| // ignore-tidy-filelength |
| |
| use core::mem; |
| use core::ops::{Bound, ControlFlow}; |
| |
| use ast::mut_visit::{self, MutVisitor}; |
| use ast::token::IdentIsRaw; |
| use ast::{CoroutineKind, ForLoopKind, GenBlockKind, MatchKind, Pat, Path, PathSegment, Recovered}; |
| use rustc_ast::ptr::P; |
| use rustc_ast::token::{self, Delimiter, Token, TokenKind}; |
| use rustc_ast::util::case::Case; |
| use rustc_ast::util::classify; |
| use rustc_ast::util::parser::{AssocOp, ExprPrecedence, Fixity, prec_let_scrutinee_needs_par}; |
| use rustc_ast::visit::{Visitor, walk_expr}; |
| use rustc_ast::{ |
| self as ast, AnonConst, Arm, AttrStyle, AttrVec, BinOp, BinOpKind, BlockCheckMode, CaptureBy, |
| ClosureBinder, DUMMY_NODE_ID, Expr, ExprField, ExprKind, FnDecl, FnRetTy, Label, MacCall, |
| MetaItemLit, Movability, Param, RangeLimits, StmtKind, Ty, TyKind, UnOp, UnsafeBinderCastKind, |
| }; |
| use rustc_ast_pretty::pprust; |
| use rustc_data_structures::stack::ensure_sufficient_stack; |
| use rustc_errors::{Applicability, Diag, PResult, StashKey, Subdiagnostic}; |
| use rustc_lexer::unescape::unescape_char; |
| use rustc_macros::Subdiagnostic; |
| use rustc_session::errors::{ExprParenthesesNeeded, report_lit_error}; |
| use rustc_session::lint::BuiltinLintDiag; |
| use rustc_session::lint::builtin::BREAK_WITH_LABEL_AND_LOOP; |
| use rustc_span::source_map::{self, Spanned}; |
| use rustc_span::symbol::{Ident, Symbol, kw, sym}; |
| use rustc_span::{BytePos, ErrorGuaranteed, Pos, Span}; |
| use thin_vec::{ThinVec, thin_vec}; |
| use tracing::instrument; |
| |
| use super::diagnostics::SnapshotParser; |
| use super::pat::{CommaRecoveryMode, Expected, RecoverColon, RecoverComma}; |
| use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign}; |
| use super::{ |
| AttrWrapper, BlockMode, ClosureSpans, ForceCollect, Parser, PathStyle, Restrictions, |
| SemiColonMode, SeqSep, TokenType, Trailing, UsePreAttrPos, |
| }; |
| use crate::{errors, maybe_recover_from_interpolated_ty_qpath}; |
| |
| #[derive(Debug)] |
| pub(super) enum DestructuredFloat { |
| /// 1e2 |
| Single(Symbol, Span), |
| /// 1. |
| TrailingDot(Symbol, Span, Span), |
| /// 1.2 | 1.2e3 |
| MiddleDot(Symbol, Span, Span, Symbol, Span), |
| /// Invalid |
| Error, |
| } |
| |
| impl<'a> Parser<'a> { |
| /// Parses an expression. |
| #[inline] |
| pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> { |
| self.current_closure.take(); |
| |
| let attrs = self.parse_outer_attributes()?; |
| self.parse_expr_res(Restrictions::empty(), attrs).map(|res| res.0) |
| } |
| |
| /// Parses an expression, forcing tokens to be collected. |
| pub fn parse_expr_force_collect(&mut self) -> PResult<'a, P<Expr>> { |
| self.current_closure.take(); |
| |
| // If the expression is associative (e.g. `1 + 2`), then any preceding |
| // outer attribute actually belongs to the first inner sub-expression. |
| // In which case we must use the pre-attr pos to include the attribute |
| // in the collected tokens for the outer expression. |
| let pre_attr_pos = self.collect_pos(); |
| let attrs = self.parse_outer_attributes()?; |
| self.collect_tokens( |
| Some(pre_attr_pos), |
| AttrWrapper::empty(), |
| ForceCollect::Yes, |
| |this, _empty_attrs| { |
| let (expr, is_assoc) = this.parse_expr_res(Restrictions::empty(), attrs)?; |
| let use_pre_attr_pos = |
| if is_assoc { UsePreAttrPos::Yes } else { UsePreAttrPos::No }; |
| Ok((expr, Trailing::No, use_pre_attr_pos)) |
| }, |
| ) |
| } |
| |
| pub fn parse_expr_anon_const(&mut self) -> PResult<'a, AnonConst> { |
| self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value }) |
| } |
| |
| fn parse_expr_catch_underscore(&mut self, restrictions: Restrictions) -> PResult<'a, P<Expr>> { |
| let attrs = self.parse_outer_attributes()?; |
| match self.parse_expr_res(restrictions, attrs) { |
| Ok((expr, _)) => Ok(expr), |
| Err(err) => match self.token.ident() { |
| Some((Ident { name: kw::Underscore, .. }, IdentIsRaw::No)) |
| if self.may_recover() && self.look_ahead(1, |t| t == &token::Comma) => |
| { |
| // Special-case handling of `foo(_, _, _)` |
| let guar = err.emit(); |
| self.bump(); |
| Ok(self.mk_expr(self.prev_token.span, ExprKind::Err(guar))) |
| } |
| _ => Err(err), |
| }, |
| } |
| } |
| |
| /// Parses a sequence of expressions delimited by parentheses. |
| fn parse_expr_paren_seq(&mut self) -> PResult<'a, ThinVec<P<Expr>>> { |
| self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore(Restrictions::empty())) |
| .map(|(r, _)| r) |
| } |
| |
| /// Parses an expression, subject to the given restrictions. |
| #[inline] |
| pub(super) fn parse_expr_res( |
| &mut self, |
| r: Restrictions, |
| attrs: AttrWrapper, |
| ) -> PResult<'a, (P<Expr>, bool)> { |
| self.with_res(r, |this| this.parse_expr_assoc_with(Bound::Unbounded, attrs)) |
| } |
| |
| /// Parses an associative expression with operators of at least `min_prec` precedence. |
| /// The `bool` in the return value indicates if it was an assoc expr, i.e. with an operator |
| /// followed by a subexpression (e.g. `1 + 2`). |
| pub(super) fn parse_expr_assoc_with( |
| &mut self, |
| min_prec: Bound<ExprPrecedence>, |
| attrs: AttrWrapper, |
| ) -> PResult<'a, (P<Expr>, bool)> { |
| let lhs = if self.token.is_range_separator() { |
| return self.parse_expr_prefix_range(attrs).map(|res| (res, false)); |
| } else { |
| self.parse_expr_prefix(attrs)? |
| }; |
| self.parse_expr_assoc_rest_with(min_prec, false, lhs) |
| } |
| |
| /// Parses the rest of an associative expression (i.e. the part after the lhs) with operators |
| /// of at least `min_prec` precedence. The `bool` in the return value indicates if something |
| /// was actually parsed. |
| pub(super) fn parse_expr_assoc_rest_with( |
| &mut self, |
| min_prec: Bound<ExprPrecedence>, |
| starts_stmt: bool, |
| mut lhs: P<Expr>, |
| ) -> PResult<'a, (P<Expr>, bool)> { |
| let mut parsed_something = false; |
| if !self.should_continue_as_assoc_expr(&lhs) { |
| return Ok((lhs, parsed_something)); |
| } |
| |
| self.expected_tokens.push(TokenType::Operator); |
| while let Some(op) = self.check_assoc_op() { |
| let lhs_span = self.interpolated_or_expr_span(&lhs); |
| let cur_op_span = self.token.span; |
| let restrictions = if op.node.is_assign_like() { |
| self.restrictions & Restrictions::NO_STRUCT_LITERAL |
| } else { |
| self.restrictions |
| }; |
| let prec = op.node.precedence(); |
| if match min_prec { |
| Bound::Included(min_prec) => prec < min_prec, |
| Bound::Excluded(min_prec) => prec <= min_prec, |
| Bound::Unbounded => false, |
| } { |
| break; |
| } |
| // Check for deprecated `...` syntax |
| if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq { |
| self.err_dotdotdot_syntax(self.token.span); |
| } |
| |
| if self.token == token::LArrow { |
| self.err_larrow_operator(self.token.span); |
| } |
| |
| parsed_something = true; |
| self.bump(); |
| if op.node.is_comparison() { |
| if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? { |
| return Ok((expr, parsed_something)); |
| } |
| } |
| |
| // Look for JS' `===` and `!==` and recover |
| if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual) |
| && self.token == token::Eq |
| && self.prev_token.span.hi() == self.token.span.lo() |
| { |
| let sp = op.span.to(self.token.span); |
| let sugg = match op.node { |
| AssocOp::Equal => "==", |
| AssocOp::NotEqual => "!=", |
| _ => unreachable!(), |
| } |
| .into(); |
| let invalid = format!("{sugg}="); |
| self.dcx().emit_err(errors::InvalidComparisonOperator { |
| span: sp, |
| invalid: invalid.clone(), |
| sub: errors::InvalidComparisonOperatorSub::Correctable { |
| span: sp, |
| invalid, |
| correct: sugg, |
| }, |
| }); |
| self.bump(); |
| } |
| |
| // Look for PHP's `<>` and recover |
| if op.node == AssocOp::Less |
| && self.token == token::Gt |
| && self.prev_token.span.hi() == self.token.span.lo() |
| { |
| let sp = op.span.to(self.token.span); |
| self.dcx().emit_err(errors::InvalidComparisonOperator { |
| span: sp, |
| invalid: "<>".into(), |
| sub: errors::InvalidComparisonOperatorSub::Correctable { |
| span: sp, |
| invalid: "<>".into(), |
| correct: "!=".into(), |
| }, |
| }); |
| self.bump(); |
| } |
| |
| // Look for C++'s `<=>` and recover |
| if op.node == AssocOp::LessEqual |
| && self.token == token::Gt |
| && self.prev_token.span.hi() == self.token.span.lo() |
| { |
| let sp = op.span.to(self.token.span); |
| self.dcx().emit_err(errors::InvalidComparisonOperator { |
| span: sp, |
| invalid: "<=>".into(), |
| sub: errors::InvalidComparisonOperatorSub::Spaceship(sp), |
| }); |
| self.bump(); |
| } |
| |
| if self.prev_token == token::BinOp(token::Plus) |
| && self.token == token::BinOp(token::Plus) |
| && self.prev_token.span.between(self.token.span).is_empty() |
| { |
| let op_span = self.prev_token.span.to(self.token.span); |
| // Eat the second `+` |
| self.bump(); |
| lhs = self.recover_from_postfix_increment(lhs, op_span, starts_stmt)?; |
| continue; |
| } |
| |
| if self.prev_token == token::BinOp(token::Minus) |
| && self.token == token::BinOp(token::Minus) |
| && self.prev_token.span.between(self.token.span).is_empty() |
| && !self.look_ahead(1, |tok| tok.can_begin_expr()) |
| { |
| let op_span = self.prev_token.span.to(self.token.span); |
| // Eat the second `-` |
| self.bump(); |
| lhs = self.recover_from_postfix_decrement(lhs, op_span, starts_stmt)?; |
| continue; |
| } |
| |
| let op = op.node; |
| // Special cases: |
| if op == AssocOp::As { |
| lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?; |
| continue; |
| } else if op == AssocOp::DotDot || op == AssocOp::DotDotEq { |
| // If we didn't have to handle `x..`/`x..=`, it would be pretty easy to |
| // generalise it to the Fixity::None code. |
| lhs = self.parse_expr_range(prec, lhs, op, cur_op_span)?; |
| break; |
| } |
| |
| let fixity = op.fixity(); |
| let min_prec = match fixity { |
| Fixity::Right => Bound::Included(prec), |
| Fixity::Left => Bound::Excluded(prec), |
| // We currently have no non-associative operators that are not handled above by |
| // the special cases. The code is here only for future convenience. |
| Fixity::None => Bound::Excluded(prec), |
| }; |
| let (rhs, _) = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| { |
| let attrs = this.parse_outer_attributes()?; |
| this.parse_expr_assoc_with(min_prec, attrs) |
| })?; |
| |
| let span = self.mk_expr_sp(&lhs, lhs_span, rhs.span); |
| lhs = match op { |
| AssocOp::Add |
| | AssocOp::Subtract |
| | AssocOp::Multiply |
| | AssocOp::Divide |
| | AssocOp::Modulus |
| | AssocOp::LAnd |
| | AssocOp::LOr |
| | AssocOp::BitXor |
| | AssocOp::BitAnd |
| | AssocOp::BitOr |
| | AssocOp::ShiftLeft |
| | AssocOp::ShiftRight |
| | AssocOp::Equal |
| | AssocOp::Less |
| | AssocOp::LessEqual |
| | AssocOp::NotEqual |
| | AssocOp::Greater |
| | AssocOp::GreaterEqual => { |
| let ast_op = op.to_ast_binop().unwrap(); |
| let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs); |
| self.mk_expr(span, binary) |
| } |
| AssocOp::Assign => self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span)), |
| AssocOp::AssignOp(k) => { |
| let aop = match k { |
| token::Plus => BinOpKind::Add, |
| token::Minus => BinOpKind::Sub, |
| token::Star => BinOpKind::Mul, |
| token::Slash => BinOpKind::Div, |
| token::Percent => BinOpKind::Rem, |
| token::Caret => BinOpKind::BitXor, |
| token::And => BinOpKind::BitAnd, |
| token::Or => BinOpKind::BitOr, |
| token::Shl => BinOpKind::Shl, |
| token::Shr => BinOpKind::Shr, |
| }; |
| let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs); |
| self.mk_expr(span, aopexpr) |
| } |
| AssocOp::As | AssocOp::DotDot | AssocOp::DotDotEq => { |
| self.dcx().span_bug(span, "AssocOp should have been handled by special case") |
| } |
| }; |
| |
| if let Fixity::None = fixity { |
| break; |
| } |
| } |
| |
| Ok((lhs, parsed_something)) |
| } |
| |
| fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool { |
| match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) { |
| // Semi-statement forms are odd: |
| // See https://github.com/rust-lang/rust/issues/29071 |
| (true, None) => false, |
| (false, _) => true, // Continue parsing the expression. |
| // An exhaustive check is done in the following block, but these are checked first |
| // because they *are* ambiguous but also reasonable looking incorrect syntax, so we |
| // want to keep their span info to improve diagnostics in these cases in a later stage. |
| (true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3` |
| (true, Some(AssocOp::Subtract)) | // `{ 42 } -5` |
| (true, Some(AssocOp::Add)) | // `{ 42 } + 42` (unary plus) |
| (true, Some(AssocOp::LAnd)) | // `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }` |
| (true, Some(AssocOp::LOr)) | // `{ 42 } || 42` ("logical or" or closure) |
| (true, Some(AssocOp::BitOr)) // `{ 42 } | 42` or `{ 42 } |x| 42` |
| => { |
| // These cases are ambiguous and can't be identified in the parser alone. |
| // |
| // Bitwise AND is left out because guessing intent is hard. We can make |
| // suggestions based on the assumption that double-refs are rarely intentional, |
| // and closures are distinct enough that they don't get mixed up with their |
| // return value. |
| let sp = self.psess.source_map().start_point(self.token.span); |
| self.psess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span); |
| false |
| } |
| (true, Some(op)) if !op.can_continue_expr_unambiguously() => false, |
| (true, Some(_)) => { |
| self.error_found_expr_would_be_stmt(lhs); |
| true |
| } |
| } |
| } |
| |
| /// We've found an expression that would be parsed as a statement, |
| /// but the next token implies this should be parsed as an expression. |
| /// For example: `if let Some(x) = x { x } else { 0 } / 2`. |
| fn error_found_expr_would_be_stmt(&self, lhs: &Expr) { |
| self.dcx().emit_err(errors::FoundExprWouldBeStmt { |
| span: self.token.span, |
| token: self.token.clone(), |
| suggestion: ExprParenthesesNeeded::surrounding(lhs.span), |
| }); |
| } |
| |
| /// Possibly translate the current token to an associative operator. |
| /// The method does not advance the current token. |
| /// |
| /// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively. |
| pub(super) fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> { |
| let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) { |
| // When parsing const expressions, stop parsing when encountering `>`. |
| ( |
| Some( |
| AssocOp::ShiftRight |
| | AssocOp::Greater |
| | AssocOp::GreaterEqual |
| | AssocOp::AssignOp(token::BinOpToken::Shr), |
| ), |
| _, |
| ) if self.restrictions.contains(Restrictions::CONST_EXPR) => { |
| return None; |
| } |
| // When recovering patterns as expressions, stop parsing when encountering an assignment `=`, an alternative `|`, or a range `..`. |
| ( |
| Some( |
| AssocOp::Assign |
| | AssocOp::AssignOp(_) |
| | AssocOp::BitOr |
| | AssocOp::DotDot |
| | AssocOp::DotDotEq, |
| ), |
| _, |
| ) if self.restrictions.contains(Restrictions::IS_PAT) => { |
| return None; |
| } |
| (Some(op), _) => (op, self.token.span), |
| (None, Some((Ident { name: sym::and, span }, IdentIsRaw::No))) |
| if self.may_recover() => |
| { |
| self.dcx().emit_err(errors::InvalidLogicalOperator { |
| span: self.token.span, |
| incorrect: "and".into(), |
| sub: errors::InvalidLogicalOperatorSub::Conjunction(self.token.span), |
| }); |
| (AssocOp::LAnd, span) |
| } |
| (None, Some((Ident { name: sym::or, span }, IdentIsRaw::No))) if self.may_recover() => { |
| self.dcx().emit_err(errors::InvalidLogicalOperator { |
| span: self.token.span, |
| incorrect: "or".into(), |
| sub: errors::InvalidLogicalOperatorSub::Disjunction(self.token.span), |
| }); |
| (AssocOp::LOr, span) |
| } |
| _ => return None, |
| }; |
| Some(source_map::respan(span, op)) |
| } |
| |
| /// Checks if this expression is a successfully parsed statement. |
| fn expr_is_complete(&self, e: &Expr) -> bool { |
| self.restrictions.contains(Restrictions::STMT_EXPR) && classify::expr_is_complete(e) |
| } |
| |
| /// Parses `x..y`, `x..=y`, and `x..`/`x..=`. |
| /// The other two variants are handled in `parse_prefix_range_expr` below. |
| fn parse_expr_range( |
| &mut self, |
| prec: ExprPrecedence, |
| lhs: P<Expr>, |
| op: AssocOp, |
| cur_op_span: Span, |
| ) -> PResult<'a, P<Expr>> { |
| let rhs = if self.is_at_start_of_range_notation_rhs() { |
| let maybe_lt = self.token.clone(); |
| let attrs = self.parse_outer_attributes()?; |
| Some( |
| self.parse_expr_assoc_with(Bound::Excluded(prec), attrs) |
| .map_err(|err| self.maybe_err_dotdotlt_syntax(maybe_lt, err))? |
| .0, |
| ) |
| } else { |
| None |
| }; |
| let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span); |
| let span = self.mk_expr_sp(&lhs, lhs.span, rhs_span); |
| let limits = |
| if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed }; |
| let range = self.mk_range(Some(lhs), rhs, limits); |
| Ok(self.mk_expr(span, range)) |
| } |
| |
| fn is_at_start_of_range_notation_rhs(&self) -> bool { |
| if self.token.can_begin_expr() { |
| // Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`. |
| if self.token == token::OpenDelim(Delimiter::Brace) { |
