blob: 8638f42976f046daee626580817142e3feafda6f [file] [log] [blame]
//! See the Book for more information.
pub use self::freshen::TypeFreshener;
pub use self::LateBoundRegionConversionTime::*;
pub use self::RegionVariableOrigin::*;
pub use self::SubregionOrigin::*;
pub use self::ValuePairs::*;
pub use crate::ty::IntVarValue;
use crate::hir;
use crate::hir::def_id::DefId;
use crate::infer::canonical::{Canonical, CanonicalVarValues};
use crate::infer::unify_key::{ConstVarValue, ConstVariableValue};
use crate::middle::free_region::RegionRelations;
use crate::middle::lang_items;
use crate::middle::region;
use crate::mir::interpret::ConstValue;
use crate::session::config::BorrowckMode;
use crate::traits::{self, ObligationCause, PredicateObligations, TraitEngine};
use crate::ty::error::{ExpectedFound, TypeError, UnconstrainedNumeric};
use crate::ty::fold::{TypeFolder, TypeFoldable};
use crate::ty::relate::RelateResult;
use crate::ty::subst::{Kind, InternalSubsts, SubstsRef};
use crate::ty::{self, GenericParamDefKind, Ty, TyCtxt, InferConst};
use crate::ty::{FloatVid, IntVid, TyVid, ConstVid};
use crate::util::nodemap::FxHashMap;
use errors::DiagnosticBuilder;
use rustc_data_structures::sync::Lrc;
use rustc_data_structures::unify as ut;
use std::cell::{Cell, Ref, RefCell, RefMut};
use std::collections::BTreeMap;
use std::fmt;
use syntax::ast;
use syntax_pos::symbol::InternedString;
use syntax_pos::Span;
use self::combine::CombineFields;
use self::lexical_region_resolve::LexicalRegionResolutions;
use self::outlives::env::OutlivesEnvironment;
use self::region_constraints::{GenericKind, RegionConstraintData, VarInfos, VerifyBound};
use self::region_constraints::{RegionConstraintCollector, RegionSnapshot};
use self::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use self::unify_key::{ToType, ConstVariableOrigin, ConstVariableOriginKind};
pub mod at;
pub mod canonical;
mod combine;
mod equate;
pub mod error_reporting;
mod freshen;
mod fudge;
mod glb;
mod higher_ranked;
pub mod lattice;
mod lexical_region_resolve;
mod lub;
pub mod nll_relate;
pub mod opaque_types;
pub mod outlives;
pub mod region_constraints;
pub mod resolve;
mod sub;
pub mod type_variable;
pub mod unify_key;
#[must_use]
#[derive(Debug)]
pub struct InferOk<'tcx, T> {
pub value: T,
pub obligations: PredicateObligations<'tcx>,
}
pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
pub type Bound<T> = Option<T>;
pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
pub type FixupResult<'tcx, T> = Result<T, FixupError<'tcx>>; // "fixup result"
/// A flag that is used to suppress region errors. This is normally
/// false, but sometimes -- when we are doing region checks that the
/// NLL borrow checker will also do -- it might be set to true.
#[derive(Copy, Clone, Default, Debug)]
pub struct SuppressRegionErrors {
suppressed: bool,
}
impl SuppressRegionErrors {
pub fn suppressed(self) -> bool {
self.suppressed
}
/// Indicates that the MIR borrowck will repeat these region
/// checks, so we should ignore errors if NLL is (unconditionally)
/// enabled.
pub fn when_nll_is_enabled(tcx: TyCtxt<'_>) -> Self {
match tcx.borrowck_mode() {
// If we're on Migrate mode, report AST region errors
BorrowckMode::Migrate => SuppressRegionErrors { suppressed: false },
// If we're on MIR, don't report AST region errors as they should be reported by NLL
BorrowckMode::Mir => SuppressRegionErrors { suppressed: true },
}
}
}
pub struct InferCtxt<'a, 'tcx> {
pub tcx: TyCtxt<'tcx>,
/// During type-checking/inference of a body, `in_progress_tables`
/// contains a reference to the tables being built up, which are
/// used for reading closure kinds/signatures as they are inferred,
/// and for error reporting logic to read arbitrary node types.
pub in_progress_tables: Option<&'a RefCell<ty::TypeckTables<'tcx>>>,
/// Cache for projections. This cache is snapshotted along with the
/// infcx.
///
/// Public so that `traits::project` can use it.
pub projection_cache: RefCell<traits::ProjectionCache<'tcx>>,
/// We instantiate `UnificationTable` with `bounds<Ty>` because the
/// types that might instantiate a general type variable have an
/// order, represented by its upper and lower bounds.
pub type_variables: RefCell<type_variable::TypeVariableTable<'tcx>>,
/// Map from const parameter variable to the kind of const it represents.
const_unification_table: RefCell<ut::UnificationTable<ut::InPlace<ty::ConstVid<'tcx>>>>,
/// Map from integral variable to the kind of integer it represents.
int_unification_table: RefCell<ut::UnificationTable<ut::InPlace<ty::IntVid>>>,
/// Map from floating variable to the kind of float it represents
float_unification_table: RefCell<ut::UnificationTable<ut::InPlace<ty::FloatVid>>>,
/// Tracks the set of region variables and the constraints between
/// them. This is initially `Some(_)` but when
/// `resolve_regions_and_report_errors` is invoked, this gets set
/// to `None` -- further attempts to perform unification etc may
/// fail if new region constraints would've been added.
region_constraints: RefCell<Option<RegionConstraintCollector<'tcx>>>,
/// Once region inference is done, the values for each variable.
lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
/// Caches the results of trait selection. This cache is used
/// for things that have to do with the parameters in scope.
pub selection_cache: traits::SelectionCache<'tcx>,
/// Caches the results of trait evaluation.
pub evaluation_cache: traits::EvaluationCache<'tcx>,
/// the set of predicates on which errors have been reported, to
/// avoid reporting the same error twice.
pub reported_trait_errors: RefCell<FxHashMap<Span, Vec<ty::Predicate<'tcx>>>>,
/// When an error occurs, we want to avoid reporting "derived"
/// errors that are due to this original failure. Normally, we
/// handle this with the `err_count_on_creation` count, which
/// basically just tracks how many errors were reported when we
/// started type-checking a fn and checks to see if any new errors
/// have been reported since then. Not great, but it works.
///
/// However, when errors originated in other passes -- notably
/// resolve -- this heuristic breaks down. Therefore, we have this
/// auxiliary flag that one can set whenever one creates a
/// type-error that is due to an error in a prior pass.
///
/// Don't read this flag directly, call `is_tainted_by_errors()`
/// and `set_tainted_by_errors()`.
tainted_by_errors_flag: Cell<bool>,
/// Track how many errors were reported when this infcx is created.
/// If the number of errors increases, that's also a sign (line
/// `tained_by_errors`) to avoid reporting certain kinds of errors.
