugar `if c { i } else { e }` to `match $ExprKind::Use(c) { true => i, _ => e }`.
/// However, we do not want to blame `c` for unreachability but rather say that `i`
/// is unreachable. This desugaring kind allows us to avoid blaming `c`.
IfTemporary,
QuestionMark,
TryBlock,
/// Desugaring of an `impl Trait` in return type position
/// to an `existential type Foo: Trait;` and replacing the
/// `impl Trait` with `Foo`.
ExistentialType,
Async,
Await,
ForLoop,
}
impl CompilerDesugaringKind {
pub fn name(self) -> Symbol {
Symbol::intern(match self {
CompilerDesugaringKind::IfTemporary => "if",
CompilerDesugaringKind::Async => "async",
CompilerDesugaringKind::Await => "await",
CompilerDesugaringKind::QuestionMark => "?",
CompilerDesugaringKind::TryBlock => "try block",
CompilerDesugaringKind::ExistentialType => "existential type",
CompilerDesugaringKind::ForLoop => "for loop",
})
}
}
impl Encodable for SyntaxContext {
fn encode<E: Encoder>(&self, _: &mut E) -> Result<(), E::Error> {
Ok(()) // FIXME(jseyfried) intercrate hygiene
}
}
impl Decodable for SyntaxContext {
fn decode<D: Decoder>(_: &mut D) -> Result<SyntaxContext, D::Error> {
Ok(SyntaxContext::empty()) // FIXME(jseyfried) intercrate hygiene
}
}