| return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL); |
| } |
| true |
| } else { |
| false |
| } |
| } |
| |
| /// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`. |
| fn parse_expr_prefix_range(&mut self, attrs: AttrWrapper) -> PResult<'a, P<Expr>> { |
| if !attrs.is_empty() { |
| let err = errors::DotDotRangeAttribute { span: self.token.span }; |
| self.dcx().emit_err(err); |
| } |
| |
| // Check for deprecated `...` syntax. |
| if self.token == token::DotDotDot { |
| self.err_dotdotdot_syntax(self.token.span); |
| } |
| |
| debug_assert!( |
| self.token.is_range_separator(), |
| "parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq", |
| self.token |
| ); |
| |
| let limits = match self.token.kind { |
| token::DotDot => RangeLimits::HalfOpen, |
| _ => RangeLimits::Closed, |
| }; |
| let op = AssocOp::from_token(&self.token); |
| let attrs = self.parse_outer_attributes()?; |
| self.collect_tokens_for_expr(attrs, |this, attrs| { |
| let lo = this.token.span; |
| let maybe_lt = this.look_ahead(1, |t| t.clone()); |
| this.bump(); |
| let (span, opt_end) = if this.is_at_start_of_range_notation_rhs() { |
| // RHS must be parsed with more associativity than the dots. |
| let attrs = this.parse_outer_attributes()?; |
| this.parse_expr_assoc_with(Bound::Excluded(op.unwrap().precedence()), attrs) |
| .map(|(x, _)| (lo.to(x.span), Some(x))) |
| .map_err(|err| this.maybe_err_dotdotlt_syntax(maybe_lt, err))? |
| } else { |
| (lo, None) |
| }; |
| let range = this.mk_range(None, opt_end, limits); |
| Ok(this.mk_expr_with_attrs(span, range, attrs)) |
| }) |
| } |
| |
| /// Parses a prefix-unary-operator expr. |
| fn parse_expr_prefix(&mut self, attrs: AttrWrapper) -> PResult<'a, P<Expr>> { |
| let lo = self.token.span; |
| |
| macro_rules! make_it { |
| ($this:ident, $attrs:expr, |this, _| $body:expr) => { |
| $this.collect_tokens_for_expr($attrs, |$this, attrs| { |
| let (hi, ex) = $body?; |
| Ok($this.mk_expr_with_attrs(lo.to(hi), ex, attrs)) |
| }) |
| }; |
| } |
| |
| let this = self; |
| |
| // Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr() |
| match this.token.uninterpolate().kind { |
| // `!expr` |
| token::Not => make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Not)), |
| // `~expr` |
| token::Tilde => make_it!(this, attrs, |this, _| this.recover_tilde_expr(lo)), |
| // `-expr` |
| token::BinOp(token::Minus) => { |
| make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Neg)) |
| } |
| // `*expr` |
| token::BinOp(token::Star) => { |
| make_it!(this, attrs, |this, _| this.parse_expr_unary(lo, UnOp::Deref)) |
| } |
| // `&expr` and `&&expr` |
| token::BinOp(token::And) | token::AndAnd => { |
| make_it!(this, attrs, |this, _| this.parse_expr_borrow(lo)) |
| } |
| // `+lit` |
| token::BinOp(token::Plus) if this.look_ahead(1, |tok| tok.is_numeric_lit()) => { |
| let mut err = errors::LeadingPlusNotSupported { |
| span: lo, |
| remove_plus: None, |
| add_parentheses: None, |
| }; |
| |
| // a block on the LHS might have been intended to be an expression instead |
| if let Some(sp) = this.psess.ambiguous_block_expr_parse.borrow().get(&lo) { |
| err.add_parentheses = Some(ExprParenthesesNeeded::surrounding(*sp)); |
| } else { |
| err.remove_plus = Some(lo); |
| } |
| this.dcx().emit_err(err); |
| |
| this.bump(); |
| let attrs = this.parse_outer_attributes()?; |
| this.parse_expr_prefix(attrs) |
| } |
| // Recover from `++x`: |
| token::BinOp(token::Plus) |
| if this.look_ahead(1, |t| *t == token::BinOp(token::Plus)) => |
| { |
| let starts_stmt = this.prev_token == token::Semi |
| || this.prev_token == token::CloseDelim(Delimiter::Brace); |
| let pre_span = this.token.span.to(this.look_ahead(1, |t| t.span)); |
| // Eat both `+`s. |
| this.bump(); |
| this.bump(); |
| |
| let operand_expr = this.parse_expr_dot_or_call(attrs)?; |
| this.recover_from_prefix_increment(operand_expr, pre_span, starts_stmt) |
| } |
| token::Ident(..) if this.token.is_keyword(kw::Box) => { |
| make_it!(this, attrs, |this, _| this.parse_expr_box(lo)) |
| } |
| token::Ident(..) if this.may_recover() && this.is_mistaken_not_ident_negation() => { |
| make_it!(this, attrs, |this, _| this.recover_not_expr(lo)) |
| } |
| _ => return this.parse_expr_dot_or_call(attrs), |
| } |
| } |
| |
| fn parse_expr_prefix_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> { |
| self.bump(); |
| let attrs = self.parse_outer_attributes()?; |
| let expr = self.parse_expr_prefix(attrs)?; |
| let span = self.interpolated_or_expr_span(&expr); |
| Ok((lo.to(span), expr)) |
| } |
| |
| fn parse_expr_unary(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> { |
| let (span, expr) = self.parse_expr_prefix_common(lo)?; |
| Ok((span, self.mk_unary(op, expr))) |
| } |
| |
| /// Recover on `~expr` in favor of `!expr`. |
| fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> { |
| self.dcx().emit_err(errors::TildeAsUnaryOperator(lo)); |
| |
| self.parse_expr_unary(lo, UnOp::Not) |
| } |
| |
| /// Parse `box expr` - this syntax has been removed, but we still parse this |
| /// for now to provide a more useful error |
| fn parse_expr_box(&mut self, box_kw: Span) -> PResult<'a, (Span, ExprKind)> { |
| let (span, expr) = self.parse_expr_prefix_common(box_kw)?; |
| // Make a multipart suggestion instead of `span_to_snippet` in case source isn't available |
| let box_kw_and_lo = box_kw.until(self.interpolated_or_expr_span(&expr)); |
| let hi = span.shrink_to_hi(); |
| let sugg = errors::AddBoxNew { box_kw_and_lo, hi }; |
| let guar = self.dcx().emit_err(errors::BoxSyntaxRemoved { span, sugg }); |
| Ok((span, ExprKind::Err(guar))) |
| } |
| |
| fn is_mistaken_not_ident_negation(&self) -> bool { |
| let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind { |
| // These tokens can start an expression after `!`, but |
| // can't continue an expression after an ident |
| token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw), |
| token::Literal(..) | token::Pound => true, |
| _ => t.is_whole_expr(), |
| }; |
| self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr) |
| } |
| |
| /// Recover on `not expr` in favor of `!expr`. |
| fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> { |
| let negated_token = self.look_ahead(1, |t| t.clone()); |
| |
| let sub_diag = if negated_token.is_numeric_lit() { |
| errors::NotAsNegationOperatorSub::SuggestNotBitwise |
| } else if negated_token.is_bool_lit() { |
| errors::NotAsNegationOperatorSub::SuggestNotLogical |
| } else { |
| errors::NotAsNegationOperatorSub::SuggestNotDefault |
| }; |
| |
| self.dcx().emit_err(errors::NotAsNegationOperator { |
| negated: negated_token.span, |
| negated_desc: super::token_descr(&negated_token), |
| // Span the `not` plus trailing whitespace to avoid |
| // trailing whitespace after the `!` in our suggestion |
| sub: sub_diag( |
| self.psess.source_map().span_until_non_whitespace(lo.to(negated_token.span)), |
| ), |
| }); |
| |
| self.parse_expr_unary(lo, UnOp::Not) |
| } |
| |
| /// Returns the span of expr if it was not interpolated, or the span of the interpolated token. |
| fn interpolated_or_expr_span(&self, expr: &Expr) -> Span { |
| match self.prev_token.kind { |
| TokenKind::NtIdent(..) | TokenKind::NtLifetime(..) | TokenKind::Interpolated(..) => { |
| self.prev_token.span |
| } |
| _ => expr.span, |
| } |
| } |
| |
| fn parse_assoc_op_cast( |
| &mut self, |
| lhs: P<Expr>, |
| lhs_span: Span, |
| expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind, |
| ) -> PResult<'a, P<Expr>> { |
| let mk_expr = |this: &mut Self, lhs: P<Expr>, rhs: P<Ty>| { |
| this.mk_expr(this.mk_expr_sp(&lhs, lhs_span, rhs.span), expr_kind(lhs, rhs)) |
| }; |
| |
| // Save the state of the parser before parsing type normally, in case there is a |
| // LessThan comparison after this cast. |
| let parser_snapshot_before_type = self.clone(); |
| let cast_expr = match self.parse_as_cast_ty() { |
| Ok(rhs) => mk_expr(self, lhs, rhs), |
| Err(type_err) => { |
| if !self.may_recover() { |
| return Err(type_err); |
| } |
| |
| // Rewind to before attempting to parse the type with generics, to recover |
| // from situations like `x as usize < y` in which we first tried to parse |
| // `usize < y` as a type with generic arguments. |
| let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type); |
| |
| // Check for typo of `'a: loop { break 'a }` with a missing `'`. |
| match (&lhs.kind, &self.token.kind) { |
| ( |
| // `foo: ` |
| ExprKind::Path(None, ast::Path { segments, .. }), |
| token::Ident(kw::For | kw::Loop | kw::While, IdentIsRaw::No), |
| ) if let [segment] = segments.as_slice() => { |
| let snapshot = self.create_snapshot_for_diagnostic(); |
| let label = Label { |
| ident: Ident::from_str_and_span( |
| &format!("'{}", segment.ident), |
| segment.ident.span, |
| ), |
| }; |
| match self.parse_expr_labeled(label, false) { |
| Ok(expr) => { |
| type_err.cancel(); |
| self.dcx().emit_err(errors::MalformedLoopLabel { |
| span: label.ident.span, |
| suggestion: label.ident.span.shrink_to_lo(), |
| }); |
| return Ok(expr); |
| } |
| Err(err) => { |
| err.cancel(); |
| self.restore_snapshot(snapshot); |
| } |
| } |
| } |
| _ => {} |
| } |
| |
| match self.parse_path(PathStyle::Expr) { |
| Ok(path) => { |
| let span_after_type = parser_snapshot_after_type.token.span; |
| let expr = mk_expr( |
| self, |
| lhs, |
| self.mk_ty(path.span, TyKind::Path(None, path.clone())), |
| ); |
| |
| let args_span = self.look_ahead(1, |t| t.span).to(span_after_type); |
| let suggestion = errors::ComparisonOrShiftInterpretedAsGenericSugg { |
| left: expr.span.shrink_to_lo(), |
| right: expr.span.shrink_to_hi(), |
| }; |
| |
| match self.token.kind { |
| token::Lt => { |
| self.dcx().emit_err(errors::ComparisonInterpretedAsGeneric { |
| comparison: self.token.span, |
| r#type: path, |
| args: args_span, |
| suggestion, |
| }) |
| } |
| token::BinOp(token::Shl) => { |
| self.dcx().emit_err(errors::ShiftInterpretedAsGeneric { |
| shift: self.token.span, |
| r#type: path, |
| args: args_span, |
| suggestion, |
| }) |
| } |
| _ => { |
| // We can end up here even without `<` being the next token, for |
| // example because `parse_ty_no_plus` returns `Err` on keywords, |
| // but `parse_path` returns `Ok` on them due to error recovery. |
| // Return original error and parser state. |
| *self = parser_snapshot_after_type; |
| return Err(type_err); |
| } |
| }; |
| |
| // Successfully parsed the type path leaving a `<` yet to parse. |
| type_err.cancel(); |
| |
| // Keep `x as usize` as an expression in AST and continue parsing. |
| expr |
| } |
| Err(path_err) => { |
| // Couldn't parse as a path, return original error and parser state. |
| path_err.cancel(); |
| *self = parser_snapshot_after_type; |
| return Err(type_err); |
| } |
| } |
| } |
| }; |
| |
| // Try to parse a postfix operator such as `.`, `?`, or index (`[]`) |
| // after a cast. If one is present, emit an error then return a valid |
| // parse tree; For something like `&x as T[0]` will be as if it was |
| // written `((&x) as T)[0]`. |
| |
| let span = cast_expr.span; |
| |
| let with_postfix = self.parse_expr_dot_or_call_with(AttrVec::new(), cast_expr, span)?; |
| |
| // Check if an illegal postfix operator has been added after the cast. |
| // If the resulting expression is not a cast, it is an illegal postfix operator. |
| if !matches!(with_postfix.kind, ExprKind::Cast(_, _)) { |
| let msg = format!("cast cannot be followed by {}", match with_postfix.kind { |
| ExprKind::Index(..) => "indexing", |
| ExprKind::Try(_) => "`?`", |
| ExprKind::Field(_, _) => "a field access", |
| ExprKind::MethodCall(_) => "a method call", |
| ExprKind::Call(_, _) => "a function call", |
| ExprKind::Await(_, _) => "`.await`", |
| ExprKind::Match(_, _, MatchKind::Postfix) => "a postfix match", |
| ExprKind::Err(_) => return Ok(with_postfix), |
| _ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"), |
| }); |
| let mut err = self.dcx().struct_span_err(span, msg); |
| |
| let suggest_parens = |err: &mut Diag<'_>| { |
| let suggestions = vec![ |
| (span.shrink_to_lo(), "(".to_string()), |
| (span.shrink_to_hi(), ")".to_string()), |
| ]; |
| err.multipart_suggestion( |
| "try surrounding the expression in parentheses", |
| suggestions, |
| Applicability::MachineApplicable, |
| ); |
| }; |
| |
| suggest_parens(&mut err); |
| |
| err.emit(); |
| }; |
| Ok(with_postfix) |
| } |
| |
| /// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`. |
| fn parse_expr_borrow(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> { |
| self.expect_and()?; |
| let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon); |
| let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below. |
| let (borrow_kind, mutbl) = self.parse_borrow_modifiers(); |
| let attrs = self.parse_outer_attributes()?; |
| let expr = if self.token.is_range_separator() { |
| self.parse_expr_prefix_range(attrs) |
| } else { |
| self.parse_expr_prefix(attrs) |
| }?; |
| let hi = self.interpolated_or_expr_span(&expr); |
| let span = lo.to(hi); |
| if let Some(lt) = lifetime { |
| self.error_remove_borrow_lifetime(span, lt.ident.span.until(expr.span)); |
| } |
| Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr))) |
| } |
| |
| fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) { |
| self.dcx().emit_err(errors::LifetimeInBorrowExpression { span, lifetime_span: lt_span }); |
| } |
| |
| /// Parse `mut?` or `raw [ const | mut ]`. |
| fn parse_borrow_modifiers(&mut self) -> (ast::BorrowKind, ast::Mutability) { |
| if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) { |
| // `raw [ const | mut ]`. |
| let found_raw = self.eat_keyword(kw::Raw); |
| assert!(found_raw); |
| let mutability = self.parse_const_or_mut().unwrap(); |
| (ast::BorrowKind::Raw, mutability) |
| } else { |
| // `mut?` |
| (ast::BorrowKind::Ref, self.parse_mutability()) |
| } |
| } |
| |
| /// Parses `a.b` or `a(13)` or `a[4]` or just `a`. |
| fn parse_expr_dot_or_call(&mut self, attrs: AttrWrapper) -> PResult<'a, P<Expr>> { |
| self.collect_tokens_for_expr(attrs, |this, attrs| { |
| let base = this.parse_expr_bottom()?; |
| let span = this.interpolated_or_expr_span(&base); |
| this.parse_expr_dot_or_call_with(attrs, base, span) |
| }) |
| } |
| |
| pub(super) fn parse_expr_dot_or_call_with( |
| &mut self, |
| mut attrs: ast::AttrVec, |
| mut e: P<Expr>, |
| lo: Span, |
| ) -> PResult<'a, P<Expr>> { |
| let mut res = ensure_sufficient_stack(|| { |
| loop { |
| let has_question = |
| if self.prev_token == TokenKind::Ident(kw::Return, IdentIsRaw::No) { |
| // We are using noexpect here because we don't expect a `?` directly after |
| // a `return` which could be suggested otherwise. |
| self.eat_noexpect(&token::Question) |
| } else { |
| self.eat(&token::Question) |
| }; |
| if has_question { |
| // `expr?` |
| e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e)); |
| continue; |
| } |
| let has_dot = if self.prev_token == TokenKind::Ident(kw::Return, IdentIsRaw::No) { |
| // We are using noexpect here because we don't expect a `.` directly after |
| // a `return` which could be suggested otherwise. |
| self.eat_noexpect(&token::Dot) |
| } else if self.token == TokenKind::RArrow && self.may_recover() { |
| // Recovery for `expr->suffix`. |
| self.bump(); |
| let span = self.prev_token.span; |
| self.dcx().emit_err(errors::ExprRArrowCall { span }); |
| true |
| } else { |
| self.eat(&token::Dot) |
| }; |
| if has_dot { |
| // expr.f |
| e = self.parse_dot_suffix_expr(lo, e)?; |
| continue; |
| } |
| if self.expr_is_complete(&e) { |
| return Ok(e); |
| } |
| e = match self.token.kind { |
| token::OpenDelim(Delimiter::Parenthesis) => self.parse_expr_fn_call(lo, e), |
| token::OpenDelim(Delimiter::Bracket) => self.parse_expr_index(lo, e)?, |
| _ => return Ok(e), |
| } |
| } |
| }); |
| |
| // Stitch the list of outer attributes onto the return value. A little |
| // bit ugly, but the best way given the current code structure. |
| if !attrs.is_empty() |
| && let Ok(expr) = &mut res |
| { |
| mem::swap(&mut expr.attrs, &mut attrs); |
| expr.attrs.extend(attrs) |
| } |
| res |
| } |
| |
| pub(super) fn parse_dot_suffix_expr( |
| &mut self, |
| lo: Span, |
| base: P<Expr>, |
| ) -> PResult<'a, P<Expr>> { |
| // At this point we've consumed something like `expr.` and `self.token` holds the token |
| // after the dot. |
| match self.token.uninterpolate().kind { |
| token::Ident(..) => self.parse_dot_suffix(base, lo), |
| token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => { |
| let ident_span = self.token.span; |
| self.bump(); |
| Ok(self.mk_expr_tuple_field_access(lo, ident_span, base, symbol, suffix)) |
| } |
| token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => { |
| Ok(match self.break_up_float(symbol, self.token.span) { |
| // 1e2 |
| DestructuredFloat::Single(sym, _sp) => { |
| // `foo.1e2`: a single complete dot access, fully consumed. We end up with |
| // the `1e2` token in `self.prev_token` and the following token in |
| // `self.token`. |
| let ident_span = self.token.span; |
| self.bump(); |
| self.mk_expr_tuple_field_access(lo, ident_span, base, sym, suffix) |