// FIXME(matthewjasper) Merge into `tainted_by_errors_flag`
err_count_on_creation: usize,
/// This flag is true while there is an active snapshot.
in_snapshot: Cell<bool>,
/// A set of constraints that regionck must validate. Each
/// constraint has the form `T:'a`, meaning "some type `T` must
/// outlive the lifetime 'a". These constraints derive from
/// instantiated type parameters. So if you had a struct defined
/// like
///
/// struct Foo<T:'static> { ... }
///
/// then in some expression `let x = Foo { ... }` it will
/// instantiate the type parameter `T` with a fresh type `$0`. At
/// the same time, it will record a region obligation of
/// `$0:'static`. This will get checked later by regionck. (We
/// can't generally check these things right away because we have
/// to wait until types are resolved.)
///
/// These are stored in a map keyed to the id of the innermost
/// enclosing fn body / static initializer expression. This is
/// because the location where the obligation was incurred can be
/// relevant with respect to which sublifetime assumptions are in
/// place. The reason that we store under the fn-id, and not
/// something more fine-grained, is so that it is easier for
/// regionck to be sure that it has found *all* the region
/// obligations (otherwise, it's easy to fail to walk to a
/// particular node-id).
///
/// Before running `resolve_regions_and_report_errors`, the creator
/// of the inference context is expected to invoke
/// `process_region_obligations` (defined in `self::region_obligations`)
/// for each body-id in this map, which will process the
/// obligations within. This is expected to be done 'late enough'
/// that all type inference variables have been bound and so forth.
pub region_obligations: RefCell<Vec<(hir::HirId, RegionObligation<'tcx>)>>,
/// What is the innermost universe we have created? Starts out as
/// `UniverseIndex::root()` but grows from there as we enter
/// universal quantifiers.
///
/// N.B., at present, we exclude the universal quantifiers on the
/// item we are type-checking, and just consider those names as
/// part of the root universe. So this would only get incremented
/// when we enter into a higher-ranked (`for<..>`) type or trait
/// bound.
universe: Cell<ty::UniverseIndex>,
}
/// A map returned by `replace_bound_vars_with_placeholders()`
/// indicating the placeholder region that each late-bound region was
/// replaced with.
pub type PlaceholderMap<'tcx> = BTreeMap<ty::BoundRegion, ty::Region<'tcx>>;
/// See the `error_reporting` module for more details.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum ValuePairs<'tcx> {
Types(ExpectedFound<Ty<'tcx>>),
Regions(ExpectedFound<ty::Region<'tcx>>),
Consts(ExpectedFound<&'tcx ty::Const<'tcx>>),
TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
}
/// The trace designates the path through inference that we took to
/// encounter an error or subtyping constraint.
///
/// See the `error_reporting` module for more details.
#[derive(Clone)]
pub struct TypeTrace<'tcx> {
cause: ObligationCause<'tcx>,
values: ValuePairs<'tcx>,
}
/// The origin of a `r1 <= r2` constraint.
///
/// See `error_reporting` module for more details
#[derive(Clone, Debug)]
pub enum SubregionOrigin<'tcx> {
/// Arose from a subtyping relation
Subtype(TypeTrace<'tcx>),
/// Stack-allocated closures cannot outlive innermost loop
/// or function so as to ensure we only require finite stack
InfStackClosure(Span),
/// Invocation of closure must be within its lifetime
InvokeClosure(Span),
/// Dereference of reference must be within its lifetime
DerefPointer(Span),
/// Closure bound must not outlive captured variables
ClosureCapture(Span, hir::HirId),
/// Index into slice must be within its lifetime
IndexSlice(Span),
/// When casting `&'a T` to an `&'b Trait` object,
/// relating `'a` to `'b`
RelateObjectBound(Span),
/// Some type parameter was instantiated with the given type,
/// and that type must outlive some region.
RelateParamBound(Span, Ty<'tcx>),
/// The given region parameter was instantiated with a region
/// that must outlive some other region.
RelateRegionParamBound(Span),
/// A bound placed on type parameters that states that must outlive
/// the moment of their instantiation.
RelateDefaultParamBound(Span, Ty<'tcx>),
/// Creating a pointer `b` to contents of another reference
Reborrow(Span),
/// Creating a pointer `b` to contents of an upvar
ReborrowUpvar(Span, ty::UpvarId),
/// Data with type `Ty<'tcx>` was borrowed
DataBorrowed(Ty<'tcx>, Span),
/// (&'a &'b T) where a >= b
ReferenceOutlivesReferent(Ty<'tcx>, Span),
/// Type or region parameters must be in scope.
ParameterInScope(ParameterOrigin, Span),
/// The type T of an expression E must outlive the lifetime for E.
ExprTypeIsNotInScope(Ty<'tcx>, Span),
/// A `ref b` whose region does not enclose the decl site
BindingTypeIsNotValidAtDecl(Span),
/// Regions appearing in a method receiver must outlive method call
CallRcvr(Span),
/// Regions appearing in a function argument must outlive func call
CallArg(Span),
/// Region in return type of invoked fn must enclose call
CallReturn(Span),
/// Operands must be in scope
Operand(Span),
/// Region resulting from a `&` expr must enclose the `&` expr
AddrOf(Span),
/// An auto-borrow that does not enclose the expr where it occurs
AutoBorrow(Span),
/// Region constraint arriving from destructor safety
SafeDestructor(Span),
/// Comparing the signature and requirements of an impl method against
/// the containing trait.
CompareImplMethodObligation {
span: Span,
item_name: ast::Name,
impl_item_def_id: DefId,
trait_item_def_id: DefId,
},
}
/// Places that type/region parameters can appear.
#[derive(Clone, Copy, Debug)]
pub enum ParameterOrigin {
Path, // foo::bar
MethodCall, // foo.bar() <-- parameters on impl providing bar()
OverloadedOperator, // a + b when overloaded
OverloadedDeref, // *a when overloaded
}
/// Times when we replace late-bound regions with variables:
#[derive(Clone, Copy, Debug)]
pub enum LateBoundRegionConversionTime {
/// when a fn is called
FnCall,
/// when two higher-ranked types are compared
HigherRankedType,
/// when projecting an associated type
AssocTypeProjection(DefId),
}
/// Reasons to create a region inference variable
///
/// See `error_reporting` module for more details
#[derive(Copy, Clone, Debug)]
pub enum RegionVariableOrigin {
/// Region variables created for ill-categorized reasons,
/// mostly indicates places in need of refactoring
MiscVariable(Span),
/// Regions created by a `&P` or `[...]` pattern
PatternRegion(Span),
/// Regions created by `&` operator
AddrOfRegion(Span),
/// Regions created as part of an autoref of a method receiver
Autoref(Span),
/// Regions created as part of an automatic coercion
Coercion(Span),
/// Region variables created as the values for early-bound regions
EarlyBoundRegion(Span, InternedString),
/// Region variables created for bound regions
/// in a function or method that is called
LateBoundRegion(Span, ty::BoundRegion, LateBoundRegionConversionTime),
UpvarRegion(ty::UpvarId, Span),
BoundRegionInCoherence(ast::Name),
/// This origin is used for the inference variables that we create
/// during NLL region processing.