| } |
| // 1. |
| DestructuredFloat::TrailingDot(sym, ident_span, dot_span) => { |
| // `foo.1.`: a single complete dot access and the start of another. |
| // We end up with the `sym` (`1`) token in `self.prev_token` and a dot in |
| // `self.token`. |
| assert!(suffix.is_none()); |
| self.token = Token::new(token::Ident(sym, IdentIsRaw::No), ident_span); |
| self.bump_with((Token::new(token::Dot, dot_span), self.token_spacing)); |
| self.mk_expr_tuple_field_access(lo, ident_span, base, sym, None) |
| } |
| // 1.2 | 1.2e3 |
| DestructuredFloat::MiddleDot( |
| sym1, |
| ident1_span, |
| _dot_span, |
| sym2, |
| ident2_span, |
| ) => { |
| // `foo.1.2` (or `foo.1.2e3`): two complete dot accesses. We end up with |
| // the `sym2` (`2` or `2e3`) token in `self.prev_token` and the following |
| // token in `self.token`. |
| let next_token2 = |
| Token::new(token::Ident(sym2, IdentIsRaw::No), ident2_span); |
| self.bump_with((next_token2, self.token_spacing)); |
| self.bump(); |
| let base1 = |
| self.mk_expr_tuple_field_access(lo, ident1_span, base, sym1, None); |
| self.mk_expr_tuple_field_access(lo, ident2_span, base1, sym2, suffix) |
| } |
| DestructuredFloat::Error => base, |
| }) |
| } |
| _ => { |
| self.error_unexpected_after_dot(); |
| Ok(base) |
| } |
| } |
| } |
| |
| fn error_unexpected_after_dot(&self) { |
| let actual = pprust::token_to_string(&self.token); |
| let span = self.token.span; |
| let sm = self.psess.source_map(); |
| let (span, actual) = match (&self.token.kind, self.subparser_name) { |
| (token::Eof, Some(_)) if let Ok(actual) = sm.span_to_snippet(sm.next_point(span)) => { |
| (span.shrink_to_hi(), actual.into()) |
| } |
| _ => (span, actual), |
| }; |
| self.dcx().emit_err(errors::UnexpectedTokenAfterDot { span, actual }); |
| } |
| |
| /// We need an identifier or integer, but the next token is a float. |
| /// Break the float into components to extract the identifier or integer. |
| /// |
| /// See also [`TokenKind::break_two_token_op`] which does similar splitting of `>>` into `>`. |
| // |
| // FIXME: With current `TokenCursor` it's hard to break tokens into more than 2 |
| // parts unless those parts are processed immediately. `TokenCursor` should either |
| // support pushing "future tokens" (would be also helpful to `break_and_eat`), or |
| // we should break everything including floats into more basic proc-macro style |
| // tokens in the lexer (probably preferable). |
| pub(super) fn break_up_float(&self, float: Symbol, span: Span) -> DestructuredFloat { |
| #[derive(Debug)] |
| enum FloatComponent { |
| IdentLike(String), |
| Punct(char), |
| } |
| use FloatComponent::*; |
| |
| let float_str = float.as_str(); |
| let mut components = Vec::new(); |
| let mut ident_like = String::new(); |
| for c in float_str.chars() { |
| if c == '_' || c.is_ascii_alphanumeric() { |
| ident_like.push(c); |
| } else if matches!(c, '.' | '+' | '-') { |
| if !ident_like.is_empty() { |
| components.push(IdentLike(mem::take(&mut ident_like))); |
| } |
| components.push(Punct(c)); |
| } else { |
| panic!("unexpected character in a float token: {c:?}") |
| } |
| } |
| if !ident_like.is_empty() { |
| components.push(IdentLike(ident_like)); |
| } |
| |
| // With proc macros the span can refer to anything, the source may be too short, |
| // or too long, or non-ASCII. It only makes sense to break our span into components |
| // if its underlying text is identical to our float literal. |
| let can_take_span_apart = |
| || self.span_to_snippet(span).as_deref() == Ok(float_str).as_deref(); |
| |
| match &*components { |
| // 1e2 |
| [IdentLike(i)] => { |
| DestructuredFloat::Single(Symbol::intern(i), span) |
| } |
| // 1. |
| [IdentLike(left), Punct('.')] => { |
| let (left_span, dot_span) = if can_take_span_apart() { |
| let left_span = span.with_hi(span.lo() + BytePos::from_usize(left.len())); |
| let dot_span = span.with_lo(left_span.hi()); |
| (left_span, dot_span) |
| } else { |
| (span, span) |
| }; |
| let left = Symbol::intern(left); |
| DestructuredFloat::TrailingDot(left, left_span, dot_span) |
| } |
| // 1.2 | 1.2e3 |
| [IdentLike(left), Punct('.'), IdentLike(right)] => { |
| let (left_span, dot_span, right_span) = if can_take_span_apart() { |
| let left_span = span.with_hi(span.lo() + BytePos::from_usize(left.len())); |
| let dot_span = span.with_lo(left_span.hi()).with_hi(left_span.hi() + BytePos(1)); |
| let right_span = span.with_lo(dot_span.hi()); |
| (left_span, dot_span, right_span) |
| } else { |
| (span, span, span) |
| }; |
| let left = Symbol::intern(left); |
| let right = Symbol::intern(right); |
| DestructuredFloat::MiddleDot(left, left_span, dot_span, right, right_span) |
| } |
| // 1e+ | 1e- (recovered) |
| [IdentLike(_), Punct('+' | '-')] | |
| // 1e+2 | 1e-2 |
| [IdentLike(_), Punct('+' | '-'), IdentLike(_)] | |
| // 1.2e+ | 1.2e- |
| [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-')] | |
| // 1.2e+3 | 1.2e-3 |
| [IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => { |
| // See the FIXME about `TokenCursor` above. |
| self.error_unexpected_after_dot(); |
| DestructuredFloat::Error |
| } |
| _ => panic!("unexpected components in a float token: {components:?}"), |
| } |
| } |
| |
| /// Parse the field access used in offset_of, matched by `$(e:expr)+`. |
| /// Currently returns a list of idents. However, it should be possible in |
| /// future to also do array indices, which might be arbitrary expressions. |
| fn parse_floating_field_access(&mut self) -> PResult<'a, P<[Ident]>> { |
| let mut fields = Vec::new(); |
| let mut trailing_dot = None; |
| |
| loop { |
| // This is expected to use a metavariable $(args:expr)+, but the builtin syntax |
| // could be called directly. Calling `parse_expr` allows this function to only |
| // consider `Expr`s. |
| let expr = self.parse_expr()?; |
| let mut current = &expr; |
| let start_idx = fields.len(); |
| loop { |
| match current.kind { |
| ExprKind::Field(ref left, right) => { |
| // Field access is read right-to-left. |
| fields.insert(start_idx, right); |
| trailing_dot = None; |
| current = left; |
| } |
| // Parse this both to give helpful error messages and to |
| // verify it can be done with this parser setup. |
| ExprKind::Index(ref left, ref _right, span) => { |
| self.dcx().emit_err(errors::ArrayIndexInOffsetOf(span)); |
| current = left; |
| } |
| ExprKind::Lit(token::Lit { |
| kind: token::Float | token::Integer, |
| symbol, |
| suffix, |
| }) => { |
| if let Some(suffix) = suffix { |
| self.expect_no_tuple_index_suffix(current.span, suffix); |
| } |
| match self.break_up_float(symbol, current.span) { |
| // 1e2 |
| DestructuredFloat::Single(sym, sp) => { |
| trailing_dot = None; |
| fields.insert(start_idx, Ident::new(sym, sp)); |
| } |
| // 1. |
| DestructuredFloat::TrailingDot(sym, sym_span, dot_span) => { |
| assert!(suffix.is_none()); |
| trailing_dot = Some(dot_span); |
| fields.insert(start_idx, Ident::new(sym, sym_span)); |
| } |
| // 1.2 | 1.2e3 |
| DestructuredFloat::MiddleDot( |
| symbol1, |
| span1, |
| _dot_span, |
| symbol2, |
| span2, |
| ) => { |
| trailing_dot = None; |
| fields.insert(start_idx, Ident::new(symbol2, span2)); |
| fields.insert(start_idx, Ident::new(symbol1, span1)); |
| } |
| DestructuredFloat::Error => { |
| trailing_dot = None; |
| fields.insert(start_idx, Ident::new(symbol, self.prev_token.span)); |
| } |
| } |
| break; |
| } |
| ExprKind::Path(None, Path { ref segments, .. }) => { |
| match &segments[..] { |
| [PathSegment { ident, args: None, .. }] => { |
| trailing_dot = None; |
| fields.insert(start_idx, *ident) |
| } |
| _ => { |
| self.dcx().emit_err(errors::InvalidOffsetOf(current.span)); |
| break; |
| } |
| } |
| break; |
| } |
| _ => { |
| self.dcx().emit_err(errors::InvalidOffsetOf(current.span)); |
| break; |
| } |
| } |
| } |
| |
| if matches!(self.token.kind, token::CloseDelim(..) | token::Comma) { |
| break; |
| } else if trailing_dot.is_none() { |
| // This loop should only repeat if there is a trailing dot. |
| self.dcx().emit_err(errors::InvalidOffsetOf(self.token.span)); |
| break; |
| } |
| } |
| if let Some(dot) = trailing_dot { |
| self.dcx().emit_err(errors::InvalidOffsetOf(dot)); |
| } |
| Ok(fields.into_iter().collect()) |
| } |
| |
| fn mk_expr_tuple_field_access( |
| &self, |
| lo: Span, |
| ident_span: Span, |
| base: P<Expr>, |
| field: Symbol, |
| suffix: Option<Symbol>, |
| ) -> P<Expr> { |
| if let Some(suffix) = suffix { |
| self.expect_no_tuple_index_suffix(ident_span, suffix); |
| } |
| self.mk_expr(lo.to(ident_span), ExprKind::Field(base, Ident::new(field, ident_span))) |
| } |
| |
| /// Parse a function call expression, `expr(...)`. |
| fn parse_expr_fn_call(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> { |
| let snapshot = if self.token == token::OpenDelim(Delimiter::Parenthesis) { |
| Some((self.create_snapshot_for_diagnostic(), fun.kind.clone())) |
| } else { |
| None |
| }; |
| let open_paren = self.token.span; |
| |
| let seq = self |
| .parse_expr_paren_seq() |
| .map(|args| self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args))); |
| match self.maybe_recover_struct_lit_bad_delims(lo, open_paren, seq, snapshot) { |
| Ok(expr) => expr, |
| Err(err) => self.recover_seq_parse_error(Delimiter::Parenthesis, lo, err), |
| } |
| } |
| |
| /// If we encounter a parser state that looks like the user has written a `struct` literal with |
| /// parentheses instead of braces, recover the parser state and provide suggestions. |
| #[instrument(skip(self, seq, snapshot), level = "trace")] |
| fn maybe_recover_struct_lit_bad_delims( |
| &mut self, |
| lo: Span, |
| open_paren: Span, |
| seq: PResult<'a, P<Expr>>, |
| snapshot: Option<(SnapshotParser<'a>, ExprKind)>, |
| ) -> PResult<'a, P<Expr>> { |
| match (self.may_recover(), seq, snapshot) { |
| (true, Err(err), Some((mut snapshot, ExprKind::Path(None, path)))) => { |
| snapshot.bump(); // `(` |
| match snapshot.parse_struct_fields(path.clone(), false, Delimiter::Parenthesis) { |
| Ok((fields, ..)) |
| if snapshot.eat(&token::CloseDelim(Delimiter::Parenthesis)) => |
| { |
| // We are certain we have `Enum::Foo(a: 3, b: 4)`, suggest |
| // `Enum::Foo { a: 3, b: 4 }` or `Enum::Foo(3, 4)`. |
| self.restore_snapshot(snapshot); |
| let close_paren = self.prev_token.span; |
| let span = lo.to(close_paren); |
| // filter shorthand fields |
| let fields: Vec<_> = |
| fields.into_iter().filter(|field| !field.is_shorthand).collect(); |
| |
| let guar = if !fields.is_empty() && |
| // `token.kind` should not be compared here. |
| // This is because the `snapshot.token.kind` is treated as the same as |
| // that of the open delim in `TokenTreesReader::parse_token_tree`, even |
| // if they are different. |
| self.span_to_snippet(close_paren).is_ok_and(|snippet| snippet == ")") |
| { |
| err.cancel(); |
| self.dcx() |
| .create_err(errors::ParenthesesWithStructFields { |
| span, |
| r#type: path, |
| braces_for_struct: errors::BracesForStructLiteral { |
| first: open_paren, |
| second: close_paren, |
| }, |
| no_fields_for_fn: errors::NoFieldsForFnCall { |
| fields: fields |
| .into_iter() |
| .map(|field| field.span.until(field.expr.span)) |
| .collect(), |
| }, |
| }) |
| .emit() |
| } else { |
| err.emit() |
| }; |
| Ok(self.mk_expr_err(span, guar)) |
| } |
| Ok(_) => Err(err), |
| Err(err2) => { |
| err2.cancel(); |
| Err(err) |
| } |
| } |
| } |
| (_, seq, _) => seq, |
| } |
| } |
| |
| /// Parse an indexing expression `expr[...]`. |
| fn parse_expr_index(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> { |
| let prev_span = self.prev_token.span; |
| let open_delim_span = self.token.span; |
| self.bump(); // `[` |
| let index = self.parse_expr()?; |
| self.suggest_missing_semicolon_before_array(prev_span, open_delim_span)?; |
| self.expect(&token::CloseDelim(Delimiter::Bracket))?; |
| Ok(self.mk_expr( |
| lo.to(self.prev_token.span), |
| self.mk_index(base, index, open_delim_span.to(self.prev_token.span)), |
| )) |
| } |
| |
| /// Assuming we have just parsed `.`, continue parsing into an expression. |
| fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> { |
| if self.token.uninterpolated_span().at_least_rust_2018() && self.eat_keyword(kw::Await) { |
| return Ok(self.mk_await_expr(self_arg, lo)); |
| } |
| |
| // Post-fix match |
| if self.eat_keyword(kw::Match) { |
| let match_span = self.prev_token.span; |
| self.psess.gated_spans.gate(sym::postfix_match, match_span); |
| return self.parse_match_block(lo, match_span, self_arg, MatchKind::Postfix); |
| } |
| |
| let fn_span_lo = self.token.span; |
| let mut seg = self.parse_path_segment(PathStyle::Expr, None)?; |
| self.check_trailing_angle_brackets(&seg, &[&token::OpenDelim(Delimiter::Parenthesis)]); |
| self.check_turbofish_missing_angle_brackets(&mut seg); |
| |
| if self.check(&token::OpenDelim(Delimiter::Parenthesis)) { |
| // Method call `expr.f()` |
| let args = self.parse_expr_paren_seq()?; |
| let fn_span = fn_span_lo.to(self.prev_token.span); |
| let span = lo.to(self.prev_token.span); |
| Ok(self.mk_expr( |
| span, |
| ExprKind::MethodCall(Box::new(ast::MethodCall { |
| seg, |
| receiver: self_arg, |
| args, |
| span: fn_span, |
| })), |
| )) |
| } else { |
| // Field access `expr.f` |
| let span = lo.to(self.prev_token.span); |
| if let Some(args) = seg.args { |
| // See `StashKey::GenericInFieldExpr` for more info on why we stash this. |
| self.dcx() |
| .create_err(errors::FieldExpressionWithGeneric(args.span())) |
| .stash(seg.ident.span, StashKey::GenericInFieldExpr); |
| } |
| |
| Ok(self.mk_expr(span, ExprKind::Field(self_arg, seg.ident))) |
| } |
| } |
| |
| /// At the bottom (top?) of the precedence hierarchy, |
| /// Parses things like parenthesized exprs, macros, `return`, etc. |
| /// |
| /// N.B., this does not parse outer attributes, and is private because it only works |
| /// correctly if called from `parse_expr_dot_or_call`. |
| fn parse_expr_bottom(&mut self) -> PResult<'a, P<Expr>> { |
| maybe_recover_from_interpolated_ty_qpath!(self, true); |
| |
| if let token::Interpolated(nt) = &self.token.kind { |
| match &**nt { |
| token::NtExpr(e) | token::NtLiteral(e) => { |
| let e = e.clone(); |
| self.bump(); |
| return Ok(e); |
| } |
| token::NtPath(path) => { |
| let path = (**path).clone(); |
| self.bump(); |
| return Ok(self.mk_expr(self.prev_token.span, ExprKind::Path(None, path))); |
| } |
| token::NtBlock(block) => { |
| let block = block.clone(); |
| self.bump(); |
| return Ok(self.mk_expr(self.prev_token.span, ExprKind::Block(block, None))); |
| } |
| _ => {} |
| }; |
| } |
| |
| // Outer attributes are already parsed and will be |
| // added to the return value after the fact. |
| |
| let restrictions = self.restrictions; |
| self.with_res(restrictions - Restrictions::ALLOW_LET, |this| { |
| // Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`. |
| let lo = this.token.span; |
| if let token::Literal(_) = this.token.kind { |
| // This match arm is a special-case of the `_` match arm below and |
| // could be removed without changing functionality, but it's faster |
| // to have it here, especially for programs with large constants. |
| this.parse_expr_lit() |
| } else if this.check(&token::OpenDelim(Delimiter::Parenthesis)) { |
| this.parse_expr_tuple_parens(restrictions) |
| } else if this.check(&token::OpenDelim(Delimiter::Brace)) { |
| this.parse_expr_block(None, lo, BlockCheckMode::Default) |
| } else if this.check(&token::BinOp(token::Or)) || this.check(&token::OrOr) { |
| this.parse_expr_closure().map_err(|mut err| { |
| // If the input is something like `if a { 1 } else { 2 } | if a { 3 } else { 4 }` |
| // then suggest parens around the lhs. |
| if let Some(sp) = this.psess.ambiguous_block_expr_parse.borrow().get(&lo) { |
| err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp)); |
| } |
| err |
| }) |
| } else if this.check(&token::OpenDelim(Delimiter::Bracket)) { |
| this.parse_expr_array_or_repeat(Delimiter::Bracket) |
| } else if this.is_builtin() { |
| this.parse_expr_builtin() |
| } else if this.check_path() { |
| this.parse_expr_path_start() |
| } else if this.check_keyword(kw::Move) |
| || this.check_keyword(kw::Static) |
| || this.check_const_closure() |
| { |
| this.parse_expr_closure() |
| } else if this.eat_keyword(kw::If) { |
| this.parse_expr_if() |
| } else if this.check_keyword(kw::For) { |
| if this.choose_generics_over_qpath(1) { |
| this.parse_expr_closure() |
| } else { |
| assert!(this.eat_keyword(kw::For)); |
| this.parse_expr_for(None, lo) |
| } |
| } else if this.eat_keyword(kw::While) { |
| this.parse_expr_while(None, lo) |
| } else if let Some(label) = this.eat_label() { |
| this.parse_expr_labeled(label, true) |
| } else if this.eat_keyword(kw::Loop) { |
| this.parse_expr_loop(None, lo).map_err(|mut err| { |
| err.span_label(lo, "while parsing this `loop` expression"); |
| err |
| }) |
| } else if this.eat_keyword(kw::Match) { |
| this.parse_expr_match().map_err(|mut err| { |
| err.span_label(lo, "while parsing this `match` expression"); |
| err |
| }) |
| } else if this.eat_keyword(kw::Unsafe) { |
| this.parse_expr_block(None, lo, BlockCheckMode::Unsafe(ast::UserProvided)).map_err( |
| |mut err| { |
| err.span_label(lo, "while parsing this `unsafe` expression"); |
| err |
| }, |
| ) |
| } else if this.check_inline_const(0) { |
| this.parse_const_block(lo, false) |
| } else if this.may_recover() && this.is_do_catch_block() { |
| this.recover_do_catch() |
| } else if this.is_try_block() { |
| this.expect_keyword(kw::Try)?; |
| this.parse_try_block(lo) |
| } else if this.eat_keyword(kw::Return) { |
| this.parse_expr_return() |
| } else if this.eat_keyword(kw::Continue) { |
| this.parse_expr_continue(lo) |
| } else if this.eat_keyword(kw::Break) { |
| this.parse_expr_break() |
| } else if this.eat_keyword(kw::Yield) { |
| this.parse_expr_yield() |
| } else if this.is_do_yeet() { |
| this.parse_expr_yeet() |
| } else if this.eat_keyword(kw::Become) { |
| this.parse_expr_become() |
| } else if this.check_keyword(kw::Let) { |
| this.parse_expr_let(restrictions) |
| } else if this.eat_keyword(kw::Underscore) { |
| Ok(this.mk_expr(this.prev_token.span, ExprKind::Underscore)) |
| } else if this.token.uninterpolated_span().at_least_rust_2018() { |
| // `Span::at_least_rust_2018()` is somewhat expensive; don't get it repeatedly. |
| if this.token.uninterpolated_span().at_least_rust_2024() |
| // check for `gen {}` and `gen move {}` |
| // or `async gen {}` and `async gen move {}` |
| && (this.is_gen_block(kw::Gen, 0) |
| || (this.check_keyword(kw::Async) && this.is_gen_block(kw::Gen, 1))) |
| { |
| // FIXME: (async) gen closures aren't yet parsed. |
| this.parse_gen_block() |
| } else if this.check_keyword(kw::Async) { |
| // FIXME(gen_blocks): Parse `gen async` and suggest swap |
| if this.is_gen_block(kw::Async, 0) { |
| // Check for `async {` and `async move {`, |
| this.parse_gen_block() |
| } else { |
| this.parse_expr_closure() |
| } |
| } else if this.eat_keyword_noexpect(kw::Await) { |
| this.recover_incorrect_await_syntax(lo) |
| } else { |
| this.parse_expr_lit() |
| } |
| } else { |
| this.parse_expr_lit() |
| } |
| }) |
| } |
| |
| fn parse_expr_lit(&mut self) -> PResult<'a, P<Expr>> { |
| let lo = self.token.span; |
| match self.parse_opt_token_lit() { |
| Some((token_lit, _)) => { |
| let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Lit(token_lit)); |
| self.maybe_recover_from_bad_qpath(expr) |
| } |
| None => self.try_macro_suggestion(), |
| } |
| } |
| |
| fn parse_expr_tuple_parens(&mut self, restrictions: Restrictions) -> PResult<'a, P<Expr>> { |
| let lo = self.token.span; |
| self.expect(&token::OpenDelim(Delimiter::Parenthesis))?; |
| let (es, trailing_comma) = match self.parse_seq_to_end( |
| &token::CloseDelim(Delimiter::Parenthesis), |
| SeqSep::trailing_allowed(token::Comma), |
| |p| p.parse_expr_catch_underscore(restrictions.intersection(Restrictions::ALLOW_LET)), |
| ) { |
| Ok(x) => x, |
| Err(err) => { |
| return Ok(self.recover_seq_parse_error(Delimiter::Parenthesis, lo, err)); |
| } |
| }; |
| let kind = if es.len() == 1 && matches!(trailing_comma, Trailing::No) { |
| // `(e)` is parenthesized `e`. |
| ExprKind::Paren(es.into_iter().next().unwrap()) |
| } else { |
| // `(e,)` is a tuple with only one field, `e`. |
| ExprKind::Tup(es) |
| }; |
| let expr = self.mk_expr(lo.to(self.prev_token.span), kind); |
| self.maybe_recover_from_bad_qpath(expr) |
| } |
| |
| fn parse_expr_array_or_repeat(&mut self, close_delim: Delimiter) -> PResult<'a, P<Expr>> { |
| let lo = self.token.span; |
| self.bump(); // `[` or other open delim |
| |
| let close = &token::CloseDelim(close_delim); |
| let kind = if self.eat(close) { |
| // Empty vector |
| ExprKind::Array(ThinVec::new()) |
| } else { |
| // Non-empty vector |
| let first_expr = self.parse_expr()?; |
| if self.eat(&token::Semi) { |
| // Repeating array syntax: `[ 0; 512 ]` |
| let count = self.parse_expr_anon_const()?; |
| self.expect(close)?; |
| ExprKind::Repeat(first_expr, count) |
| } else if self.eat(&token::Comma) { |
| // Vector with two or more elements. |
| let sep = SeqSep::trailing_allowed(token::Comma); |
| let (mut exprs, _) = self.parse_seq_to_end(close, sep, |p| p.parse_expr())?; |
| exprs.insert(0, first_expr); |
| ExprKind::Array(exprs) |
| } else { |
| // Vector with one element |
| self.expect(close)?; |
| ExprKind::Array(thin_vec![first_expr]) |
| } |
| }; |
| let expr = self.mk_expr(lo.to(self.prev_token.span), kind); |
| self.maybe_recover_from_bad_qpath(expr) |
| } |
| |
| fn parse_expr_path_start(&mut self) -> PResult<'a, P<Expr>> { |
| let maybe_eq_tok = self.prev_token.clone(); |
| let (qself, path) = if self.eat_lt() { |
| let lt_span = self.prev_token.span; |
| let (qself, path) = self.parse_qpath(PathStyle::Expr).map_err(|mut err| { |
| // Suggests using '<=' if there is an error parsing qpath when the previous token |
| // is an '=' token. Only emits suggestion if the '<' token and '=' token are |
| // directly adjacent (i.e. '=<') |
| if maybe_eq_tok == TokenKind::Eq && maybe_eq_tok.span.hi() == lt_span.lo() { |
| let eq_lt = maybe_eq_tok.span.to(lt_span); |
| err.span_suggestion(eq_lt, "did you mean", "<=", Applicability::Unspecified); |
| } |
| err |
| })?; |
| (Some(qself), path) |
| } else { |
| (None, self.parse_path(PathStyle::Expr)?) |
| }; |
| |
| // `!`, as an operator, is prefix, so we know this isn't that. |
| let (span, kind) = if self.eat(&token::Not) { |
| // MACRO INVOCATION expression |
| if qself.is_some() { |
| self.dcx().emit_err(errors::MacroInvocationWithQualifiedPath(path.span)); |
| } |
| let lo = path.span; |
| let mac = P(MacCall { path, args: self.parse_delim_args()? }); |
| (lo.to(self.prev_token.span), ExprKind::MacCall(mac)) |
| } else if self.check(&token::OpenDelim(Delimiter::Brace)) |
| && let Some(expr) = self.maybe_parse_struct_expr(&qself, &path) |
| { |
| if qself.is_some() { |
| self.psess.gated_spans.gate(sym::more_qualified_paths, path.span); |
| } |
| return expr; |
| } else { |
| (path.span, ExprKind::Path(qself, path)) |
| }; |
| |
| let expr = self.mk_expr(span, kind); |
| self.maybe_recover_from_bad_qpath(expr) |
| } |
| |
| /// Parse `'label: $expr`. The label is already parsed. |
| pub(super) fn parse_expr_labeled( |
| &mut self, |
| label_: Label, |
| mut consume_colon: bool, |
| ) -> PResult<'a, P<Expr>> { |
| let lo = label_.ident.span; |
| let label = Some(label_); |
| let ate_colon = self.eat(&token::Colon); |
| let tok_sp = self.token.span; |
| let expr = if self.eat_keyword(kw::While) { |
| self.parse_expr_while(label, lo) |
| } else if self.eat_keyword(kw::For) { |
| self.parse_expr_for(label, lo) |
| } else if self.eat_keyword(kw::Loop) { |
| self.parse_expr_loop(label, lo) |
| } else if self.check_noexpect(&token::OpenDelim(Delimiter::Brace)) |
| || self.token.is_whole_block() |
| { |
| self.parse_expr_block(label, lo, BlockCheckMode::Default) |
| } else if !ate_colon |
| && self.may_recover() |
| && (matches!(self.token.kind, token::CloseDelim(_) | token::Comma) |
| || self.token.is_punct()) |
| && could_be_unclosed_char_literal(label_.ident) |
| { |
| let (lit, _) = |
| self.recover_unclosed_char(label_.ident, Parser::mk_token_lit_char, |self_| { |
| self_.dcx().create_err(errors::UnexpectedTokenAfterLabel { |
| span: self_.token.span, |
| remove_label: None, |
| enclose_in_block: None, |
| }) |
| }); |
| consume_colon = false; |
| Ok(self.mk_expr(lo, ExprKind::Lit(lit))) |
| } else if !ate_colon |
| && (self.check_noexpect(&TokenKind::Comma) || self.check_noexpect(&TokenKind::Gt)) |
| { |
| // We're probably inside of a `Path<'a>` that needs a turbofish |
| let guar = self.dcx().emit_err(errors::UnexpectedTokenAfterLabel { |
| span: self.token.span, |
| remove_label: None, |
| enclose_in_block: None, |
| }); |
| consume_colon = false; |
| Ok(self.mk_expr_err(lo, guar)) |
| } else { |
| let mut err = errors::UnexpectedTokenAfterLabel { |
| span: self.token.span, |
| remove_label: None, |
| enclose_in_block: None, |
| }; |
| |
| // Continue as an expression in an effort to recover on `'label: non_block_expr`. |
| let expr = self.parse_expr().map(|expr| { |
| let span = expr.span; |
| |
| let found_labeled_breaks = { |
| struct FindLabeledBreaksVisitor; |
| |
| impl<'ast> Visitor<'ast> for FindLabeledBreaksVisitor { |
| type Result = ControlFlow<()>; |
| fn visit_expr(&mut self, ex: &'ast Expr) -> ControlFlow<()> { |
| if let ExprKind::Break(Some(_label), _) = ex.kind { |
| ControlFlow::Break(()) |
| } else { |
| walk_expr(self, ex) |
| } |
| } |
| } |
| |
| FindLabeledBreaksVisitor.visit_expr(&expr).is_break() |
| }; |
| |
| // Suggestion involves adding a labeled block. |
| // |
| // If there are no breaks that may use this label, suggest removing the label and |
| // recover to the unmodified expression. |
| if !found_labeled_breaks { |
| err.remove_label = Some(lo.until(span)); |
| |
| return expr; |
| } |
| |
| err.enclose_in_block = Some(errors::UnexpectedTokenAfterLabelSugg { |
| left: span.shrink_to_lo(), |
| right: span.shrink_to_hi(), |
| }); |
| |
| // Replace `'label: non_block_expr` with `'label: {non_block_expr}` in order to suppress future errors about `break 'label`. |
| let stmt = self.mk_stmt(span, StmtKind::Expr(expr)); |
| let blk = self.mk_block(thin_vec![stmt], BlockCheckMode::Default, span); |
| self.mk_expr(span, ExprKind::Block(blk, label)) |
| }); |
| |
| self.dcx().emit_err(err); |
| expr |
| }?; |
| |
| if !ate_colon && consume_colon { |
| self.dcx().emit_err(errors::RequireColonAfterLabeledExpression { |
| span: expr.span, |
| label: lo, |
| label_end: lo.between(tok_sp), |
| }); |
| } |
| |
| Ok(expr) |
| } |
| |
| /// Emit an error when a char is parsed as a lifetime or label because of a missing quote. |
| pub(super) fn recover_unclosed_char<L>( |
| &self, |
| ident: Ident, |
| mk_lit_char: impl FnOnce(Symbol, Span) -> L, |
| err: impl FnOnce(&Self) -> Diag<'a>, |
| ) -> L { |
| assert!(could_be_unclosed_char_literal(ident)); |
| self.dcx() |
| .try_steal_modify_and_emit_err(ident.span, StashKey::LifetimeIsChar, |err| { |
| err.span_suggestion_verbose( |
| ident.span.shrink_to_hi(), |
| "add `'` to close the char literal", |
| "'", |
| Applicability::MaybeIncorrect, |
| ); |
| }) |
| .unwrap_or_else(|| { |
| err(self) |
| .with_span_suggestion_verbose( |
| ident.span.shrink_to_hi(), |
| "add `'` to close the char literal", |
| "'", |
| Applicability::MaybeIncorrect, |
| ) |
| .emit() |
| }); |
| let name = ident.without_first_quote().name; |
| mk_lit_char(name, ident.span) |
| } |
| |
| /// Recover on the syntax `do catch { ... }` suggesting `try { ... }` instead. |
| fn recover_do_catch(&mut self) -> PResult<'a, P<Expr>> { |
| let lo = self.token.span; |
| |
| self.bump(); // `do` |
| self.bump(); // `catch` |
| |
| let span = lo.to(self.prev_token.span); |
| self.dcx().emit_err(errors::DoCatchSyntaxRemoved { span }); |
| |
| self.parse_try_block(lo) |
| } |
| |
| /// Parse an expression if the token can begin one. |
| fn parse_expr_opt(&mut self) -> PResult<'a, Option<P<Expr>>> { |
| Ok(if self.token.can_begin_expr() { Some(self.parse_expr()?) } else { None }) |
| } |
| |
| /// Parse `"return" expr?`. |
| fn parse_expr_return(&mut self) -> PResult<'a, P<Expr>> { |
| let lo = self.prev_token.span; |
| let kind = ExprKind::Ret(self.parse_expr_opt()?); |
| let expr = self.mk_expr(lo.to(self.prev_token.span), kind); |
| self.maybe_recover_from_bad_qpath(expr) |
| } |
| |
| /// Parse `"do" "yeet" expr?`. |
| fn parse_expr_yeet(&mut self) -> PResult<'a, P<Expr>> { |
| let lo = self.token.span; |
| |
| self.bump(); // `do` |
| self.bump(); // `yeet` |
| |
| let kind = ExprKind::Yeet(self.parse_expr_opt()?); |
| |
| let span = lo.to(self.prev_token.span); |
| self.psess.gated_spans.gate(sym::yeet_expr, span); |
| let expr = self.mk_expr(span, kind); |
| self.maybe_recover_from_bad_qpath(expr) |
| } |
| |
| /// Parse `"become" expr`, with `"become"` token already eaten. |
| fn parse_expr_become(&mut self) -> PResult<'a, P<Expr>> { |
| let lo = self.prev_token.span; |
| let kind = ExprKind::Become(self.parse_expr()?); |
| let span = lo.to(self.prev_token.span); |
| self.psess.gated_spans.gate(sym::explicit_tail_calls, span); |
| let expr = self.mk_expr(span, kind); |
| self.maybe_recover_from_bad_qpath(expr) |
| } |
| |
| /// Parse `"break" (('label (:? expr)?) | expr?)` with `"break"` token already eaten. |
| /// If the label is followed immediately by a `:` token, the label and `:` are |
| /// parsed as part of the expression (i.e. a labeled loop). The language team has |
| /// decided in #87026 to require parentheses as a visual aid to avoid confusion if |
| /// the break expression of an unlabeled break is a labeled loop (as in |
| /// `break 'lbl: loop {}`); a labeled break with an unlabeled loop as its value |
| /// expression only gets a warning for compatibility reasons; and a labeled break |
| /// with a labeled loop does not even get a warning because there is no ambiguity. |
| fn parse_expr_break(&mut self) -> PResult<'a, P<Expr>> { |
| let lo = self.prev_token.span; |
| let mut label = self.eat_label(); |
| let kind = if self.token == token::Colon |
| && let Some(label) = label.take() |
| { |
| // The value expression can be a labeled loop, see issue #86948, e.g.: |
| // `loop { break 'label: loop { break 'label 42; }; }` |
| let lexpr = self.parse_expr_labeled(label, true)?; |
| self.dcx().emit_err(errors::LabeledLoopInBreak { |
| span: lexpr.span, |
| sub: errors::WrapInParentheses::Expression { |
| left: lexpr.span.shrink_to_lo(), |
| right: lexpr.span.shrink_to_hi(), |
| }, |
| }); |
| Some(lexpr) |
| } else if self.token != token::OpenDelim(Delimiter::Brace) |
| || !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL) |
| { |
| let mut expr = self.parse_expr_opt()?; |
| if let Some(expr) = &mut expr { |
| if label.is_some() |
| && matches!( |
| expr.kind, |
| ExprKind::While(_, _, None) |
| | ExprKind::ForLoop { label: None, .. } |
| | ExprKind::Loop(_, None, _) |
| | ExprKind::Block(_, None) |
| ) |
| { |
| self.psess.buffer_lint( |
| BREAK_WITH_LABEL_AND_LOOP, |
| lo.to(expr.span), |
| ast::CRATE_NODE_ID, |
| BuiltinLintDiag::BreakWithLabelAndLoop(expr.span), |
| ); |
| } |
| |
| // Recover `break label aaaaa` |
| if self.may_recover() |
| && let ExprKind::Path(None, p) = &expr.kind |
| && let [segment] = &*p.segments |
| && let &ast::PathSegment { ident, args: None, .. } = segment |
| && let Some(next) = self.parse_expr_opt()? |
| { |
| label = Some(self.recover_ident_into_label(ident)); |
| *expr = next; |
| } |
| } |
| |
| expr |
| } else { |
| None |
| }; |
| let expr = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Break(label, kind)); |
| self.maybe_recover_from_bad_qpath(expr) |
| } |
| |
| /// Parse `"continue" label?`. |
| fn parse_expr_continue(&mut self, lo: Span) -> PResult<'a, P<Expr>> { |
| let mut label = self.eat_label(); |
| |
| // Recover `continue label` -> `continue 'label` |
| if self.may_recover() |
| && label.is_none() |
| && let Some((ident, _)) = self.token.ident() |
| { |
| self.bump(); |
| label = Some(self.recover_ident_into_label(ident)); |
| } |
| |
| let kind = ExprKind::Continue(label); |
| Ok(self.mk_expr(lo.to(self.prev_token.span), kind)) |
| } |
| |
| /// Parse `"yield" expr?`. |
| fn parse_expr_yield(&mut self) -> PResult<'a, P<Expr>> { |
| let lo = self.prev_token.span; |
| let kind = ExprKind::Yield(self.parse_expr_opt()?); |
| let span = lo.to(self.prev_token.span); |
| self.psess.gated_spans.gate(sym::yield_expr, span); |
| let expr = self.mk_expr(span, kind); |
| self.maybe_recover_from_bad_qpath(expr) |
| } |
| |
| /// Parse `builtin # ident(args,*)`. |
| fn parse_expr_builtin(&mut self) -> PResult<'a, P<Expr>> { |
| self.parse_builtin(|this, lo, ident| { |
| Ok(match ident.name { |
| sym::offset_of => Some(this.parse_expr_offset_of(lo)?), |
| sym::type_ascribe => Some(this.parse_expr_type_ascribe(lo)?), |
| sym::wrap_binder => { |
| Some(this.parse_expr_unsafe_binder_cast(lo, UnsafeBinderCastKind::Wrap)?) |
| } |
| sym::unwrap_binder => { |
| Some(this.parse_expr_unsafe_binder_cast(lo, UnsafeBinderCastKind::Unwrap)?) |
| } |
| _ => None, |
| }) |
| }) |
| } |
| |
| pub(crate) fn parse_builtin<T>( |
| &mut self, |
| parse: impl FnOnce(&mut Parser<'a>, Span, Ident) -> PResult<'a, Option<T>>, |
| ) -> PResult<'a, T> { |
| let lo = self.token.span; |
| |
| self.bump(); // `builtin` |
| self.bump(); // `#` |
| |
| let Some((ident, IdentIsRaw::No)) = self.token.ident() else { |
| let err = self.dcx().create_err(errors::ExpectedBuiltinIdent { span: self.token.span }); |
| return Err(err); |
| }; |
| self.psess.gated_spans.gate(sym::builtin_syntax, ident.span); |
| self.bump(); |
| |
| self.expect(&TokenKind::OpenDelim(Delimiter::Parenthesis))?; |
| let ret = if let Some(res) = parse(self, lo, ident)? { |
| Ok(res) |
| } else { |
| let err = self.dcx().create_err(errors::UnknownBuiltinConstruct { |
| span: lo.to(ident.span), |
| name: ident.name, |
| }); |
| return Err(err); |
| }; |
| self.expect(&TokenKind::CloseDelim(Delimiter::Parenthesis))?; |
| |
| ret |
| } |
| |
| /// Built-in macro for `offset_of!` expressions. |
| pub(crate) fn parse_expr_offset_of(&mut self, lo: Span) -> PResult<'a, P<Expr>> { |