NLL(NLLRegionVariableOrigin),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum NLLRegionVariableOrigin {
/// During NLL region processing, we create variables for free
/// regions that we encounter in the function signature and
/// elsewhere. This origin indices we've got one of those.
FreeRegion,
/// "Universal" instantiation of a higher-ranked region (e.g.,
/// from a `for<'a> T` binder). Meant to represent "any region".
Placeholder(ty::PlaceholderRegion),
Existential,
}
impl NLLRegionVariableOrigin {
pub fn is_universal(self) -> bool {
match self {
NLLRegionVariableOrigin::FreeRegion => true,
NLLRegionVariableOrigin::Placeholder(..) => true,
NLLRegionVariableOrigin::Existential => false,
}
}
pub fn is_existential(self) -> bool {
!self.is_universal()
}
}
#[derive(Copy, Clone, Debug)]
pub enum FixupError<'tcx> {
UnresolvedIntTy(IntVid),
UnresolvedFloatTy(FloatVid),
UnresolvedTy(TyVid),
UnresolvedConst(ConstVid<'tcx>),
}
/// See the `region_obligations` field for more information.
#[derive(Clone)]
pub struct RegionObligation<'tcx> {
pub sub_region: ty::Region<'tcx>,
pub sup_type: Ty<'tcx>,
pub origin: SubregionOrigin<'tcx>,
}
impl<'tcx> fmt::Display for FixupError<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use self::FixupError::*;
match *self {
UnresolvedIntTy(_) => write!(
f,
"cannot determine the type of this integer; \
add a suffix to specify the type explicitly"
),
UnresolvedFloatTy(_) => write!(
f,
"cannot determine the type of this number; \
add a suffix to specify the type explicitly"
),
UnresolvedTy(_) => write!(f, "unconstrained type"),
UnresolvedConst(_) => write!(f, "unconstrained const value"),
}
}
}
/// Helper type of a temporary returned by `tcx.infer_ctxt()`.
/// Necessary because we can't write the following bound:
/// `F: for<'b, 'tcx> where 'tcx FnOnce(InferCtxt<'b, 'tcx>)`.
pub struct InferCtxtBuilder<'tcx> {
global_tcx: TyCtxt<'tcx>,
fresh_tables: Option<RefCell<ty::TypeckTables<'tcx>>>,
}
impl TyCtxt<'tcx> {
pub fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
InferCtxtBuilder {
global_tcx: self,
fresh_tables: None,
}
}
}
impl<'tcx> InferCtxtBuilder<'tcx> {
/// Used only by `rustc_typeck` during body type-checking/inference,
/// will initialize `in_progress_tables` with fresh `TypeckTables`.
pub fn with_fresh_in_progress_tables(mut self, table_owner: DefId) -> Self {
self.fresh_tables = Some(RefCell::new(ty::TypeckTables::empty(Some(table_owner))));
self
}
/// Given a canonical value `C` as a starting point, create an
/// inference context that contains each of the bound values
/// within instantiated as a fresh variable. The `f` closure is
/// invoked with the new infcx, along with the instantiated value
/// `V` and a substitution `S`. This substitution `S` maps from
/// the bound values in `C` to their instantiated values in `V`
/// (in other words, `S(C) = V`).
pub fn enter_with_canonical<T, R>(
&mut self,
span: Span,
canonical: &Canonical<'tcx, T>,
f: impl for<'a> FnOnce(InferCtxt<'a, 'tcx>, T, CanonicalVarValues<'tcx>) -> R,
) -> R
where
T: TypeFoldable<'tcx>,
{
self.enter(|infcx| {
let (value, subst) =
infcx.instantiate_canonical_with_fresh_inference_vars(span, canonical);
f(infcx, value, subst)
})
}
pub fn enter<R>(&mut self, f: impl for<'a> FnOnce(InferCtxt<'a, 'tcx>) -> R) -> R {
let InferCtxtBuilder {
global_tcx,
ref fresh_tables,
} = *self;
let in_progress_tables = fresh_tables.as_ref();
global_tcx.enter_local(|tcx| {
f(InferCtxt {
tcx,
in_progress_tables,
projection_cache: Default::default(),
type_variables: RefCell::new(type_variable::TypeVariableTable::new()),
const_unification_table: RefCell::new(ut::UnificationTable::new()),
int_unification_table: RefCell::new(ut::UnificationTable::new()),
float_unification_table: RefCell::new(ut::UnificationTable::new()),
region_constraints: RefCell::new(Some(RegionConstraintCollector::new())),
lexical_region_resolutions: RefCell::new(None),
selection_cache: Default::default(),
evaluation_cache: Default::default(),
reported_trait_errors: Default::default(),
tainted_by_errors_flag: Cell::new(false),
err_count_on_creation: tcx.sess.err_count(),
in_snapshot: Cell::new(false),
region_obligations: RefCell::new(vec![]),
universe: Cell::new(ty::UniverseIndex::ROOT),
})
})
}
}
impl<T> ExpectedFound<T> {
pub fn new(a_is_expected: bool, a: T, b: T) -> Self {
if a_is_expected {
ExpectedFound {
expected: a,
found: b,
}
} else {
ExpectedFound {
expected: b,
found: a,
}
}
}
}
impl<'tcx, T> InferOk<'tcx, T> {
pub fn unit(self) -> InferOk<'tcx, ()> {
InferOk {
value: (),
obligations: self.obligations,
}
}
/// Extracts `value`, registering any obligations into `fulfill_cx`.