| let container = self.parse_ty()?; |
| self.expect(&TokenKind::Comma)?; |
| |
| let fields = self.parse_floating_field_access()?; |
| let trailing_comma = self.eat_noexpect(&TokenKind::Comma); |
| |
| if let Err(mut e) = |
| self.expect_one_of(&[], &[TokenKind::CloseDelim(Delimiter::Parenthesis)]) |
| { |
| if trailing_comma { |
| e.note("unexpected third argument to offset_of"); |
| } else { |
| e.note("offset_of expects dot-separated field and variant names"); |
| } |
| e.emit(); |
| } |
| |
| // Eat tokens until the macro call ends. |
| if self.may_recover() { |
| while !matches!(self.token.kind, token::CloseDelim(..) | token::Eof) { |
| self.bump(); |
| } |
| } |
| |
| let span = lo.to(self.token.span); |
| Ok(self.mk_expr(span, ExprKind::OffsetOf(container, fields))) |
| } |
| |
| /// Built-in macro for type ascription expressions. |
| pub(crate) fn parse_expr_type_ascribe(&mut self, lo: Span) -> PResult<'a, P<Expr>> { |
| let expr = self.parse_expr()?; |
| self.expect(&token::Comma)?; |
| let ty = self.parse_ty()?; |
| let span = lo.to(self.token.span); |
| Ok(self.mk_expr(span, ExprKind::Type(expr, ty))) |
| } |
| |
| pub(crate) fn parse_expr_unsafe_binder_cast( |
| &mut self, |
| lo: Span, |
| kind: UnsafeBinderCastKind, |
| ) -> PResult<'a, P<Expr>> { |
| let expr = self.parse_expr()?; |
| let ty = if self.eat(&TokenKind::Comma) { Some(self.parse_ty()?) } else { None }; |
| let span = lo.to(self.token.span); |
| Ok(self.mk_expr(span, ExprKind::UnsafeBinderCast(kind, expr, ty))) |
| } |
| |
| /// Returns a string literal if the next token is a string literal. |
| /// In case of error returns `Some(lit)` if the next token is a literal with a wrong kind, |
| /// and returns `None` if the next token is not literal at all. |
| pub fn parse_str_lit(&mut self) -> Result<ast::StrLit, Option<MetaItemLit>> { |
| match self.parse_opt_meta_item_lit() { |
| Some(lit) => match lit.kind { |
| ast::LitKind::Str(symbol_unescaped, style) => Ok(ast::StrLit { |
| style, |
| symbol: lit.symbol, |
| suffix: lit.suffix, |
| span: lit.span, |
| symbol_unescaped, |
| }), |
| _ => Err(Some(lit)), |
| }, |
| None => Err(None), |
| } |
| } |
| |
| pub(crate) fn mk_token_lit_char(name: Symbol, span: Span) -> (token::Lit, Span) { |
| (token::Lit { symbol: name, suffix: None, kind: token::Char }, span) |
| } |
| |
| fn mk_meta_item_lit_char(name: Symbol, span: Span) -> MetaItemLit { |
| ast::MetaItemLit { |
| symbol: name, |
| suffix: None, |
| kind: ast::LitKind::Char(name.as_str().chars().next().unwrap_or('_')), |
| span, |
| } |
| } |
| |
| fn handle_missing_lit<L>( |
| &mut self, |
| mk_lit_char: impl FnOnce(Symbol, Span) -> L, |
| ) -> PResult<'a, L> { |
| let token = self.token.clone(); |
| let err = |self_: &Self| { |
| let msg = format!("unexpected token: {}", super::token_descr(&token)); |
| self_.dcx().struct_span_err(token.span, msg) |
| }; |
| // On an error path, eagerly consider a lifetime to be an unclosed character lit, if that |
| // makes sense. |
| if let Some((ident, IdentIsRaw::No)) = self.token.lifetime() |
| && could_be_unclosed_char_literal(ident) |
| { |
| let lt = self.expect_lifetime(); |
| Ok(self.recover_unclosed_char(lt.ident, mk_lit_char, err)) |
| } else { |
| Err(err(self)) |
| } |
| } |
| |
| pub(super) fn parse_token_lit(&mut self) -> PResult<'a, (token::Lit, Span)> { |
| self.parse_opt_token_lit() |
| .ok_or(()) |
| .or_else(|()| self.handle_missing_lit(Parser::mk_token_lit_char)) |
| } |
| |
| pub(super) fn parse_meta_item_lit(&mut self) -> PResult<'a, MetaItemLit> { |
| self.parse_opt_meta_item_lit() |
| .ok_or(()) |
| .or_else(|()| self.handle_missing_lit(Parser::mk_meta_item_lit_char)) |
| } |
| |
| fn recover_after_dot(&mut self) -> Option<Token> { |
| let mut recovered = None; |
| if self.token == token::Dot { |
| // Attempt to recover `.4` as `0.4`. We don't currently have any syntax where |
| // dot would follow an optional literal, so we do this unconditionally. |
| recovered = self.look_ahead(1, |next_token| { |
| if let token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) = |
| next_token.kind |
| { |
| // If this integer looks like a float, then recover as such. |
| // |
| // We will never encounter the exponent part of a floating |
| // point literal here, since there's no use of the exponent |
| // syntax that also constitutes a valid integer, so we need |
| // not check for that. |
| if suffix.map_or(true, |s| s == sym::f32 || s == sym::f64) |
| && symbol.as_str().chars().all(|c| c.is_numeric() || c == '_') |
| && self.token.span.hi() == next_token.span.lo() |
| { |
| let s = String::from("0.") + symbol.as_str(); |
| let kind = TokenKind::lit(token::Float, Symbol::intern(&s), suffix); |
| return Some(Token::new(kind, self.token.span.to(next_token.span))); |
| } |
| } |
| None |
| }); |
| if let Some(token) = &recovered { |
| self.bump(); |
| self.dcx().emit_err(errors::FloatLiteralRequiresIntegerPart { |
| span: token.span, |
| suggestion: token.span.shrink_to_lo(), |
| }); |
| } |
| } |
| |
| recovered |
| } |
| |
| /// Matches `lit = true | false | token_lit`. |
| /// Returns `None` if the next token is not a literal. |
| pub(super) fn parse_opt_token_lit(&mut self) -> Option<(token::Lit, Span)> { |
| let recovered = self.recover_after_dot(); |
| let token = recovered.as_ref().unwrap_or(&self.token); |
| let span = token.span; |
| |
| token::Lit::from_token(token).map(|token_lit| { |
| self.bump(); |
| (token_lit, span) |
| }) |
| } |
| |
| /// Matches `lit = true | false | token_lit`. |
| /// Returns `None` if the next token is not a literal. |
| pub(super) fn parse_opt_meta_item_lit(&mut self) -> Option<MetaItemLit> { |
| let recovered = self.recover_after_dot(); |
| let token = recovered.as_ref().unwrap_or(&self.token); |
| match token::Lit::from_token(token) { |
| Some(lit) => { |
| match MetaItemLit::from_token_lit(lit, token.span) { |
| Ok(lit) => { |
| self.bump(); |
| Some(lit) |
| } |
| Err(err) => { |
| let span = token.uninterpolated_span(); |
| self.bump(); |
| let guar = report_lit_error(self.psess, err, lit, span); |
| // Pack possible quotes and prefixes from the original literal into |
| // the error literal's symbol so they can be pretty-printed faithfully. |
| let suffixless_lit = token::Lit::new(lit.kind, lit.symbol, None); |
| let symbol = Symbol::intern(&suffixless_lit.to_string()); |
| let lit = token::Lit::new(token::Err(guar), symbol, lit.suffix); |
| Some( |
| MetaItemLit::from_token_lit(lit, span) |
| .unwrap_or_else(|_| unreachable!()), |
| ) |
| } |
| } |
| } |
| None => None, |
| } |
| } |
| |
| pub(super) fn expect_no_tuple_index_suffix(&self, span: Span, suffix: Symbol) { |
| if [sym::i32, sym::u32, sym::isize, sym::usize].contains(&suffix) { |
| // #59553: warn instead of reject out of hand to allow the fix to percolate |
| // through the ecosystem when people fix their macros |
| self.dcx().emit_warn(errors::InvalidLiteralSuffixOnTupleIndex { |
| span, |
| suffix, |
| exception: true, |
| }); |
| } else { |
| self.dcx().emit_err(errors::InvalidLiteralSuffixOnTupleIndex { |
| span, |
| suffix, |
| exception: false, |
| }); |
| } |
| } |
| |
| /// Matches `'-' lit | lit` (cf. `ast_validation::AstValidator::check_expr_within_pat`). |
| /// Keep this in sync with `Token::can_begin_literal_maybe_minus`. |
| pub fn parse_literal_maybe_minus(&mut self) -> PResult<'a, P<Expr>> { |
| if let token::Interpolated(nt) = &self.token.kind { |
| match &**nt { |
| // FIXME(nnethercote) The `NtExpr` case should only match if |
| // `e` is an `ExprKind::Lit` or an `ExprKind::Unary` containing |
| // an `UnOp::Neg` and an `ExprKind::Lit`, like how |
| // `can_begin_literal_maybe_minus` works. But this method has |
| // been over-accepting for a long time, and to make that change |
| // here requires also changing some `parse_literal_maybe_minus` |
| // call sites to accept additional expression kinds. E.g. |
| // `ExprKind::Path` must be accepted when parsing range |
| // patterns. That requires some care. So for now, we continue |
| // being less strict here than we should be. |
| token::NtExpr(e) | token::NtLiteral(e) => { |
| let e = e.clone(); |
| self.bump(); |
| return Ok(e); |
| } |
| _ => {} |
| }; |
| } |
| |
| let lo = self.token.span; |
| let minus_present = self.eat(&token::BinOp(token::Minus)); |
| let (token_lit, span) = self.parse_token_lit()?; |
| let expr = self.mk_expr(span, ExprKind::Lit(token_lit)); |
| |
| if minus_present { |
| Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_unary(UnOp::Neg, expr))) |
| } else { |
| Ok(expr) |
| } |
| } |
| |
| fn is_array_like_block(&mut self) -> bool { |
| self.look_ahead(1, |t| matches!(t.kind, TokenKind::Ident(..) | TokenKind::Literal(_))) |
| && self.look_ahead(2, |t| t == &token::Comma) |
| && self.look_ahead(3, |t| t.can_begin_expr()) |
| } |
| |
| /// Emits a suggestion if it looks like the user meant an array but |
| /// accidentally used braces, causing the code to be interpreted as a block |
| /// expression. |
| fn maybe_suggest_brackets_instead_of_braces(&mut self, lo: Span) -> Option<P<Expr>> { |
| let mut snapshot = self.create_snapshot_for_diagnostic(); |
| match snapshot.parse_expr_array_or_repeat(Delimiter::Brace) { |
| Ok(arr) => { |
| let guar = self.dcx().emit_err(errors::ArrayBracketsInsteadOfSpaces { |
| span: arr.span, |
| sub: errors::ArrayBracketsInsteadOfSpacesSugg { |
| left: lo, |
| right: snapshot.prev_token.span, |
| }, |
| }); |
| |
| self.restore_snapshot(snapshot); |
| Some(self.mk_expr_err(arr.span, guar)) |
| } |
| Err(e) => { |
| e.cancel(); |
| None |
| } |
| } |
| } |
| |
| fn suggest_missing_semicolon_before_array( |
| &self, |
| prev_span: Span, |
| open_delim_span: Span, |
| ) -> PResult<'a, ()> { |
| if !self.may_recover() { |
| return Ok(()); |
| } |
| |
| if self.token == token::Comma { |
| if !self.psess.source_map().is_multiline(prev_span.until(self.token.span)) { |
| return Ok(()); |
| } |
| let mut snapshot = self.create_snapshot_for_diagnostic(); |
| snapshot.bump(); |
| match snapshot.parse_seq_to_before_end( |
| &token::CloseDelim(Delimiter::Bracket), |
| SeqSep::trailing_allowed(token::Comma), |
| |p| p.parse_expr(), |
| ) { |
| Ok(_) |
| // When the close delim is `)`, `token.kind` is expected to be `token::CloseDelim(Delimiter::Parenthesis)`, |
| // but the actual `token.kind` is `token::CloseDelim(Delimiter::Bracket)`. |
| // This is because the `token.kind` of the close delim is treated as the same as |
| // that of the open delim in `TokenTreesReader::parse_token_tree`, even if the delimiters of them are different. |
| // Therefore, `token.kind` should not be compared here. |
| if snapshot |
| .span_to_snippet(snapshot.token.span) |
| .is_ok_and(|snippet| snippet == "]") => |
| { |
| return Err(self.dcx().create_err(errors::MissingSemicolonBeforeArray { |
| open_delim: open_delim_span, |
| semicolon: prev_span.shrink_to_hi(), |
| })); |
| } |
| Ok(_) => (), |
| Err(err) => err.cancel(), |
| } |
| } |
| Ok(()) |
| } |
| |
| /// Parses a block or unsafe block. |
| pub(super) fn parse_expr_block( |
| &mut self, |
| opt_label: Option<Label>, |
| lo: Span, |
| blk_mode: BlockCheckMode, |
| ) -> PResult<'a, P<Expr>> { |
| if self.may_recover() && self.is_array_like_block() { |
| if let Some(arr) = self.maybe_suggest_brackets_instead_of_braces(lo) { |
| return Ok(arr); |
| } |
| } |
| |
| if self.token.is_whole_block() { |
| self.dcx().emit_err(errors::InvalidBlockMacroSegment { |
| span: self.token.span, |
| context: lo.to(self.token.span), |
| wrap: errors::WrapInExplicitBlock { |
| lo: self.token.span.shrink_to_lo(), |
| hi: self.token.span.shrink_to_hi(), |
| }, |
| }); |
| } |
| |
| let (attrs, blk) = self.parse_block_common(lo, blk_mode, true)?; |
| Ok(self.mk_expr_with_attrs(blk.span, ExprKind::Block(blk, opt_label), attrs)) |
| } |
| |
| /// Parse a block which takes no attributes and has no label |
| fn parse_simple_block(&mut self) -> PResult<'a, P<Expr>> { |
| let blk = self.parse_block()?; |
| Ok(self.mk_expr(blk.span, ExprKind::Block(blk, None))) |
| } |
| |
| /// Parses a closure expression (e.g., `move |args| expr`). |
| fn parse_expr_closure(&mut self) -> PResult<'a, P<Expr>> { |
| let lo = self.token.span; |
| |
| let before = self.prev_token.clone(); |
| let binder = if self.check_keyword(kw::For) { |
| let lo = self.token.span; |
| let (lifetime_defs, _) = self.parse_late_bound_lifetime_defs()?; |
| let span = lo.to(self.prev_token.span); |
| |
| self.psess.gated_spans.gate(sym::closure_lifetime_binder, span); |
| |
| ClosureBinder::For { span, generic_params: lifetime_defs } |
| } else { |
| ClosureBinder::NotPresent |
| }; |
| |
| let constness = self.parse_closure_constness(); |
| |
| let movability = |
| if self.eat_keyword(kw::Static) { Movability::Static } else { Movability::Movable }; |
| |
| let coroutine_kind = if self.token.uninterpolated_span().at_least_rust_2018() { |
| self.parse_coroutine_kind(Case::Sensitive) |
| } else { |
| None |
| }; |
| |
| let capture_clause = self.parse_capture_clause()?; |
| let (fn_decl, fn_arg_span) = self.parse_fn_block_decl()?; |
| let decl_hi = self.prev_token.span; |
| let mut body = match fn_decl.output { |
| FnRetTy::Default(_) => { |
| let restrictions = |
| self.restrictions - Restrictions::STMT_EXPR - Restrictions::ALLOW_LET; |
| let prev = self.prev_token.clone(); |
| let token = self.token.clone(); |
| let attrs = self.parse_outer_attributes()?; |
| match self.parse_expr_res(restrictions, attrs) { |
| Ok((expr, _)) => expr, |
| Err(err) => self.recover_closure_body(err, before, prev, token, lo, decl_hi)?, |
| } |
| } |
| _ => { |
| // If an explicit return type is given, require a block to appear (RFC 968). |
| let body_lo = self.token.span; |
| self.parse_expr_block(None, body_lo, BlockCheckMode::Default)? |
| } |
| }; |
| |
| match coroutine_kind { |
| Some(CoroutineKind::Async { span, .. }) => { |
| // Feature-gate `async ||` closures. |
| self.psess.gated_spans.gate(sym::async_closure, span); |
| } |
| Some(CoroutineKind::Gen { span, .. }) | Some(CoroutineKind::AsyncGen { span, .. }) => { |
| // Feature-gate `gen ||` and `async gen ||` closures. |
| // FIXME(gen_blocks): This perhaps should be a different gate. |
| self.psess.gated_spans.gate(sym::gen_blocks, span); |
| } |
| None => {} |
| } |
| |
| if self.token == TokenKind::Semi |
| && matches!(self.token_cursor.stack.last(), Some((.., Delimiter::Parenthesis))) |
| && self.may_recover() |
| { |
| // It is likely that the closure body is a block but where the |
| // braces have been removed. We will recover and eat the next |
| // statements later in the parsing process. |
| body = self.mk_expr_err( |
| body.span, |
| self.dcx().span_delayed_bug(body.span, "recovered a closure body as a block"), |
| ); |
| } |
| |
| let body_span = body.span; |
| |
| let closure = self.mk_expr( |
| lo.to(body.span), |
| ExprKind::Closure(Box::new(ast::Closure { |
| binder, |
| capture_clause, |
| constness, |
| coroutine_kind, |
| movability, |
| fn_decl, |
| body, |
| fn_decl_span: lo.to(decl_hi), |
| fn_arg_span, |
| })), |
| ); |
| |
| // Disable recovery for closure body |
| let spans = |
| ClosureSpans { whole_closure: closure.span, closing_pipe: decl_hi, body: body_span }; |
| self.current_closure = Some(spans); |
| |
| Ok(closure) |
| } |
| |
| /// Parses an optional `move` prefix to a closure-like construct. |
| fn parse_capture_clause(&mut self) -> PResult<'a, CaptureBy> { |
| if self.eat_keyword(kw::Move) { |
| let move_kw_span = self.prev_token.span; |
| // Check for `move async` and recover |
| if self.check_keyword(kw::Async) { |
| let move_async_span = self.token.span.with_lo(self.prev_token.span.data().lo); |
| Err(self |
| .dcx() |
| .create_err(errors::AsyncMoveOrderIncorrect { span: move_async_span })) |
| } else { |
| Ok(CaptureBy::Value { move_kw: move_kw_span }) |
| } |
| } else { |
| Ok(CaptureBy::Ref) |
| } |
| } |
| |
| /// Parses the `|arg, arg|` header of a closure. |
| fn parse_fn_block_decl(&mut self) -> PResult<'a, (P<FnDecl>, Span)> { |
| let arg_start = self.token.span.lo(); |
| |
| let inputs = if self.eat(&token::OrOr) { |
| ThinVec::new() |
| } else { |
| self.expect(&token::BinOp(token::Or))?; |
| let args = self |
| .parse_seq_to_before_tokens( |
| &[&token::BinOp(token::Or)], |
| &[&token::OrOr], |
| SeqSep::trailing_allowed(token::Comma), |
| |p| p.parse_fn_block_param(), |
| )? |
| .0; |
| self.expect_or()?; |
| args |
| }; |
| let arg_span = self.prev_token.span.with_lo(arg_start); |
| let output = |
| self.parse_ret_ty(AllowPlus::Yes, RecoverQPath::Yes, RecoverReturnSign::Yes)?; |
| |
| Ok((P(FnDecl { inputs, output }), arg_span)) |
| } |
| |
| /// Parses a parameter in a closure header (e.g., `|arg, arg|`). |
| fn parse_fn_block_param(&mut self) -> PResult<'a, Param> { |
| let lo = self.token.span; |
| let attrs = self.parse_outer_attributes()?; |
| self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| { |
| let pat = this.parse_pat_no_top_alt(Some(Expected::ParameterName), None)?; |
| let ty = if this.eat(&token::Colon) { |
| this.parse_ty()? |
| } else { |
| this.mk_ty(pat.span, TyKind::Infer) |
| }; |
| |
| Ok(( |
| Param { |
| attrs, |
| ty, |
| pat, |
| span: lo.to(this.prev_token.span), |
| id: DUMMY_NODE_ID, |
| is_placeholder: false, |
| }, |
| Trailing::from(this.token == token::Comma), |
| UsePreAttrPos::No, |
| )) |
| }) |
| } |
| |
| /// Parses an `if` expression (`if` token already eaten). |
| fn parse_expr_if(&mut self) -> PResult<'a, P<Expr>> { |
| let lo = self.prev_token.span; |
| let cond = self.parse_expr_cond()?; |
| self.parse_if_after_cond(lo, cond) |
| } |
| |
| fn parse_if_after_cond(&mut self, lo: Span, mut cond: P<Expr>) -> PResult<'a, P<Expr>> { |
| let cond_span = cond.span; |
| // Tries to interpret `cond` as either a missing expression if it's a block, |
| // or as an unfinished expression if it's a binop and the RHS is a block. |
| // We could probably add more recoveries here too... |
| let mut recover_block_from_condition = |this: &mut Self| { |
| let block = match &mut cond.kind { |
| ExprKind::Binary(Spanned { span: binop_span, .. }, _, right) |
| if let ExprKind::Block(_, None) = right.kind => |
| { |
| let guar = this.dcx().emit_err(errors::IfExpressionMissingThenBlock { |
| if_span: lo, |
| missing_then_block_sub: |
| errors::IfExpressionMissingThenBlockSub::UnfinishedCondition( |
| cond_span.shrink_to_lo().to(*binop_span), |
| ), |
| let_else_sub: None, |
| }); |
| std::mem::replace(right, this.mk_expr_err(binop_span.shrink_to_hi(), guar)) |
| } |
| ExprKind::Block(_, None) => { |
| let guar = this.dcx().emit_err(errors::IfExpressionMissingCondition { |
| if_span: lo.with_neighbor(cond.span).shrink_to_hi(), |
| block_span: self.psess.source_map().start_point(cond_span), |
| }); |
| std::mem::replace(&mut cond, this.mk_expr_err(cond_span.shrink_to_hi(), guar)) |
| } |
| _ => { |
| return None; |
| } |
| }; |
| if let ExprKind::Block(block, _) = &block.kind { |
| Some(block.clone()) |
| } else { |
| unreachable!() |
| } |
| }; |
| // Parse then block |
| let thn = if self.token.is_keyword(kw::Else) { |
| if let Some(block) = recover_block_from_condition(self) { |
| block |
| } else { |
| let let_else_sub = matches!(cond.kind, ExprKind::Let(..)) |
| .then(|| errors::IfExpressionLetSomeSub { if_span: lo.until(cond_span) }); |
| |
| let guar = self.dcx().emit_err(errors::IfExpressionMissingThenBlock { |
| if_span: lo, |
| missing_then_block_sub: errors::IfExpressionMissingThenBlockSub::AddThenBlock( |
| cond_span.shrink_to_hi(), |
| ), |
| let_else_sub, |
| }); |
| self.mk_block_err(cond_span.shrink_to_hi(), guar) |
| } |
| } else { |
| let attrs = self.parse_outer_attributes()?; // For recovery. |
| let maybe_fatarrow = self.token.clone(); |
| let block = if self.check(&token::OpenDelim(Delimiter::Brace)) { |
| self.parse_block()? |
| } else if let Some(block) = recover_block_from_condition(self) { |
| block |
| } else { |
| self.error_on_extra_if(&cond)?; |
| // Parse block, which will always fail, but we can add a nice note to the error |
| self.parse_block().map_err(|mut err| { |
| if self.prev_token == token::Semi |
| && self.token == token::AndAnd |
| && let maybe_let = self.look_ahead(1, |t| t.clone()) |
| && maybe_let.is_keyword(kw::Let) |
| { |
| err.span_suggestion( |
| self.prev_token.span, |
| "consider removing this semicolon to parse the `let` as part of the same chain", |
| "", |
| Applicability::MachineApplicable, |
| ).span_note( |
| self.token.span.to(maybe_let.span), |
| "you likely meant to continue parsing the let-chain starting here", |
| ); |
| } else { |
| // Look for usages of '=>' where '>=' might be intended |
| if maybe_fatarrow == token::FatArrow { |
| err.span_suggestion( |
| maybe_fatarrow.span, |
| "you might have meant to write a \"greater than or equal to\" comparison", |
| ">=", |
| Applicability::MaybeIncorrect, |
| ); |
| } |
| err.span_note( |
| cond_span, |
| "the `if` expression is missing a block after this condition", |
| ); |
| } |
| err |
| })? |
| }; |
| self.error_on_if_block_attrs(lo, false, block.span, attrs); |
| block |
| }; |
| let els = if self.eat_keyword(kw::Else) { Some(self.parse_expr_else()?) } else { None }; |
| Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::If(cond, thn, els))) |
| } |
| |
| /// Parses the condition of a `if` or `while` expression. |
| fn parse_expr_cond(&mut self) -> PResult<'a, P<Expr>> { |
| let attrs = self.parse_outer_attributes()?; |
| let (mut cond, _) = |
| self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL | Restrictions::ALLOW_LET, attrs)?; |
| |
| CondChecker::new(self).visit_expr(&mut cond); |
| |
| if let ExprKind::Let(_, _, _, Recovered::No) = cond.kind { |
| // Remove the last feature gating of a `let` expression since it's stable. |
| self.psess.gated_spans.ungate_last(sym::let_chains, cond.span); |
| } |
| |
| Ok(cond) |
| } |
| |
| /// Parses a `let $pat = $expr` pseudo-expression. |
| fn parse_expr_let(&mut self, restrictions: Restrictions) -> PResult<'a, P<Expr>> { |
| let recovered = if !restrictions.contains(Restrictions::ALLOW_LET) { |
| let err = errors::ExpectedExpressionFoundLet { |
| span: self.token.span, |
| reason: ForbiddenLetReason::OtherForbidden, |
| missing_let: None, |
| comparison: None, |
| }; |
| if self.prev_token == token::BinOp(token::Or) { |
| // This was part of a closure, the that part of the parser recover. |
| return Err(self.dcx().create_err(err)); |
| } else { |
| Recovered::Yes(self.dcx().emit_err(err)) |
| } |
| } else { |
| Recovered::No |
| }; |
| self.bump(); // Eat `let` token |
| let lo = self.prev_token.span; |
| let pat = self.parse_pat_no_top_guard( |
| None, |
| RecoverComma::Yes, |
| RecoverColon::Yes, |
| CommaRecoveryMode::LikelyTuple, |
| )?; |
| if self.token == token::EqEq { |
| self.dcx().emit_err(errors::ExpectedEqForLetExpr { |
| span: self.token.span, |
| sugg_span: self.token.span, |
| }); |
| self.bump(); |
| } else { |
| self.expect(&token::Eq)?; |
| } |
| let attrs = self.parse_outer_attributes()?; |
| let (expr, _) = |
| self.parse_expr_assoc_with(Bound::Excluded(prec_let_scrutinee_needs_par()), attrs)?; |
| let span = lo.to(expr.span); |
| Ok(self.mk_expr(span, ExprKind::Let(pat, expr, span, recovered))) |
| } |
| |
| /// Parses an `else { ... }` expression (`else` token already eaten). |
| fn parse_expr_else(&mut self) -> PResult<'a, P<Expr>> { |
| let else_span = self.prev_token.span; // `else` |
| let attrs = self.parse_outer_attributes()?; // For recovery. |
| let expr = if self.eat_keyword(kw::If) { |
| ensure_sufficient_stack(|| self.parse_expr_if())? |
| } else if self.check(&TokenKind::OpenDelim(Delimiter::Brace)) { |
| self.parse_simple_block()? |
| } else { |
| let snapshot = self.create_snapshot_for_diagnostic(); |
| let first_tok = super::token_descr(&self.token); |
| let first_tok_span = self.token.span; |
| match self.parse_expr() { |
| Ok(cond) |
| // Try to guess the difference between a "condition-like" vs |
| // "statement-like" expression. |
| // |
| // We are seeing the following code, in which $cond is neither |
| // ExprKind::Block nor ExprKind::If (the 2 cases wherein this |
| // would be valid syntax). |
| // |
| // if ... { |
| // } else $cond |
| // |
| // If $cond is "condition-like" such as ExprKind::Binary, we |
| // want to suggest inserting `if`. |
| // |
| // if ... { |
| // } else if a == b { |
| // ^^ |
| // } |
| // |
| // We account for macro calls that were meant as conditions as well. |
| // |
| // if ... { |
| // } else if macro! { foo bar } { |
| // ^^ |
| // } |
| // |
| // If $cond is "statement-like" such as ExprKind::While then we |
| // want to suggest wrapping in braces. |
| // |
| // if ... { |
| // } else { |
| // ^ |
| // while true {} |
| // } |
| // ^ |
| if self.check(&TokenKind::OpenDelim(Delimiter::Brace)) |
| && (classify::expr_requires_semi_to_be_stmt(&cond) |
| || matches!(cond.kind, ExprKind::MacCall(..))) |
| => |
| { |
| self.dcx().emit_err(errors::ExpectedElseBlock { |
| first_tok_span, |
| first_tok, |
| else_span, |
| condition_start: cond.span.shrink_to_lo(), |
| }); |
| self.parse_if_after_cond(cond.span.shrink_to_lo(), cond)? |
| } |
| Err(e) => { |
| e.cancel(); |
| self.restore_snapshot(snapshot); |
| self.parse_simple_block()? |
| }, |
| Ok(_) => { |
| self.restore_snapshot(snapshot); |
| self.parse_simple_block()? |
| }, |
| } |
| }; |
| self.error_on_if_block_attrs(else_span, true, expr.span, attrs); |
| Ok(expr) |
| } |
| |
| fn error_on_if_block_attrs( |
| &self, |
| ctx_span: Span, |
| is_ctx_else: bool, |
| branch_span: Span, |
| attrs: AttrWrapper, |
| ) { |
| if !attrs.is_empty() |
| && let [x0 @ xn] | [x0, .., xn] = &*attrs.take_for_recovery(self.psess) |
| { |
| let attributes = x0.span.until(branch_span); |
| let last = xn.span; |
| let ctx = if is_ctx_else { "else" } else { "if" }; |
| self.dcx().emit_err(errors::OuterAttributeNotAllowedOnIfElse { |
| last, |
| branch_span, |
| ctx_span, |
| ctx: ctx.to_string(), |
| attributes, |
| }); |
| } |
| } |
| |
| fn error_on_extra_if(&mut self, cond: &P<Expr>) -> PResult<'a, ()> { |
| if let ExprKind::Binary(Spanned { span: binop_span, node: binop }, _, right) = &cond.kind |
| && let BinOpKind::And = binop |
| && let ExprKind::If(cond, ..) = &right.kind |
| { |
| Err(self.dcx().create_err(errors::UnexpectedIfWithIf( |
| binop_span.shrink_to_hi().to(cond.span.shrink_to_lo()), |
| ))) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn parse_for_head(&mut self) -> PResult<'a, (P<Pat>, P<Expr>)> { |
| let begin_paren = if self.token == token::OpenDelim(Delimiter::Parenthesis) { |
| // Record whether we are about to parse `for (`. |
| // This is used below for recovery in case of `for ( $stuff ) $block` |
| // in which case we will suggest `for $stuff $block`. |
| let start_span = self.token.span; |
| let left = self.prev_token.span.between(self.look_ahead(1, |t| t.span)); |
| Some((start_span, left)) |
| } else { |
| None |
| }; |
| // Try to parse the pattern `for ($PAT) in $EXPR`. |
| let pat = match ( |
| self.parse_pat_allow_top_guard( |
| None, |
| RecoverComma::Yes, |
| RecoverColon::Yes, |
| CommaRecoveryMode::LikelyTuple, |
| ), |
| begin_paren, |
| ) { |
| (Ok(pat), _) => pat, // Happy path. |
| (Err(err), Some((start_span, left))) if self.eat_keyword(kw::In) => { |
| // We know for sure we have seen `for ($SOMETHING in`. In the happy path this would |
| // happen right before the return of this method. |
| let attrs = self.parse_outer_attributes()?; |
| let (expr, _) = match self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs) { |
| Ok(expr) => expr, |
| Err(expr_err) => { |
| // We don't know what followed the `in`, so cancel and bubble up the |
| // original error. |
| expr_err.cancel(); |
| return Err(err); |
| } |
| }; |
| return if self.token == token::CloseDelim(Delimiter::Parenthesis) { |
| // We know for sure we have seen `for ($SOMETHING in $EXPR)`, so we recover the |
| // parser state and emit a targeted suggestion. |
| let span = vec![start_span, self.token.span]; |
| let right = self.prev_token.span.between(self.look_ahead(1, |t| t.span)); |
| self.bump(); // ) |
| err.cancel(); |
| self.dcx().emit_err(errors::ParenthesesInForHead { |
| span, |
| // With e.g. `for (x) in y)` this would replace `(x) in y)` |
| // with `x) in y)` which is syntactically invalid. |
| // However, this is prevented before we get here. |
| sugg: errors::ParenthesesInForHeadSugg { left, right }, |
| }); |
| Ok((self.mk_pat(start_span.to(right), ast::PatKind::Wild), expr)) |
| } else { |
| Err(err) // Some other error, bubble up. |
| }; |
| } |
| (Err(err), _) => return Err(err), // Some other error, bubble up. |
| }; |
| if !self.eat_keyword(kw::In) { |
| self.error_missing_in_for_loop(); |
| } |
| self.check_for_for_in_in_typo(self.prev_token.span); |
| let attrs = self.parse_outer_attributes()?; |
| let (expr, _) = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs)?; |
| Ok((pat, expr)) |
| } |
| |
| /// Parses `for await? <src_pat> in <src_expr> <src_loop_block>` (`for` token already eaten). |
| fn parse_expr_for(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> { |
| let is_await = |
| self.token.uninterpolated_span().at_least_rust_2018() && self.eat_keyword(kw::Await); |
| |
| if is_await { |
| self.psess.gated_spans.gate(sym::async_for_loop, self.prev_token.span); |
| } |
| |
| let kind = if is_await { ForLoopKind::ForAwait } else { ForLoopKind::For }; |
| |
| let (pat, expr) = self.parse_for_head()?; |
| // Recover from missing expression in `for` loop |
| if matches!(expr.kind, ExprKind::Block(..)) |
| && !matches!(self.token.kind, token::OpenDelim(Delimiter::Brace)) |
| && self.may_recover() |
| { |
| let guar = self |
| .dcx() |
| .emit_err(errors::MissingExpressionInForLoop { span: expr.span.shrink_to_lo() }); |
| let err_expr = self.mk_expr(expr.span, ExprKind::Err(guar)); |
| let block = self.mk_block(thin_vec![], BlockCheckMode::Default, self.prev_token.span); |
| return Ok(self.mk_expr(lo.to(self.prev_token.span), ExprKind::ForLoop { |
| pat, |
| iter: err_expr, |
| body: block, |
| label: opt_label, |
| kind, |
| })); |
| } |
| |
| let (attrs, loop_block) = self.parse_inner_attrs_and_block()?; |
| |
| let kind = ExprKind::ForLoop { pat, iter: expr, body: loop_block, label: opt_label, kind }; |
| |
| self.recover_loop_else("for", lo)?; |
| |
| Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs)) |
| } |
| |
| /// Recovers from an `else` clause after a loop (`for...else`, `while...else`) |
| fn recover_loop_else(&mut self, loop_kind: &'static str, loop_kw: Span) -> PResult<'a, ()> { |
| if self.token.is_keyword(kw::Else) && self.may_recover() { |
| let else_span = self.token.span; |
| self.bump(); |
| let else_clause = self.parse_expr_else()?; |
| self.dcx().emit_err(errors::LoopElseNotSupported { |
| span: else_span.to(else_clause.span), |
| loop_kind, |
| loop_kw, |
| }); |
| } |
| Ok(()) |
| } |
| |
| fn error_missing_in_for_loop(&mut self) { |
| let (span, sub): (_, fn(_) -> _) = if self.token.is_ident_named(sym::of) { |
| // Possibly using JS syntax (#75311). |
| let span = self.token.span; |
| self.bump(); |
| (span, errors::MissingInInForLoopSub::InNotOf) |
| } else { |
| (self.prev_token.span.between(self.token.span), errors::MissingInInForLoopSub::AddIn) |
| }; |
| |
| self.dcx().emit_err(errors::MissingInInForLoop { span, sub: sub(span) }); |
| } |
| |
| /// Parses a `while` or `while let` expression (`while` token already eaten). |
| fn parse_expr_while(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> { |
| let cond = self.parse_expr_cond().map_err(|mut err| { |
| err.span_label(lo, "while parsing the condition of this `while` expression"); |
| err |
| })?; |
| let (attrs, body) = self.parse_inner_attrs_and_block().map_err(|mut err| { |
| err.span_label(lo, "while parsing the body of this `while` expression"); |
| err.span_label(cond.span, "this `while` condition successfully parsed"); |
| err |
| })?; |
| |
| self.recover_loop_else("while", lo)?; |
| |
| Ok(self.mk_expr_with_attrs( |
| lo.to(self.prev_token.span), |
| ExprKind::While(cond, body, opt_label), |
| attrs, |
| )) |
| } |
| |
| /// Parses `loop { ... }` (`loop` token already eaten). |
| fn parse_expr_loop(&mut self, opt_label: Option<Label>, lo: Span) -> PResult<'a, P<Expr>> { |
| let loop_span = self.prev_token.span; |
| let (attrs, body) = self.parse_inner_attrs_and_block()?; |
| self.recover_loop_else("loop", lo)?; |
| Ok(self.mk_expr_with_attrs( |
| lo.to(self.prev_token.span), |
| ExprKind::Loop(body, opt_label, loop_span), |
| attrs, |
| )) |
| } |
| |
| pub(crate) fn eat_label(&mut self) -> Option<Label> { |
| if let Some((ident, is_raw)) = self.token.lifetime() { |
| // Disallow `'fn`, but with a better error message than `expect_lifetime`. |
| if matches!(is_raw, IdentIsRaw::No) && ident.without_first_quote().is_reserved() { |
| self.dcx().emit_err(errors::InvalidLabel { span: ident.span, name: ident.name }); |
| } |
| |
| self.bump(); |
| Some(Label { ident }) |
| } else { |
| None |
| } |
| } |
| |
| /// Parses a `match ... { ... }` expression (`match` token already eaten). |
| fn parse_expr_match(&mut self) -> PResult<'a, P<Expr>> { |
| let match_span = self.prev_token.span; |
| let attrs = self.parse_outer_attributes()?; |
| let (scrutinee, _) = self.parse_expr_res(Restrictions::NO_STRUCT_LITERAL, attrs)?; |
| |
| self.parse_match_block(match_span, match_span, scrutinee, MatchKind::Prefix) |
| } |
| |
| /// Parses the block of a `match expr { ... }` or a `expr.match { ... }` |
| /// expression. This is after the match token and scrutinee are eaten |
| fn parse_match_block( |
| &mut self, |
| lo: Span, |
| match_span: Span, |
| scrutinee: P<Expr>, |
| match_kind: MatchKind, |
| ) -> PResult<'a, P<Expr>> { |
| if let Err(mut e) = self.expect(&token::OpenDelim(Delimiter::Brace)) { |
| if self.token == token::Semi { |
| e.span_suggestion_short( |
| match_span, |
| "try removing this `match`", |
| "", |
| Applicability::MaybeIncorrect, // speculative |
| ); |
| } |
| if self.maybe_recover_unexpected_block_label() { |
| e.cancel(); |
| self.bump(); |
| } else { |
| return Err(e); |
| } |
| } |