pub fn into_value_registering_obligations(
self,
infcx: &InferCtxt<'_, 'tcx>,
fulfill_cx: &mut dyn TraitEngine<'tcx>,
) -> T {
let InferOk { value, obligations } = self;
for obligation in obligations {
fulfill_cx.register_predicate_obligation(infcx, obligation);
}
value
}
}
impl<'tcx> InferOk<'tcx, ()> {
pub fn into_obligations(self) -> PredicateObligations<'tcx> {
self.obligations
}
}
#[must_use = "once you start a snapshot, you should always consume it"]
pub struct CombinedSnapshot<'a, 'tcx> {
projection_cache_snapshot: traits::ProjectionCacheSnapshot,
type_snapshot: type_variable::Snapshot<'tcx>,
const_snapshot: ut::Snapshot<ut::InPlace<ty::ConstVid<'tcx>>>,
int_snapshot: ut::Snapshot<ut::InPlace<ty::IntVid>>,
float_snapshot: ut::Snapshot<ut::InPlace<ty::FloatVid>>,
region_constraints_snapshot: RegionSnapshot,
region_obligations_snapshot: usize,
universe: ty::UniverseIndex,
was_in_snapshot: bool,
_in_progress_tables: Option<Ref<'a, ty::TypeckTables<'tcx>>>,
}
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
pub fn is_in_snapshot(&self) -> bool {
self.in_snapshot.get()
}
pub fn freshen<T: TypeFoldable<'tcx>>(&self, t: T) -> T {
t.fold_with(&mut self.freshener())
}
pub fn type_var_diverges(&'a self, ty: Ty<'_>) -> bool {
match ty.sty {
ty::Infer(ty::TyVar(vid)) => self.type_variables.borrow().var_diverges(vid),
_ => false,
}
}
pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
freshen::TypeFreshener::new(self)
}
pub fn type_is_unconstrained_numeric(&'a self, ty: Ty<'_>) -> UnconstrainedNumeric {
use crate::ty::error::UnconstrainedNumeric::Neither;
use crate::ty::error::UnconstrainedNumeric::{UnconstrainedFloat, UnconstrainedInt};
match ty.sty {
ty::Infer(ty::IntVar(vid)) => {
if self.int_unification_table
.borrow_mut()
.probe_value(vid)
.is_some()
{
Neither
} else {
UnconstrainedInt
}
}
ty::Infer(ty::FloatVar(vid)) => {
if self.float_unification_table
.borrow_mut()
.probe_value(vid)
.is_some()
{
Neither
} else {
UnconstrainedFloat
}
}
_ => Neither,
}
}
pub fn unsolved_variables(&self) -> Vec<Ty<'tcx>> {
let mut type_variables = self.type_variables.borrow_mut();
let mut int_unification_table = self.int_unification_table.borrow_mut();
let mut float_unification_table = self.float_unification_table.borrow_mut();
// FIXME(const_generics): should there be an equivalent function for const variables?
type_variables
.unsolved_variables()
.into_iter()
.map(|t| self.tcx.mk_ty_var(t))
.chain(
(0..int_unification_table.len())
.map(|i| ty::IntVid { index: i as u32 })
.filter(|&vid| int_unification_table.probe_value(vid).is_none())
.map(|v| self.tcx.mk_int_var(v)),
)
.chain(
(0..float_unification_table.len())
.map(|i| ty::FloatVid { index: i as u32 })
.filter(|&vid| float_unification_table.probe_value(vid).is_none())
.map(|v| self.tcx.mk_float_var(v)),
)
.collect()
}
fn combine_fields(
&'a self,
trace: TypeTrace<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> CombineFields<'a, 'tcx> {
CombineFields {
infcx: self,
trace,
cause: None,
param_env,
obligations: PredicateObligations::new(),
}
}
/// Clear the "currently in a snapshot" flag, invoke the closure,
/// then restore the flag to its original value. This flag is a
/// debugging measure designed to detect cases where we start a
/// snapshot, create type variables, and register obligations
/// which may involve those type variables in the fulfillment cx,
/// potentially leaving "dangling type variables" behind.
/// In such cases, an assertion will fail when attempting to
/// register obligations, within a snapshot. Very useful, much
/// better than grovelling through megabytes of `RUSTC_LOG` output.
///
/// HOWEVER, in some cases the flag is unhelpful. In particular, we
/// sometimes create a "mini-fulfilment-cx" in which we enroll
/// obligations. As long as this fulfillment cx is fully drained
/// before we return, this is not a problem, as there won't be any
/// escaping obligations in the main cx. In those cases, you can
/// use this function.
pub fn save_and_restore_in_snapshot_flag<F, R>(&self, func: F) -> R
where
F: FnOnce(&Self) -> R,
{
let flag = self.in_snapshot.get();
self.in_snapshot.set(false);
let result = func(self);
self.in_snapshot.set(flag);
result
}
fn start_snapshot(&self) -> CombinedSnapshot<'a, 'tcx> {
debug!("start_snapshot()");
let in_snapshot = self.in_snapshot.get();
self.in_snapshot.set(true);
CombinedSnapshot {
projection_cache_snapshot: self.projection_cache.borrow_mut().snapshot(),
type_snapshot: self.type_variables.borrow_mut().snapshot(),
const_snapshot: self.const_unification_table.borrow_mut().snapshot(),
int_snapshot: self.int_unification_table.borrow_mut().snapshot(),
float_snapshot: self.float_unification_table.borrow_mut().snapshot(),
region_constraints_snapshot: self.borrow_region_constraints().start_snapshot(),
region_obligations_snapshot: self.region_obligations.borrow().len(),
universe: self.universe(),
was_in_snapshot: in_snapshot,
// Borrow tables "in progress" (i.e., during typeck)
// to ban writes from within a snapshot to them.
_in_progress_tables: self.in_progress_tables.map(|tables| tables.borrow()),
}
}
fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'a, 'tcx>) {
debug!("rollback_to(cause={})", cause);
let CombinedSnapshot {
projection_cache_snapshot,
type_snapshot,
const_snapshot,
int_snapshot,
float_snapshot,
region_constraints_snapshot,
region_obligations_snapshot,
universe,
was_in_snapshot,
_in_progress_tables,
} = snapshot;
self.in_snapshot.set(was_in_snapshot);
self.universe.set(universe);
self.projection_cache.borrow_mut().rollback_to(projection_cache_snapshot);
self.type_variables.borrow_mut().rollback_to(type_snapshot);
self.const_unification_table.borrow_mut().rollback_to(const_snapshot);
self.int_unification_table.borrow_mut().rollback_to(int_snapshot);
self.float_unification_table.borrow_mut().rollback_to(float_snapshot);
self.region_obligations.borrow_mut().truncate(region_obligations_snapshot);
self.borrow_region_constraints().rollback_to(region_constraints_snapshot);
}
fn commit_from(&self, snapshot: CombinedSnapshot<'a, 'tcx>) {
debug!("commit_from()");
let CombinedSnapshot {
projection_cache_snapshot,
type_snapshot,
const_snapshot,
int_snapshot,
float_snapshot,
region_constraints_snapshot,
region_obligations_snapshot: _,
universe: _,
was_in_snapshot,
_in_progress_tables,
} = snapshot;
self.in_snapshot.set(was_in_snapshot);
self.projection_cache.borrow_mut().commit(projection_cache_snapshot);
self.type_variables.borrow_mut().commit(type_snapshot);
self.const_unification_table.borrow_mut().commit(const_snapshot);
self.int_unification_table.borrow_mut().commit(int_snapshot);
self.float_unification_table.borrow_mut().commit(float_snapshot);
self.borrow_region_constraints().commit(region_constraints_snapshot);
}
/// Executes `f` and commit the bindings.
pub fn commit_unconditionally<R, F>(&self, f: F) -> R
where
F: FnOnce() -> R,
{
debug!("commit()");
let snapshot = self.start_snapshot();
let r = f();
self.commit_from(snapshot);
r
}
/// Executes `f` and commit the bindings if closure `f` returns `Ok(_)`.
pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E>
where
F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> Result<T, E>,
{
debug!("commit_if_ok()");
let snapshot = self.start_snapshot();
let r = f(&snapshot);
debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
match r {
Ok(_) => {
self.commit_from(snapshot);
}
Err(_) => {
self.rollback_to("commit_if_ok -- error", snapshot);
}
}
r
}
/// Execute `f` in a snapshot, and commit the bindings it creates.