| let attrs = self.parse_inner_attributes()?; |
| |
| let mut arms = ThinVec::new(); |
| while self.token != token::CloseDelim(Delimiter::Brace) { |
| match self.parse_arm() { |
| Ok(arm) => arms.push(arm), |
| Err(e) => { |
| // Recover by skipping to the end of the block. |
| let guar = e.emit(); |
| self.recover_stmt(); |
| let span = lo.to(self.token.span); |
| if self.token == token::CloseDelim(Delimiter::Brace) { |
| self.bump(); |
| } |
| // Always push at least one arm to make the match non-empty |
| arms.push(Arm { |
| attrs: Default::default(), |
| pat: self.mk_pat(span, ast::PatKind::Err(guar)), |
| guard: None, |
| body: Some(self.mk_expr_err(span, guar)), |
| span, |
| id: DUMMY_NODE_ID, |
| is_placeholder: false, |
| }); |
| return Ok(self.mk_expr_with_attrs( |
| span, |
| ExprKind::Match(scrutinee, arms, match_kind), |
| attrs, |
| )); |
| } |
| } |
| } |
| let hi = self.token.span; |
| self.bump(); |
| Ok(self.mk_expr_with_attrs(lo.to(hi), ExprKind::Match(scrutinee, arms, match_kind), attrs)) |
| } |
| |
| /// Attempt to recover from match arm body with statements and no surrounding braces. |
| fn parse_arm_body_missing_braces( |
| &mut self, |
| first_expr: &P<Expr>, |
| arrow_span: Span, |
| ) -> Option<(Span, ErrorGuaranteed)> { |
| if self.token != token::Semi { |
| return None; |
| } |
| let start_snapshot = self.create_snapshot_for_diagnostic(); |
| let semi_sp = self.token.span; |
| self.bump(); // `;` |
| let mut stmts = |
| vec![self.mk_stmt(first_expr.span, ast::StmtKind::Expr(first_expr.clone()))]; |
| let err = |this: &Parser<'_>, stmts: Vec<ast::Stmt>| { |
| let span = stmts[0].span.to(stmts[stmts.len() - 1].span); |
| |
| let guar = this.dcx().emit_err(errors::MatchArmBodyWithoutBraces { |
| statements: span, |
| arrow: arrow_span, |
| num_statements: stmts.len(), |
| sub: if stmts.len() > 1 { |
| errors::MatchArmBodyWithoutBracesSugg::AddBraces { |
| left: span.shrink_to_lo(), |
| right: span.shrink_to_hi(), |
| } |
| } else { |
| errors::MatchArmBodyWithoutBracesSugg::UseComma { semicolon: semi_sp } |
| }, |
| }); |
| (span, guar) |
| }; |
| // We might have either a `,` -> `;` typo, or a block without braces. We need |
| // a more subtle parsing strategy. |
| loop { |
| if self.token == token::CloseDelim(Delimiter::Brace) { |
| // We have reached the closing brace of the `match` expression. |
| return Some(err(self, stmts)); |
| } |
| if self.token == token::Comma { |
| self.restore_snapshot(start_snapshot); |
| return None; |
| } |
| let pre_pat_snapshot = self.create_snapshot_for_diagnostic(); |
| match self.parse_pat_no_top_alt(None, None) { |
| Ok(_pat) => { |
| if self.token == token::FatArrow { |
| // Reached arm end. |
| self.restore_snapshot(pre_pat_snapshot); |
| return Some(err(self, stmts)); |
| } |
| } |
| Err(err) => { |
| err.cancel(); |
| } |
| } |
| |
| self.restore_snapshot(pre_pat_snapshot); |
| match self.parse_stmt_without_recovery(true, ForceCollect::No) { |
| // Consume statements for as long as possible. |
| Ok(Some(stmt)) => { |
| stmts.push(stmt); |
| } |
| Ok(None) => { |
| self.restore_snapshot(start_snapshot); |
| break; |
| } |
| // We couldn't parse either yet another statement missing it's |
| // enclosing block nor the next arm's pattern or closing brace. |
| Err(stmt_err) => { |
| stmt_err.cancel(); |
| self.restore_snapshot(start_snapshot); |
| break; |
| } |
| } |
| } |
| None |
| } |
| |
| pub(super) fn parse_arm(&mut self) -> PResult<'a, Arm> { |
| let attrs = self.parse_outer_attributes()?; |
| self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| { |
| let lo = this.token.span; |
| let (pat, guard) = this.parse_match_arm_pat_and_guard()?; |
| |
| let span_before_body = this.prev_token.span; |
| let arm_body; |
| let is_fat_arrow = this.check(&token::FatArrow); |
| let is_almost_fat_arrow = TokenKind::FatArrow |
| .similar_tokens() |
| .is_some_and(|similar_tokens| similar_tokens.contains(&this.token.kind)); |
| |
| // this avoids the compiler saying that a `,` or `}` was expected even though |
| // the pattern isn't a never pattern (and thus an arm body is required) |
| let armless = (!is_fat_arrow && !is_almost_fat_arrow && pat.could_be_never_pattern()) |
| || matches!(this.token.kind, token::Comma | token::CloseDelim(Delimiter::Brace)); |
| |
| let mut result = if armless { |
| // A pattern without a body, allowed for never patterns. |
| arm_body = None; |
| this.expect_one_of(&[token::Comma], &[token::CloseDelim(Delimiter::Brace)]).map( |
| |x| { |
| // Don't gate twice |
| if !pat.contains_never_pattern() { |
| this.psess.gated_spans.gate(sym::never_patterns, pat.span); |
| } |
| x |
| }, |
| ) |
| } else { |
| if let Err(mut err) = this.expect(&token::FatArrow) { |
| // We might have a `=>` -> `=` or `->` typo (issue #89396). |
| if is_almost_fat_arrow { |
| err.span_suggestion( |
| this.token.span, |
| "use a fat arrow to start a match arm", |
| "=>", |
| Applicability::MachineApplicable, |
| ); |
| if matches!( |
| (&this.prev_token.kind, &this.token.kind), |
| (token::DotDotEq, token::Gt) |
| ) { |
| // `error_inclusive_range_match_arrow` handles cases like `0..=> {}`, |
| // so we suppress the error here |
| err.delay_as_bug(); |
| } else { |
| err.emit(); |
| } |
| this.bump(); |
| } else { |
| return Err(err); |
| } |
| } |
| let arrow_span = this.prev_token.span; |
| let arm_start_span = this.token.span; |
| |
| let attrs = this.parse_outer_attributes()?; |
| let (expr, _) = |
| this.parse_expr_res(Restrictions::STMT_EXPR, attrs).map_err(|mut err| { |
| err.span_label(arrow_span, "while parsing the `match` arm starting here"); |
| err |
| })?; |
| |
| let require_comma = !classify::expr_is_complete(&expr) |
| && this.token != token::CloseDelim(Delimiter::Brace); |
| |
| if !require_comma { |
| arm_body = Some(expr); |
| // Eat a comma if it exists, though. |
| let _ = this.eat(&token::Comma); |
| Ok(Recovered::No) |
| } else if let Some((span, guar)) = |
| this.parse_arm_body_missing_braces(&expr, arrow_span) |
| { |
| let body = this.mk_expr_err(span, guar); |
| arm_body = Some(body); |
| Ok(Recovered::Yes(guar)) |
| } else { |
| let expr_span = expr.span; |
| arm_body = Some(expr); |
| this.expect_one_of(&[token::Comma], &[token::CloseDelim(Delimiter::Brace)]) |
| .map_err(|mut err| { |
| if this.token == token::FatArrow { |
| let sm = this.psess.source_map(); |
| if let Ok(expr_lines) = sm.span_to_lines(expr_span) |
| && let Ok(arm_start_lines) = sm.span_to_lines(arm_start_span) |
| && arm_start_lines.lines[0].end_col |
| == expr_lines.lines[0].end_col |
| && expr_lines.lines.len() == 2 |
| { |
| // We check whether there's any trailing code in the parse span, |
| // if there isn't, we very likely have the following: |
| // |
| // X | &Y => "y" |
| // | -- - missing comma |
| // | | |
| // | arrow_span |
| // X | &X => "x" |
| // | - ^^ self.token.span |
| // | | |
| // | parsed until here as `"y" & X` |
| err.span_suggestion_short( |
| arm_start_span.shrink_to_hi(), |
| "missing a comma here to end this `match` arm", |
| ",", |
| Applicability::MachineApplicable, |
| ); |
| } |
| } else { |
| err.span_label( |
| arrow_span, |
| "while parsing the `match` arm starting here", |
| ); |
| } |
| err |
| }) |
| } |
| }; |
| |
| let hi_span = arm_body.as_ref().map_or(span_before_body, |body| body.span); |
| let arm_span = lo.to(hi_span); |
| |
| // We want to recover: |
| // X | Some(_) => foo() |
| // | - missing comma |
| // X | None => "x" |
| // | ^^^^ self.token.span |
| // as well as: |
| // X | Some(!) |
| // | - missing comma |
| // X | None => "x" |
| // | ^^^^ self.token.span |
| // But we musn't recover |
| // X | pat[0] => {} |
| // | ^ self.token.span |
| let recover_missing_comma = arm_body.is_some() || pat.could_be_never_pattern(); |
| if recover_missing_comma { |
| result = result.or_else(|err| { |
| // FIXME(compiler-errors): We could also recover `; PAT =>` here |
| |
| // Try to parse a following `PAT =>`, if successful |
| // then we should recover. |
| let mut snapshot = this.create_snapshot_for_diagnostic(); |
| let pattern_follows = snapshot |
| .parse_pat_no_top_guard( |
| None, |
| RecoverComma::Yes, |
| RecoverColon::Yes, |
| CommaRecoveryMode::EitherTupleOrPipe, |
| ) |
| .map_err(|err| err.cancel()) |
| .is_ok(); |
| if pattern_follows && snapshot.check(&TokenKind::FatArrow) { |
| err.cancel(); |
| let guar = this.dcx().emit_err(errors::MissingCommaAfterMatchArm { |
| span: arm_span.shrink_to_hi(), |
| }); |
| return Ok(Recovered::Yes(guar)); |
| } |
| Err(err) |
| }); |
| } |
| result?; |
| |
| Ok(( |
| ast::Arm { |
| attrs, |
| pat, |
| guard, |
| body: arm_body, |
| span: arm_span, |
| id: DUMMY_NODE_ID, |
| is_placeholder: false, |
| }, |
| Trailing::No, |
| UsePreAttrPos::No, |
| )) |
| }) |
| } |
| |
| fn parse_match_arm_guard(&mut self) -> PResult<'a, Option<P<Expr>>> { |
| // Used to check the `let_chains` and `if_let_guard` features mostly by scanning |
| // `&&` tokens. |
| fn check_let_expr(expr: &Expr) -> (bool, bool) { |
| match &expr.kind { |
| ExprKind::Binary(BinOp { node: BinOpKind::And, .. }, lhs, rhs) => { |
| let lhs_rslt = check_let_expr(lhs); |
| let rhs_rslt = check_let_expr(rhs); |
| (lhs_rslt.0 || rhs_rslt.0, false) |
| } |
| ExprKind::Let(..) => (true, true), |
| _ => (false, true), |
| } |
| } |
| if !self.eat_keyword(kw::If) { |
| // No match arm guard present. |
| return Ok(None); |
| } |
| |
| let if_span = self.prev_token.span; |
| let mut cond = self.parse_match_guard_condition()?; |
| |
| CondChecker::new(self).visit_expr(&mut cond); |
| |
| let (has_let_expr, does_not_have_bin_op) = check_let_expr(&cond); |
| if has_let_expr { |
| if does_not_have_bin_op { |
| // Remove the last feature gating of a `let` expression since it's stable. |
| self.psess.gated_spans.ungate_last(sym::let_chains, cond.span); |
| } |
| let span = if_span.to(cond.span); |
| self.psess.gated_spans.gate(sym::if_let_guard, span); |
| } |
| Ok(Some(cond)) |
| } |
| |
| fn parse_match_arm_pat_and_guard(&mut self) -> PResult<'a, (P<Pat>, Option<P<Expr>>)> { |
| if self.token == token::OpenDelim(Delimiter::Parenthesis) { |
| let left = self.token.span; |
| let pat = self.parse_pat_no_top_guard( |
| None, |
| RecoverComma::Yes, |
| RecoverColon::Yes, |
| CommaRecoveryMode::EitherTupleOrPipe, |
| )?; |
| if let ast::PatKind::Paren(subpat) = &pat.kind |
| && let ast::PatKind::Guard(..) = &subpat.kind |
| { |
| // Detect and recover from `($pat if $cond) => $arm`. |
| // FIXME(guard_patterns): convert this to a normal guard instead |
| let span = pat.span; |
| let ast::PatKind::Paren(subpat) = pat.into_inner().kind else { unreachable!() }; |
| let ast::PatKind::Guard(_, mut cond) = subpat.into_inner().kind else { |
| unreachable!() |
| }; |
| self.psess.gated_spans.ungate_last(sym::guard_patterns, cond.span); |
| CondChecker::new(self).visit_expr(&mut cond); |
| let right = self.prev_token.span; |
| self.dcx().emit_err(errors::ParenthesesInMatchPat { |
| span: vec![left, right], |
| sugg: errors::ParenthesesInMatchPatSugg { left, right }, |
| }); |
| Ok((self.mk_pat(span, ast::PatKind::Wild), Some(cond))) |
| } else { |
| Ok((pat, self.parse_match_arm_guard()?)) |
| } |
| } else { |
| // Regular parser flow: |
| let pat = self.parse_pat_no_top_guard( |
| None, |
| RecoverComma::Yes, |
| RecoverColon::Yes, |
| CommaRecoveryMode::EitherTupleOrPipe, |
| )?; |
| Ok((pat, self.parse_match_arm_guard()?)) |
| } |
| } |
| |
| fn parse_match_guard_condition(&mut self) -> PResult<'a, P<Expr>> { |
| let attrs = self.parse_outer_attributes()?; |
| match self.parse_expr_res(Restrictions::ALLOW_LET | Restrictions::IN_IF_GUARD, attrs) { |
| Ok((expr, _)) => Ok(expr), |
| Err(mut err) => { |
| if self.prev_token == token::OpenDelim(Delimiter::Brace) { |
| let sugg_sp = self.prev_token.span.shrink_to_lo(); |
| // Consume everything within the braces, let's avoid further parse |
| // errors. |
| self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore); |
| let msg = "you might have meant to start a match arm after the match guard"; |
| if self.eat(&token::CloseDelim(Delimiter::Brace)) { |
| let applicability = if self.token != token::FatArrow { |
| // We have high confidence that we indeed didn't have a struct |
| // literal in the match guard, but rather we had some operation |
| // that ended in a path, immediately followed by a block that was |
| // meant to be the match arm. |
| Applicability::MachineApplicable |
| } else { |
| Applicability::MaybeIncorrect |
| }; |
| err.span_suggestion_verbose(sugg_sp, msg, "=> ", applicability); |
| } |
| } |
| Err(err) |
| } |
| } |
| } |
| |
| pub(crate) fn is_builtin(&self) -> bool { |
| self.token.is_keyword(kw::Builtin) && self.look_ahead(1, |t| *t == token::Pound) |
| } |
| |
| /// Parses a `try {...}` expression (`try` token already eaten). |
| fn parse_try_block(&mut self, span_lo: Span) -> PResult<'a, P<Expr>> { |
| let (attrs, body) = self.parse_inner_attrs_and_block()?; |
| if self.eat_keyword(kw::Catch) { |
| Err(self.dcx().create_err(errors::CatchAfterTry { span: self.prev_token.span })) |
| } else { |
| let span = span_lo.to(body.span); |
| self.psess.gated_spans.gate(sym::try_blocks, span); |
| Ok(self.mk_expr_with_attrs(span, ExprKind::TryBlock(body), attrs)) |
| } |
| } |
| |
| fn is_do_catch_block(&self) -> bool { |
| self.token.is_keyword(kw::Do) |
| && self.is_keyword_ahead(1, &[kw::Catch]) |
| && self |
| .look_ahead(2, |t| *t == token::OpenDelim(Delimiter::Brace) || t.is_whole_block()) |
| && !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL) |
| } |
| |
| fn is_do_yeet(&self) -> bool { |
| self.token.is_keyword(kw::Do) && self.is_keyword_ahead(1, &[kw::Yeet]) |
| } |
| |
| fn is_try_block(&self) -> bool { |
| self.token.is_keyword(kw::Try) |
| && self |
| .look_ahead(1, |t| *t == token::OpenDelim(Delimiter::Brace) || t.is_whole_block()) |
| && self.token.uninterpolated_span().at_least_rust_2018() |
| } |
| |
| /// Parses an `async move? {...}` or `gen move? {...}` expression. |
| fn parse_gen_block(&mut self) -> PResult<'a, P<Expr>> { |
| let lo = self.token.span; |
| let kind = if self.eat_keyword(kw::Async) { |
| if self.eat_keyword(kw::Gen) { GenBlockKind::AsyncGen } else { GenBlockKind::Async } |
| } else { |
| assert!(self.eat_keyword(kw::Gen)); |
| GenBlockKind::Gen |
| }; |
| match kind { |
| GenBlockKind::Async => { |
| // `async` blocks are stable |
| } |
| GenBlockKind::Gen | GenBlockKind::AsyncGen => { |
| self.psess.gated_spans.gate(sym::gen_blocks, lo.to(self.prev_token.span)); |
| } |
| } |
| let capture_clause = self.parse_capture_clause()?; |
| let decl_span = lo.to(self.prev_token.span); |
| let (attrs, body) = self.parse_inner_attrs_and_block()?; |
| let kind = ExprKind::Gen(capture_clause, body, kind, decl_span); |
| Ok(self.mk_expr_with_attrs(lo.to(self.prev_token.span), kind, attrs)) |
| } |
| |
| fn is_gen_block(&self, kw: Symbol, lookahead: usize) -> bool { |
| self.is_keyword_ahead(lookahead, &[kw]) |
| && (( |
| // `async move {` |
| self.is_keyword_ahead(lookahead + 1, &[kw::Move]) |
| && self.look_ahead(lookahead + 2, |t| { |
| *t == token::OpenDelim(Delimiter::Brace) || t.is_whole_block() |
| }) |
| ) || ( |
| // `async {` |
| self.look_ahead(lookahead + 1, |t| { |
| *t == token::OpenDelim(Delimiter::Brace) || t.is_whole_block() |
| }) |
| )) |
| } |
| |
| pub(super) fn is_async_gen_block(&self) -> bool { |
| self.token.is_keyword(kw::Async) && self.is_gen_block(kw::Gen, 1) |
| } |
| |
| fn is_certainly_not_a_block(&self) -> bool { |
| self.look_ahead(1, |t| t.is_ident()) |
| && ( |
| // `{ ident, ` cannot start a block. |
| self.look_ahead(2, |t| t == &token::Comma) |
| || self.look_ahead(2, |t| t == &token::Colon) |
| && ( |
| // `{ ident: token, ` cannot start a block. |
| self.look_ahead(4, |t| t == &token::Comma) |
| // `{ ident: ` cannot start a block unless it's a type ascription |
| // `ident: Type`. |
| || self.look_ahead(3, |t| !t.can_begin_type()) |
| ) |
| ) |
| } |
| |
| fn maybe_parse_struct_expr( |
| &mut self, |
| qself: &Option<P<ast::QSelf>>, |
| path: &ast::Path, |
| ) -> Option<PResult<'a, P<Expr>>> { |
| let struct_allowed = !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL); |
| if struct_allowed || self.is_certainly_not_a_block() { |
| if let Err(err) = self.expect(&token::OpenDelim(Delimiter::Brace)) { |
| return Some(Err(err)); |
| } |
| let expr = self.parse_expr_struct(qself.clone(), path.clone(), true); |
| if let (Ok(expr), false) = (&expr, struct_allowed) { |
| // This is a struct literal, but we don't can't accept them here. |
| self.dcx().emit_err(errors::StructLiteralNotAllowedHere { |
| span: expr.span, |
| sub: errors::StructLiteralNotAllowedHereSugg { |
| left: path.span.shrink_to_lo(), |
| right: expr.span.shrink_to_hi(), |
| }, |
| }); |
| } |
| return Some(expr); |
| } |
| None |
| } |
| |
| pub(super) fn parse_struct_fields( |
| &mut self, |
| pth: ast::Path, |
| recover: bool, |
| close_delim: Delimiter, |
| ) -> PResult< |
| 'a, |
| ( |
| ThinVec<ExprField>, |
| ast::StructRest, |
| Option<ErrorGuaranteed>, /* async blocks are forbidden in Rust 2015 */ |
| ), |
| > { |
| let mut fields = ThinVec::new(); |
| let mut base = ast::StructRest::None; |
| let mut recovered_async = None; |
| let in_if_guard = self.restrictions.contains(Restrictions::IN_IF_GUARD); |
| |
| let async_block_err = |e: &mut Diag<'_>, span: Span| { |
| errors::AsyncBlockIn2015 { span }.add_to_diag(e); |
| errors::HelpUseLatestEdition::new().add_to_diag(e); |
| }; |
| |
| while self.token != token::CloseDelim(close_delim) { |
| if self.eat(&token::DotDot) || self.recover_struct_field_dots(close_delim) { |
| let exp_span = self.prev_token.span; |
| // We permit `.. }` on the left-hand side of a destructuring assignment. |
| if self.check(&token::CloseDelim(close_delim)) { |
| base = ast::StructRest::Rest(self.prev_token.span); |
| break; |
| } |
| match self.parse_expr() { |
| Ok(e) => base = ast::StructRest::Base(e), |
| Err(e) if recover => { |
| e.emit(); |
| self.recover_stmt(); |
| } |
| Err(e) => return Err(e), |
| } |
| self.recover_struct_comma_after_dotdot(exp_span); |
| break; |
| } |
| |
| // Peek the field's ident before parsing its expr in order to emit better diagnostics. |
| let peek = self |
| .token |
| .ident() |
| .filter(|(ident, is_raw)| { |
| (!ident.is_reserved() || matches!(is_raw, IdentIsRaw::Yes)) |
| && self.look_ahead(1, |tok| *tok == token::Colon) |
| }) |
| .map(|(ident, _)| ident); |
| |
| // We still want a field even if its expr didn't parse. |
| let field_ident = |this: &Self, guar: ErrorGuaranteed| { |
| peek.map(|ident| { |
| let span = ident.span; |
| ExprField { |
| ident, |
| span, |
| expr: this.mk_expr_err(span, guar), |
| is_shorthand: false, |
| attrs: AttrVec::new(), |
| id: DUMMY_NODE_ID, |
| is_placeholder: false, |
| } |
| }) |
| }; |
| |
| let parsed_field = match self.parse_expr_field() { |
| Ok(f) => Ok(f), |
| Err(mut e) => { |
| if pth == kw::Async { |
| async_block_err(&mut e, pth.span); |
| } else { |
| e.span_label(pth.span, "while parsing this struct"); |
| } |
| |
| if let Some((ident, _)) = self.token.ident() |
| && !self.token.is_reserved_ident() |
| && self.look_ahead(1, |t| { |
| AssocOp::from_token(t).is_some() |
| || matches!( |
| t.kind, |
| token::OpenDelim( |
| Delimiter::Parenthesis |
| | Delimiter::Bracket |
| | Delimiter::Brace |
| ) |
| ) |
| || *t == token::Dot |
| }) |
| { |
| // Looks like they tried to write a shorthand, complex expression, |
| // E.g.: `n + m`, `f(a)`, `a[i]`, `S { x: 3 }`, or `x.y`. |
| e.span_suggestion_verbose( |
| self.token.span.shrink_to_lo(), |
| "try naming a field", |
| &format!("{ident}: ",), |
| Applicability::MaybeIncorrect, |
| ); |
| } |
| if in_if_guard && close_delim == Delimiter::Brace { |
| return Err(e); |
| } |
| |
| if !recover { |
| return Err(e); |
| } |
| |
| let guar = e.emit(); |
| if pth == kw::Async { |
| recovered_async = Some(guar); |
| } |
| |
| // If the next token is a comma, then try to parse |
| // what comes next as additional fields, rather than |
| // bailing out until next `}`. |
| if self.token != token::Comma { |
| self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore); |
| if self.token != token::Comma { |
| break; |
| } |
| } |
| |
| Err(guar) |
| } |
| }; |
| |
| let is_shorthand = parsed_field.as_ref().is_ok_and(|f| f.is_shorthand); |
| // A shorthand field can be turned into a full field with `:`. |
| // We should point this out. |
| self.check_or_expected(!is_shorthand, TokenType::Token(token::Colon)); |
| |
| match self.expect_one_of(&[token::Comma], &[token::CloseDelim(close_delim)]) { |
| Ok(_) => { |
| if let Ok(f) = parsed_field.or_else(|guar| field_ident(self, guar).ok_or(guar)) |
| { |
| // Only include the field if there's no parse error for the field name. |
| fields.push(f); |
| } |
| } |
| Err(mut e) => { |
| if pth == kw::Async { |
| async_block_err(&mut e, pth.span); |
| } else { |
| e.span_label(pth.span, "while parsing this struct"); |
| if peek.is_some() { |
| e.span_suggestion( |
| self.prev_token.span.shrink_to_hi(), |
| "try adding a comma", |
| ",", |
| Applicability::MachineApplicable, |
| ); |
| } |
| } |
| if !recover { |
| return Err(e); |
| } |
| let guar = e.emit(); |
| if pth == kw::Async { |
| recovered_async = Some(guar); |
| } else if let Some(f) = field_ident(self, guar) { |
| fields.push(f); |
| } |
| self.recover_stmt_(SemiColonMode::Comma, BlockMode::Ignore); |
| let _ = self.eat(&token::Comma); |
| } |
| } |
| } |
| Ok((fields, base, recovered_async)) |
| } |
| |
| /// Precondition: already parsed the '{'. |
| pub(super) fn parse_expr_struct( |
| &mut self, |
| qself: Option<P<ast::QSelf>>, |
| pth: ast::Path, |
| recover: bool, |
| ) -> PResult<'a, P<Expr>> { |
| let lo = pth.span; |
| let (fields, base, recovered_async) = |
| self.parse_struct_fields(pth.clone(), recover, Delimiter::Brace)?; |
| let span = lo.to(self.token.span); |
| self.expect(&token::CloseDelim(Delimiter::Brace))?; |
| let expr = if let Some(guar) = recovered_async { |
| ExprKind::Err(guar) |
| } else { |
| ExprKind::Struct(P(ast::StructExpr { qself, path: pth, fields, rest: base })) |
| }; |
| Ok(self.mk_expr(span, expr)) |
| } |
| |
| fn recover_struct_comma_after_dotdot(&mut self, span: Span) { |
| if self.token != token::Comma { |
| return; |
| } |
| self.dcx().emit_err(errors::CommaAfterBaseStruct { |
| span: span.to(self.prev_token.span), |
| comma: self.token.span, |
| }); |
| self.recover_stmt(); |
| } |
| |
| fn recover_struct_field_dots(&mut self, close_delim: Delimiter) -> bool { |
| if !self.look_ahead(1, |t| *t == token::CloseDelim(close_delim)) |
| && self.eat(&token::DotDotDot) |
| { |
| // recover from typo of `...`, suggest `..` |
| let span = self.prev_token.span; |
| self.dcx().emit_err(errors::MissingDotDot { token_span: span, sugg_span: span }); |
| return true; |
| } |
| false |
| } |
| |
| /// Converts an ident into 'label and emits an "expected a label, found an identifier" error. |
| fn recover_ident_into_label(&mut self, ident: Ident) -> Label { |
| // Convert `label` -> `'label`, |
| // so that nameres doesn't complain about non-existing label |
| let label = format!("'{}", ident.name); |
| let ident = Ident { name: Symbol::intern(&label), span: ident.span }; |
| |
| self.dcx().emit_err(errors::ExpectedLabelFoundIdent { |
| span: ident.span, |
| start: ident.span.shrink_to_lo(), |
| }); |
| |
| Label { ident } |
| } |
| |
| /// Parses `ident (COLON expr)?`. |
| fn parse_expr_field(&mut self) -> PResult<'a, ExprField> { |
| let attrs = self.parse_outer_attributes()?; |
| self.recover_vcs_conflict_marker(); |
| self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| { |
| let lo = this.token.span; |
| |
| // Check if a colon exists one ahead. This means we're parsing a fieldname. |
| let is_shorthand = !this.look_ahead(1, |t| t == &token::Colon || t == &token::Eq); |
| // Proactively check whether parsing the field will be incorrect. |
| let is_wrong = this.token.is_ident() |
| && !this.token.is_reserved_ident() |
| && !this.look_ahead(1, |t| { |
| t == &token::Colon |
| || t == &token::Eq |
| || t == &token::Comma |
| || t == &token::CloseDelim(Delimiter::Brace) |
| || t == &token::CloseDelim(Delimiter::Parenthesis) |
| }); |
| if is_wrong { |
| return Err(this.dcx().create_err(errors::ExpectedStructField { |
| span: this.look_ahead(1, |t| t.span), |
| ident_span: this.token.span, |
| token: this.look_ahead(1, |t| t.clone()), |
| })); |
| } |
| let (ident, expr) = if is_shorthand { |
| // Mimic `x: x` for the `x` field shorthand. |
| let ident = this.parse_ident_common(false)?; |
| let path = ast::Path::from_ident(ident); |
| (ident, this.mk_expr(ident.span, ExprKind::Path(None, path))) |
| } else { |
| let ident = this.parse_field_name()?; |
| this.error_on_eq_field_init(ident); |
| this.bump(); // `:` |
| (ident, this.parse_expr()?) |
| }; |
| |
| Ok(( |
| ast::ExprField { |
| ident, |
| span: lo.to(expr.span), |
| expr, |
| is_shorthand, |
| attrs, |
| id: DUMMY_NODE_ID, |
| is_placeholder: false, |
| }, |
| Trailing::from(this.token == token::Comma), |
| UsePreAttrPos::No, |
| )) |
| }) |
| } |
| |
| /// Check for `=`. This means the source incorrectly attempts to |
| /// initialize a field with an eq rather than a colon. |
| fn error_on_eq_field_init(&self, field_name: Ident) { |
| if self.token != token::Eq { |
| return; |
| } |
| |
| self.dcx().emit_err(errors::EqFieldInit { |
| span: self.token.span, |
| eq: field_name.span.shrink_to_hi().to(self.token.span), |
| }); |
| } |
| |
| fn err_dotdotdot_syntax(&self, span: Span) { |
| self.dcx().emit_err(errors::DotDotDot { span }); |
| } |
| |
| fn err_larrow_operator(&self, span: Span) { |
| self.dcx().emit_err(errors::LeftArrowOperator { span }); |
| } |
| |
| fn mk_assign_op(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind { |
| ExprKind::AssignOp(binop, lhs, rhs) |
| } |
| |
| fn mk_range( |
| &mut self, |
| start: Option<P<Expr>>, |
| end: Option<P<Expr>>, |
| limits: RangeLimits, |
| ) -> ExprKind { |
| if end.is_none() && limits == RangeLimits::Closed { |
| let guar = self.inclusive_range_with_incorrect_end(); |
| ExprKind::Err(guar) |
| } else { |
| ExprKind::Range(start, end, limits) |
| } |
| } |
| |
| fn mk_unary(&self, unop: UnOp, expr: P<Expr>) -> ExprKind { |
| ExprKind::Unary(unop, expr) |
| } |
| |
| fn mk_binary(&self, binop: BinOp, lhs: P<Expr>, rhs: P<Expr>) -> ExprKind { |
| ExprKind::Binary(binop, lhs, rhs) |
| } |
| |
| fn mk_index(&self, expr: P<Expr>, idx: P<Expr>, brackets_span: Span) -> ExprKind { |
| ExprKind::Index(expr, idx, brackets_span) |
| } |
| |
| fn mk_call(&self, f: P<Expr>, args: ThinVec<P<Expr>>) -> ExprKind { |
| ExprKind::Call(f, args) |
| } |
| |
| fn mk_await_expr(&mut self, self_arg: P<Expr>, lo: Span) -> P<Expr> { |
| let span = lo.to(self.prev_token.span); |
| let await_expr = self.mk_expr(span, ExprKind::Await(self_arg, self.prev_token.span)); |
| self.recover_from_await_method_call(); |
| await_expr |
| } |
| |
| pub(crate) fn mk_expr_with_attrs(&self, span: Span, kind: ExprKind, attrs: AttrVec) -> P<Expr> { |
| P(Expr { kind, span, attrs, id: DUMMY_NODE_ID, tokens: None }) |
| } |
| |
| pub(crate) fn mk_expr(&self, span: Span, kind: ExprKind) -> P<Expr> { |
| self.mk_expr_with_attrs(span, kind, AttrVec::new()) |
| } |
| |
| pub(super) fn mk_expr_err(&self, span: Span, guar: ErrorGuaranteed) -> P<Expr> { |
| self.mk_expr(span, ExprKind::Err(guar)) |
| } |
| |
| /// Create expression span ensuring the span of the parent node |
| /// is larger than the span of lhs and rhs, including the attributes. |
| fn mk_expr_sp(&self, lhs: &P<Expr>, lhs_span: Span, rhs_span: Span) -> Span { |
| lhs.attrs |
| .iter() |
| .find(|a| a.style == AttrStyle::Outer) |
| .map_or(lhs_span, |a| a.span) |
| .to(rhs_span) |
| } |
| |
| fn collect_tokens_for_expr( |
| &mut self, |
| attrs: AttrWrapper, |
| f: impl FnOnce(&mut Self, ast::AttrVec) -> PResult<'a, P<Expr>>, |
| ) -> PResult<'a, P<Expr>> { |
| self.collect_tokens(None, attrs, ForceCollect::No, |this, attrs| { |
| let res = f(this, attrs)?; |
| let trailing = Trailing::from( |
| this.restrictions.contains(Restrictions::STMT_EXPR) |
| && this.token == token::Semi |
| // FIXME: pass an additional condition through from the place |
| // where we know we need a comma, rather than assuming that |
| // `#[attr] expr,` always captures a trailing comma. |
| || this.token == token::Comma, |
| ); |
| Ok((res, trailing, UsePreAttrPos::No)) |
| }) |
| } |
| } |
| |
| /// Could this lifetime/label be an unclosed char literal? For example, `'a` |
| /// could be, but `'abc` could not. |
| pub(crate) fn could_be_unclosed_char_literal(ident: Ident) -> bool { |
| ident.name.as_str().starts_with('\'') |
| && unescape_char(ident.without_first_quote().name.as_str()).is_ok() |
| } |
| |
| /// Used to forbid `let` expressions in certain syntactic locations. |
| #[derive(Clone, Copy, Subdiagnostic)] |
| pub(crate) enum ForbiddenLetReason { |
| /// `let` is not valid and the source environment is not important |
| OtherForbidden, |
| /// A let chain with the `||` operator |
| #[note(parse_not_supported_or)] |
| NotSupportedOr(#[primary_span] Span), |
| /// A let chain with invalid parentheses |
| /// |
| /// For example, `let 1 = 1 && (expr && expr)` is allowed |
| /// but `(let 1 = 1 && (let 1 = 1 && (let 1 = 1))) && let a = 1` is not |
| #[note(parse_not_supported_parentheses)] |
| NotSupportedParentheses(#[primary_span] Span), |
| } |
| |
| /// Visitor to check for invalid/unstable use of `ExprKind::Let` that can't |
| /// easily be caught in parsing. For example: |
| /// |
| /// ```rust,ignore (example) |
| /// // Only know that the let isn't allowed once the `||` token is reached |
| /// if let Some(x) = y || true {} |
| /// // Only know that the let isn't allowed once the second `=` token is reached. |
| /// if let Some(x) = y && z = 1 {} |
| /// ``` |
| struct CondChecker<'a> { |
| parser: &'a Parser<'a>, |
| forbid_let_reason: Option<ForbiddenLetReason>, |
| missing_let: Option<errors::MaybeMissingLet>, |
| comparison: Option<errors::MaybeComparison>, |
| } |
| |
| impl<'a> CondChecker<'a> { |
| fn new(parser: &'a Parser<'a>) -> Self { |
| CondChecker { parser, forbid_let_reason: None, missing_let: None, comparison: None } |
| } |
| } |
| |
| impl MutVisitor for CondChecker<'_> { |
| fn visit_expr(&mut self, e: &mut P<Expr>) { |
| use ForbiddenLetReason::*; |
| |
| let span = e.span; |
| match e.kind { |
| ExprKind::Let(_, _, _, ref mut recovered @ Recovered::No) => { |
| if let Some(reason) = self.forbid_let_reason { |
| *recovered = Recovered::Yes(self.parser.dcx().emit_err( |
| errors::ExpectedExpressionFoundLet { |
| span, |
| reason, |
| missing_let: self.missing_let, |
| comparison: self.comparison, |
| }, |
| )); |
| } else { |
| self.parser.psess.gated_spans.gate(sym::let_chains, span); |
| } |
| } |
| ExprKind::Binary(Spanned { node: BinOpKind::And, .. }, _, _) => { |
| mut_visit::walk_expr(self, e); |
| } |
| ExprKind::Binary(Spanned { node: BinOpKind::Or, span: or_span }, _, _) |
| if let None | Some(NotSupportedOr(_)) = self.forbid_let_reason => |
| { |
| let forbid_let_reason = self.forbid_let_reason; |
| self.forbid_let_reason = Some(NotSupportedOr(or_span)); |
| mut_visit::walk_expr(self, e); |
| self.forbid_let_reason = forbid_let_reason; |
| } |
| ExprKind::Paren(ref inner) |
| if let None | Some(NotSupportedParentheses(_)) = self.forbid_let_reason => |
| { |
| let forbid_let_reason = self.forbid_let_reason; |
| self.forbid_let_reason = Some(NotSupportedParentheses(inner.span)); |
| mut_visit::walk_expr(self, e); |
| self.forbid_let_reason = forbid_let_reason; |
| } |
| ExprKind::Assign(ref lhs, _, span) => { |
| let forbid_let_reason = self.forbid_let_reason; |
| self.forbid_let_reason = Some(OtherForbidden); |
| let missing_let = self.missing_let; |
| if let ExprKind::Binary(_, _, rhs) = &lhs.kind |
| && let ExprKind::Path(_, _) |
| | ExprKind::Struct(_) |
| | ExprKind::Call(_, _) |
| | ExprKind::Array(_) = rhs.kind |
| { |
| self.missing_let = |
| Some(errors::MaybeMissingLet { span: rhs.span.shrink_to_lo() }); |
| } |
| let comparison = self.comparison; |
| self.comparison = Some(errors::MaybeComparison { span: span.shrink_to_hi() }); |
| mut_visit::walk_expr(self, e); |
| self.forbid_let_reason = forbid_let_reason; |
| self.missing_let = missing_let; |
| self.comparison = comparison; |
| } |
| ExprKind::Unary(_, _) |
| | ExprKind::Await(_, _) |
| | ExprKind::AssignOp(_, _, _) |
| | ExprKind::Range(_, _, _) |
| | ExprKind::Try(_) |
| | ExprKind::AddrOf(_, _, _) |
| | ExprKind::Binary(_, _, _) |
| | ExprKind::Field(_, _) |
| | ExprKind::Index(_, _, _) |
| | ExprKind::Call(_, _) |
| | ExprKind::MethodCall(_) |
| | ExprKind::Tup(_) |
| | ExprKind::Paren(_) => { |
| let forbid_let_reason = self.forbid_let_reason; |
| self.forbid_let_reason = Some(OtherForbidden); |
| mut_visit::walk_expr(self, e); |
| self.forbid_let_reason = forbid_let_reason; |
| } |
| ExprKind::Cast(ref mut op, _) |
| | ExprKind::Type(ref mut op, _) |
| | ExprKind::UnsafeBinderCast(_, ref mut op, _) => { |
| let forbid_let_reason = self.forbid_let_reason; |
| self.forbid_let_reason = Some(OtherForbidden); |
| self.visit_expr(op); |
| self.forbid_let_reason = forbid_let_reason; |
| } |
| ExprKind::Let(_, _, _, Recovered::Yes(_)) |
| | ExprKind::Array(_) |
| | ExprKind::ConstBlock(_) |
| | ExprKind::Lit(_) |
| | ExprKind::If(_, _, _) |
| | ExprKind::While(_, _, _) |
| | ExprKind::ForLoop { .. } |
| | ExprKind::Loop(_, _, _) |
| | ExprKind::Match(_, _, _) |
| | ExprKind::Closure(_) |
| | ExprKind::Block(_, _) |
| | ExprKind::Gen(_, _, _, _) |
| | ExprKind::TryBlock(_) |
| | ExprKind::Underscore |
| | ExprKind::Path(_, _) |
| | ExprKind::Break(_, _) |
| | ExprKind::Continue(_) |
| | ExprKind::Ret(_) |
| | ExprKind::InlineAsm(_) |
| | ExprKind::OffsetOf(_, _) |
| | ExprKind::MacCall(_) |
| | ExprKind::Struct(_) |
| | ExprKind::Repeat(_, _) |
| | ExprKind::Yield(_) |
| | ExprKind::Yeet(_) |
| | ExprKind::Become(_) |
| | ExprKind::IncludedBytes(_) |
| | ExprKind::FormatArgs(_) |
| | ExprKind::Err(_) |
| | ExprKind::Dummy => { |
| // These would forbid any let expressions they contain already. |
| } |
| } |
| } |
| } |