pub fn in_snapshot<T, F>(&self, f: F) -> T
where
F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> T,
{
debug!("in_snapshot()");
let snapshot = self.start_snapshot();
let r = f(&snapshot);
self.commit_from(snapshot);
r
}
/// Executes `f` then unroll any bindings it creates.
pub fn probe<R, F>(&self, f: F) -> R
where
F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
{
debug!("probe()");
let snapshot = self.start_snapshot();
let r = f(&snapshot);
self.rollback_to("probe", snapshot);
r
}
/// Scan the constraints produced since `snapshot` began and returns:
///
/// - `None` -- if none of them involve "region outlives" constraints
/// - `Some(true)` -- if there are `'a: 'b` constraints where `'a` or `'b` is a placeholder
/// - `Some(false)` -- if there are `'a: 'b` constraints but none involve placeholders
pub fn region_constraints_added_in_snapshot(
&self,
snapshot: &CombinedSnapshot<'a, 'tcx>,
) -> Option<bool> {
self.borrow_region_constraints().region_constraints_added_in_snapshot(
&snapshot.region_constraints_snapshot,
)
}
pub fn add_given(&self, sub: ty::Region<'tcx>, sup: ty::RegionVid) {
self.borrow_region_constraints().add_given(sub, sup);
}
pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
where
T: at::ToTrace<'tcx>,
{
let origin = &ObligationCause::dummy();
self.probe(|_| {
self.at(origin, param_env)
.sub(a, b)
.map(|InferOk { obligations: _, .. }| {
// Ignore obligations, since we are unrolling
// everything anyway.
})
})
}
pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> UnitResult<'tcx>
where
T: at::ToTrace<'tcx>,
{
let origin = &ObligationCause::dummy();
self.probe(|_| {
self.at(origin, param_env)
.eq(a, b)
.map(|InferOk { obligations: _, .. }| {
// Ignore obligations, since we are unrolling
// everything anyway.
})
})
}
pub fn sub_regions(
&self,
origin: SubregionOrigin<'tcx>,
a: ty::Region<'tcx>,
b: ty::Region<'tcx>,
) {
debug!("sub_regions({:?} <: {:?})", a, b);
self.borrow_region_constraints()
.make_subregion(origin, a, b);
}
/// Require that the region `r` be equal to one of the regions in
/// the set `regions`.
pub fn member_constraint(
&self,
opaque_type_def_id: DefId,
definition_span: Span,
hidden_ty: Ty<'tcx>,
region: ty::Region<'tcx>,
in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
) {
debug!("member_constraint({:?} <: {:?})", region, in_regions);
self.borrow_region_constraints()
.member_constraint(opaque_type_def_id, definition_span, hidden_ty, region, in_regions);
}
pub fn subtype_predicate(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
predicate: &ty::PolySubtypePredicate<'tcx>,
) -> Option<InferResult<'tcx, ()>> {
// Subtle: it's ok to skip the binder here and resolve because
// `shallow_resolve` just ignores anything that is not a type
// variable, and because type variable's can't (at present, at
// least) capture any of the things bound by this binder.
//
// NOTE(nmatsakis): really, there is no *particular* reason to do this
// `shallow_resolve` here except as a micro-optimization.
// Naturally I could not resist.
let two_unbound_type_vars = {
let a = self.shallow_resolve(predicate.skip_binder().a);
let b = self.shallow_resolve(predicate.skip_binder().b);
a.is_ty_var() && b.is_ty_var()
};
if two_unbound_type_vars {
// Two unbound type variables? Can't make progress.
return None;
}
Some(self.commit_if_ok(|snapshot| {
let (
ty::SubtypePredicate {
a_is_expected,
a,
b,
},
placeholder_map,
) = self.replace_bound_vars_with_placeholders(predicate);
let ok = self.at(cause, param_env)
.sub_exp(a_is_expected, a, b)?;
self.leak_check(false, &placeholder_map, snapshot)?;
Ok(ok.unit())
}))
}
pub fn region_outlives_predicate(
&self,
cause: &traits::ObligationCause<'tcx>,
predicate: &ty::PolyRegionOutlivesPredicate<'tcx>,
) -> UnitResult<'tcx> {
self.commit_if_ok(|snapshot| {
let (ty::OutlivesPredicate(r_a, r_b), placeholder_map) =
self.replace_bound_vars_with_placeholders(predicate);
let origin = SubregionOrigin::from_obligation_cause(
cause,
|| RelateRegionParamBound(cause.span),
);
self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
self.leak_check(false, &placeholder_map, snapshot)?;
Ok(())
})
}
pub fn next_ty_var_id(&self, diverging: bool, origin: TypeVariableOrigin) -> TyVid {
self.type_variables
.borrow_mut()
.new_var(self.universe(), diverging, origin)
}
pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
self.tcx.mk_ty_var(self.next_ty_var_id(false, origin))
}
pub fn next_ty_var_in_universe(
&self,
origin: TypeVariableOrigin,
universe: ty::UniverseIndex
) -> Ty<'tcx> {
let vid = self.type_variables
.borrow_mut()
.new_var(universe, false, origin);
self.tcx.mk_ty_var(vid)
}
pub fn next_diverging_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
self.tcx.mk_ty_var(self.next_ty_var_id(true, origin))
}
pub fn next_const_var(
&self,
ty: Ty<'tcx>,
origin: ConstVariableOrigin
) -> &'tcx ty::Const<'tcx> {
self.tcx.mk_const_var(self.next_const_var_id(origin), ty)
}
pub fn next_const_var_in_universe(
&self,
ty: Ty<'tcx>,
origin: ConstVariableOrigin,
universe: ty::UniverseIndex,
) -> &'tcx ty::Const<'tcx> {
let vid = self.const_unification_table
.borrow_mut()
.new_key(ConstVarValue {
origin,
val: ConstVariableValue::Unknown { universe },
});
self.tcx.mk_const_var(vid, ty)
}
pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid<'tcx> {
self.const_unification_table
.borrow_mut()
.new_key(ConstVarValue {
origin,
val: ConstVariableValue::Unknown { universe: self.universe() },
})
}
fn next_int_var_id(&self) -> IntVid {
self.int_unification_table.borrow_mut().new_key(None)
}
pub fn next_int_var(&self) -> Ty<'tcx> {
self.tcx.mk_int_var(self.next_int_var_id())
}
fn next_float_var_id(&self) -> FloatVid {
self.float_unification_table.borrow_mut().new_key(None)
}
pub fn next_float_var(&self) -> Ty<'tcx> {
self.tcx.mk_float_var(self.next_float_var_id())
}
/// Creates a fresh region variable with the next available index.
/// The variable will be created in the maximum universe created
/// thus far, allowing it to name any region created thus far.
pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
self.next_region_var_in_universe(origin, self.universe())
}
/// Creates a fresh region variable with the next available index
/// in the given universe; typically, you can use
/// `next_region_var` and just use the maximal universe.
pub fn next_region_var_in_universe(
&self,
origin: RegionVariableOrigin,
universe: ty::UniverseIndex,
) -> ty::Region<'tcx> {
let region_var = self.borrow_region_constraints()
.new_region_var(universe, origin);
self.tcx.mk_region(ty::ReVar(region_var))
}
/// Return the universe that the region `r` was created in. For
/// most regions (e.g., `'static`, named regions from the user,
/// etc) this is the root universe U0. For inference variables or
/// placeholders, however, it will return the universe which which
/// they are associated.
fn universe_of_region(
&self,
r: ty::Region<'tcx>,
) -> ty::UniverseIndex {
self.borrow_region_constraints().universe(r)
}
/// Number of region variables created so far.
pub fn num_region_vars(&self) -> usize {
self.borrow_region_constraints().num_region_vars()
}
/// Just a convenient wrapper of `next_region_var` for using during NLL.
pub fn next_nll_region_var(&self, origin: NLLRegionVariableOrigin) -> ty::Region<'tcx> {
self.next_region_var(RegionVariableOrigin::NLL(origin))
}
/// Just a convenient wrapper of `next_region_var` for using during NLL.
pub fn next_nll_region_var_in_universe(
&self,
origin: NLLRegionVariableOrigin,
universe: ty::UniverseIndex,
) -> ty::Region<'tcx> {
self.next_region_var_in_universe(RegionVariableOrigin::NLL(origin), universe)
}
pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> Kind<'tcx> {
match param.kind {
GenericParamDefKind::Lifetime => {
// Create a region inference variable for the given
// region parameter definition.
self.next_region_var(EarlyBoundRegion(span, param.name))
.into()
}
GenericParamDefKind::Type { .. } => {
// Create a type inference variable for the given
// type parameter definition. The substitutions are
// for actual parameters that may be referred to by
// the default of this type parameter, if it exists.
// e.g., `struct Foo<A, B, C = (A, B)>(...);` when
// used in a path such as `Foo::<T, U>::new()` will
// use an inference variable for `C` with `[T, U]`
// as the substitutions for the default, `(T, U)`.
let ty_var_id = self.type_variables.borrow_mut().new_var(
self.universe(),
false,
TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeParameterDefinition(param.name),
span,
},
);
self.tcx.mk_ty_var(ty_var_id).into()
}
GenericParamDefKind::Const { .. } => {
let origin = ConstVariableOrigin {
kind: ConstVariableOriginKind::ConstParameterDefinition(param.name),
span,
};
let const_var_id =
self.const_unification_table
.borrow_mut()
.new_key(ConstVarValue {
origin,
val: ConstVariableValue::Unknown { universe: self.universe() },
});
self.tcx.mk_const_var(const_var_id, self.tcx.type_of(param.def_id)).into()
}
}
}
/// Given a set of generics defined on a type or impl, returns a substitution mapping each
/// type/region parameter to a fresh inference variable.
pub fn fresh_substs_for_item(&self, span: Span, def_id: DefId) -> SubstsRef<'tcx> {
InternalSubsts::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
}
/// Returns `true` if errors have been reported since this infcx was
/// created. This is sometimes used as a heuristic to skip
/// reporting errors that often occur as a result of earlier
/// errors, but where it's hard to be 100% sure (e.g., unresolved
/// inference variables, regionck errors).
pub fn is_tainted_by_errors(&self) -> bool {
debug!(
"is_tainted_by_errors(err_count={}, err_count_on_creation={}, \
tainted_by_errors_flag={})",
self.tcx.sess.err_count(),
self.err_count_on_creation,
self.tainted_by_errors_flag.get()
);
if self.tcx.sess.err_count() > self.err_count_on_creation {
return true; // errors reported since this infcx was made
}
self.tainted_by_errors_flag.get()
}
/// Set the "tainted by errors" flag to true. We call this when we
/// observe an error from a prior pass.
pub fn set_tainted_by_errors(&self) {
debug!("set_tainted_by_errors()");
self.tainted_by_errors_flag.set(true)
}
/// Process the region constraints and report any errors that
/// result. After this, no more unification operations should be
/// done -- or the compiler will panic -- but it is legal to use
/// `resolve_vars_if_possible` as well as `fully_resolve`.
pub fn resolve_regions_and_report_errors(
&self,
region_context: DefId,
region_map: &region::ScopeTree,
outlives_env: &OutlivesEnvironment<'tcx>,
suppress: SuppressRegionErrors,
) {
assert!(
self.is_tainted_by_errors() || self.region_obligations.borrow().is_empty(),
"region_obligations not empty: {:#?}",
self.region_obligations.borrow()
);
let region_rels = &RegionRelations::new(
self.tcx,
region_context,
region_map,
outlives_env.free_region_map(),
);
let (var_infos, data) = self.region_constraints
.borrow_mut()
.take()
.expect("regions already resolved")
.into_infos_and_data();
let (lexical_region_resolutions, errors) =
lexical_region_resolve::resolve(region_rels, var_infos, data);
let old_value = self.lexical_region_resolutions
.replace(Some(lexical_region_resolutions));
assert!(old_value.is_none());
if !self.is_tainted_by_errors() {
// As a heuristic, just skip reporting region errors
// altogether if other errors have been reported while
// this infcx was in use. This is totally hokey but
// otherwise we have a hard time separating legit region
// errors from silly ones.
self.report_region_errors(region_map, &errors, suppress);
}
}
/// Obtains (and clears) the current set of region
/// constraints. The inference context is still usable: further
/// unifications will simply add new constraints.
///
/// This method is not meant to be used with normal lexical region
/// resolution. Rather, it is used in the NLL mode as a kind of
/// interim hack: basically we run normal type-check and generate
/// region constraints as normal, but then we take them and
/// translate them into the form that the NLL solver
/// understands. See the NLL module for mode details.
pub fn take_and_reset_region_constraints(&self) -> RegionConstraintData<'tcx> {
assert!(
self.region_obligations.borrow().is_empty(),
"region_obligations not empty: {:#?}",
self.region_obligations.borrow()
);
self.borrow_region_constraints().take_and_reset_data()
}
/// Gives temporary access to the region constraint data.
#[allow(non_camel_case_types)] // bug with impl trait
pub fn with_region_constraints<R>(
&self,
op: impl FnOnce(&RegionConstraintData<'tcx>) -> R,
) -> R {
let region_constraints = self.borrow_region_constraints();
op(region_constraints.data())
}
/// Takes ownership of the list of variable regions. This implies
/// that all the region constraints have already been taken, and
/// hence that `resolve_regions_and_report_errors` can never be
/// called. This is used only during NLL processing to "hand off" ownership
/// of the set of region variables into the NLL region context.
pub fn take_region_var_origins(&self) -> VarInfos {
let (var_infos, data) = self.region_constraints
.borrow_mut()
.take()
.expect("regions already resolved")
.into_infos_and_data();
assert!(data.is_empty());
var_infos
}
pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
self.resolve_vars_if_possible(&t).to_string()
}
pub fn tys_to_string(&self, ts: &[Ty<'tcx>]) -> String {
let tstrs: Vec<String> = ts.iter().map(|t| self.ty_to_string(*t)).collect();
format!("({})", tstrs.join(", "))
}
pub fn trait_ref_to_string(&self, t: &ty::TraitRef<'tcx>) -> String {
self.resolve_vars_if_possible(t).to_string()
}
/// If `TyVar(vid)` resolves to a type, return that type. Else, return the
/// universe index of `TyVar(vid)`.
pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
use self::type_variable::TypeVariableValue;
match self.type_variables.borrow_mut().probe(vid) {
TypeVariableValue::Known { value } => Ok(value),
TypeVariableValue::Unknown { universe } => Err(universe),
}
}
pub fn shallow_resolve<T>(&self, value: T) -> T
where
T: TypeFoldable<'tcx>,
{
let mut r = ShallowResolver::new(self);
value.fold_with(&mut r)
}
pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
self.type_variables.borrow_mut().root_var(var)
}
/// Where possible, replaces type/const variables in
/// `value` with their final value. Note that region variables
/// are unaffected. If a type/const variable has not been unified, it
/// is left as is. This is an idempotent operation that does
/// not affect inference state in any way and so you can do it
/// at will.
pub fn resolve_vars_if_possible<T>(&self, value: &T) -> T
where
T: TypeFoldable<'tcx>,
{
if !value.needs_infer() {
return value.clone(); // Avoid duplicated subst-folding.
}
let mut r = resolve::OpportunisticVarResolver::new(self);
value.fold_with(&mut r)
}
/// Returns the first unresolved variable contained in `T`. In the
/// process of visiting `T`, this will resolve (where possible)
/// type variables in `T`, but it never constructs the final,
/// resolved type, so it's more efficient than
/// `resolve_vars_if_possible()`.
pub fn unresolved_type_vars<T>(&self, value: &T) -> Option<(Ty<'tcx>, Option<Span>)>
where
T: TypeFoldable<'tcx>,
{
let mut r = resolve::UnresolvedTypeFinder::new(self);
value.visit_with(&mut r);
r.first_unresolved
}
pub fn probe_const_var(
&self,
vid: ty::ConstVid<'tcx>
) -> Result<&'tcx ty::Const<'tcx>, ty::UniverseIndex> {
match self.const_unification_table.borrow_mut().probe_value(vid).val {
ConstVariableValue::Known { value } => Ok(value),
ConstVariableValue::Unknown { universe } => Err(universe),
}
}
pub fn fully_resolve<T: TypeFoldable<'tcx>>(&self, value: &T) -> FixupResult<'tcx, T> {
/*!
* Attempts to resolve all type/region/const variables in
* `value`. Region inference must have been run already (e.g.,
* by calling `resolve_regions_and_report_errors`). If some
* variable was never unified, an `Err` results.
*
* This method is idempotent, but it not typically not invoked
* except during the writeback phase.
*/
resolve::fully_resolve(self, value)
}
// [Note-Type-error-reporting]
// An invariant is that anytime the expected or actual type is Error (the special
// error type, meaning that an error occurred when typechecking this expression),
// this is a derived error. The error cascaded from another error (that was already
// reported), so it's not useful to display it to the user.
// The following methods implement this logic.
// They check if either the actual or expected type is Error, and don't print the error
// in this case. The typechecker should only ever report type errors involving mismatched
// types using one of these methods, and should not call span_err directly for such
// errors.
pub fn type_error_struct_with_diag<M>(
&self,
sp: Span,
mk_diag: M,
actual_ty: Ty<'tcx>,
) -> DiagnosticBuilder<'tcx>
where
M: FnOnce(String) -> DiagnosticBuilder<'tcx>,
{
let actual_ty = self.resolve_vars_if_possible(&actual_ty);
debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
// Don't report an error if actual type is `Error`.
if actual_ty.references_error() {
return self.tcx.sess.diagnostic().struct_dummy();
}
mk_diag(self.ty_to_string(actual_ty))
}
pub fn report_mismatched_types(
&self,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
err: TypeError<'tcx>,
) -> DiagnosticBuilder<'tcx> {
let trace = TypeTrace::types(cause, true, expected, actual);
self.report_and_explain_type_error(trace, &err)
}
pub fn replace_bound_vars_with_fresh_vars<T>(
&self,
span: Span,
lbrct: LateBoundRegionConversionTime,
value: &ty::Binder<T>
) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
where
T: TypeFoldable<'tcx>
{
let fld_r = |br| self.next_region_var(LateBoundRegion(span, br, lbrct));
let fld_t = |_| {
self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span,
})
};
let fld_c = |_, ty| self.next_const_var(ty, ConstVariableOrigin {
kind: ConstVariableOriginKind:: MiscVariable,
span,
});
self.tcx.replace_bound_vars(value, fld_r, fld_t, fld_c)
}
/// See the [`region_constraints::verify_generic_bound`] method.
pub fn verify_generic_bound(
&self,
origin: SubregionOrigin<'tcx>,
kind: GenericKind<'tcx>,
a: ty::Region<'tcx>,
bound: VerifyBound<'tcx>,
) {
debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
self.borrow_region_constraints()
.verify_generic_bound(origin, kind, a, bound);
}
pub fn type_is_copy_modulo_regions(
&self,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
span: Span,
) -> bool {
let ty = self.resolve_vars_if_possible(&ty);
// Even if the type may have no inference variables, during
// type-checking closure types are in local tables only.
if !self.in_progress_tables.is_some() || !ty.has_closure_types() {
if !(param_env, ty).has_local_value() {
return ty.is_copy_modulo_regions(self.tcx.global_tcx(), param_env, span);
}
}
let copy_def_id = self.tcx.require_lang_item(lang_items::CopyTraitLangItem, None);
// This can get called from typeck (by euv), and `moves_by_default`
// rightly refuses to work with inference variables, but
// moves_by_default has a cache, which we want to use in other
// cases.
traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, copy_def_id, span)
}
/// Obtains the latest type of the given closure; this may be a
/// closure in the current function, in which case its
/// `ClosureKind` may not yet be known.
pub fn closure_kind(
&self,
closure_def_id: DefId,
closure_substs: ty::ClosureSubsts<'tcx>,
) -> Option<ty::ClosureKind> {
let closure_kind_ty = closure_substs.closure_kind_ty(closure_def_id, self.tcx);
let closure_kind_ty = self.shallow_resolve(closure_kind_ty);
closure_kind_ty.to_opt_closure_kind()
}
/// Obtains the signature of a closure. For closures, unlike
/// `tcx.fn_sig(def_id)`, this method will work during the
/// type-checking of the enclosing function and return the closure
/// signature in its partially inferred state.
pub fn closure_sig(
&self,
def_id: DefId,
substs: ty::ClosureSubsts<'tcx>,
) -> ty::PolyFnSig<'tcx> {
let closure_sig_ty = substs.closure_sig_ty(def_id, self.tcx);
let closure_sig_ty = self.shallow_resolve(closure_sig_ty);
closure_sig_ty.fn_sig(self.tcx)
}
/// Normalizes associated types in `value`, potentially returning
/// new obligations that must further be processed.
pub fn partially_normalize_associated_types_in<T>(
&self,
span: Span,
body_id: hir::HirId,
param_env: ty::ParamEnv<'tcx>,
value: &T,
) -> InferOk<'tcx, T>
where
T: TypeFoldable<'tcx>,
{
debug!("partially_normalize_associated_types_in(value={:?})", value);
let mut selcx = traits::SelectionContext::new(self);
let cause = ObligationCause::misc(span, body_id);
let traits::Normalized { value, obligations } =
traits::normalize(&mut selcx, param_env, cause, value);
debug!(
"partially_normalize_associated_types_in: result={:?} predicates={:?}",
value, obligations
);
InferOk { value, obligations }
}
pub fn borrow_region_constraints(&self) -> RefMut<'_, RegionConstraintCollector<'tcx>> {
RefMut::map(self.region_constraints.borrow_mut(), |c| {
c.as_mut().expect("region constraints already solved")
})
}
/// Clears the selection, evaluation, and projection caches. This is useful when
/// repeatedly attempting to select an `Obligation` while changing only
/// its `ParamEnv`, since `FulfillmentContext` doesn't use probing.
pub fn clear_caches(&self) {
self.selection_cache.clear();
self.evaluation_cache.clear();
self.projection_cache.borrow_mut().clear();
}
fn universe(&self) -> ty::UniverseIndex {
self.universe.get()
}
/// Creates and return a fresh universe that extends all previous
/// universes. Updates `self.universe` to that new universe.
pub fn create_next_universe(&self) -> ty::UniverseIndex {
let u = self.universe.get().next_universe();
self.universe.set(u);
u
}
}
pub struct ShallowResolver<'a, 'tcx> {
infcx: &'a InferCtxt<'a, 'tcx>,
}
impl<'a, 'tcx> ShallowResolver<'a, 'tcx> {
#[inline(always)]
pub fn new(infcx: &'a InferCtxt<'a, 'tcx>) -> Self {
ShallowResolver { infcx }
}
// We have this force-inlined variant of `shallow_resolve` for the one
// callsite that is extremely hot. All other callsites use the normal
// variant.
#[inline(always)]
pub fn inlined_shallow_resolve(&mut self, typ: Ty<'tcx>) -> Ty<'tcx> {
match typ.sty {
ty::Infer(ty::TyVar(v)) => {
// Not entirely obvious: if `typ` is a type variable,
// it can be resolved to an int/float variable, which
// can then be recursively resolved, hence the
// recursion. Note though that we prevent type
// variables from unifying to other type variables
// directly (though they may be embedded
// structurally), and we prevent cycles in any case,
// so this recursion should always be of very limited
// depth.
self.infcx.type_variables
.borrow_mut()
.probe(v)
.known()
.map(|t| self.fold_ty(t))
.unwrap_or(typ)
}
ty::Infer(ty::IntVar(v)) => self.infcx.int_unification_table
.borrow_mut()
.probe_value(v)
.map(|v| v.to_type(self.infcx.tcx))
.unwrap_or(typ),
ty::Infer(ty::FloatVar(v)) => self.infcx.float_unification_table
.borrow_mut()
.probe_value(v)
.map(|v| v.to_type(self.infcx.tcx))
.unwrap_or(typ),
_ => typ,
}
}
}
impl<'a, 'tcx> TypeFolder<'tcx> for ShallowResolver<'a, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
self.inlined_shallow_resolve(ty)
}
fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
if let ty::Const { val: ConstValue::Infer(InferConst::Var(vid)), .. } = ct {
self.infcx.const_unification_table
.borrow_mut()
.probe_value(*vid)
.val
.known()
.unwrap_or(ct)
} else {
ct
}
}
}
impl<'tcx> TypeTrace<'tcx> {
pub fn span(&self) -> Span {
self.cause.span
}
pub fn types(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Ty<'tcx>,
b: Ty<'tcx>,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: Types(ExpectedFound::new(a_is_expected, a, b)),
}
}
pub fn dummy(tcx: TyCtxt<'tcx>) -> TypeTrace<'tcx> {
TypeTrace {
cause: ObligationCause::dummy(),
values: Types(ExpectedFound {
expected: tcx.types.err,
found: tcx.types.err,
}),
}
}
}
impl<'tcx> fmt::Debug for TypeTrace<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "TypeTrace({:?})", self.cause)
}
}
impl<'tcx> SubregionOrigin<'tcx> {
pub fn span(&self) -> Span {
match *self {
Subtype(ref a) => a.span(),
InfStackClosure(a) => a,
InvokeClosure(a) => a,
DerefPointer(a) => a,
ClosureCapture(a, _) => a,
IndexSlice(a) => a,
RelateObjectBound(a) => a,
RelateParamBound(a, _) => a,
RelateRegionParamBound(a) => a,
RelateDefaultParamBound(a, _) => a,
Reborrow(a) => a,
ReborrowUpvar(a, _) => a,
DataBorrowed(_, a) => a,
ReferenceOutlivesReferent(_, a) => a,
ParameterInScope(_, a) => a,
ExprTypeIsNotInScope(_, a) => a,
BindingTypeIsNotValidAtDecl(a) => a,
CallRcvr(a) => a,
CallArg(a) => a,
CallReturn(a) => a,
Operand(a) => a,
AddrOf(a) => a,
AutoBorrow(a) => a,
SafeDestructor(a) => a,
CompareImplMethodObligation { span, .. } => span,
}
}
pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
where
F: FnOnce() -> Self,
{
match cause.code {
traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
}
traits::ObligationCauseCode::CompareImplMethodObligation {
item_name,
impl_item_def_id,
trait_item_def_id,
} => SubregionOrigin::CompareImplMethodObligation {
span: cause.span,
item_name,
impl_item_def_id,
trait_item_def_id,
},
_ => default(),
}
}
}
impl RegionVariableOrigin {
pub fn span(&self) -> Span {
match *self {
MiscVariable(a) => a,
PatternRegion(a) => a,
AddrOfRegion(a) => a,
Autoref(a) => a,
Coercion(a) => a,
EarlyBoundRegion(a, ..) => a,
LateBoundRegion(a, ..) => a,
BoundRegionInCoherence(_) => syntax_pos::DUMMY_SP,
UpvarRegion(_, a) => a,
NLL(..) => bug!("NLL variable used with `span`"),
}
}
}
EnumTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for ValuePairs<'tcx> {
(ValuePairs::Types)(a),
(ValuePairs::Regions)(a),
(ValuePairs::Consts)(a),
(ValuePairs::TraitRefs)(a),
(ValuePairs::PolyTraitRefs)(a),
}
}
impl<'tcx> fmt::Debug for RegionObligation<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"RegionObligation(sub_region={:?}, sup_type={:?})",
self.sub_region, self.sup_type
)
}
}