blob: 5f82e42abb308ccc32efd82bcc56cf9f15774cd9 [file] [log] [blame]
use super::LoweringContext;
use super::ImplTraitContext;
use super::ImplTraitPosition;
use super::ImplTraitTypeIdVisitor;
use super::AnonymousLifetimeMode;
use super::ParamMode;
use crate::hir::{self, HirVec};
use crate::hir::ptr::P;
use crate::hir::def_id::DefId;
use crate::hir::def::{Res, DefKind};
use crate::util::nodemap::NodeMap;
use rustc_data_structures::thin_vec::ThinVec;
use std::collections::BTreeSet;
use smallvec::SmallVec;
use syntax::attr;
use syntax::ast::*;
use syntax::visit::{self, Visitor};
use syntax::ext::base::SpecialDerives;
use syntax::source_map::{respan, DesugaringKind, Spanned};
use syntax::symbol::{kw, sym};
use syntax_pos::Span;
pub(super) struct ItemLowerer<'tcx, 'interner> {
pub(super) lctx: &'tcx mut LoweringContext<'interner>,
}
impl<'tcx, 'interner> ItemLowerer<'tcx, 'interner> {
fn with_trait_impl_ref<F>(&mut self, trait_impl_ref: &Option<TraitRef>, f: F)
where
F: FnOnce(&mut Self),
{
let old = self.lctx.is_in_trait_impl;
self.lctx.is_in_trait_impl = if let &None = trait_impl_ref {
false
} else {
true
};
f(self);
self.lctx.is_in_trait_impl = old;
}
}
impl<'tcx, 'interner> Visitor<'tcx> for ItemLowerer<'tcx, 'interner> {
fn visit_mod(&mut self, m: &'tcx Mod, _s: Span, _attrs: &[Attribute], n: NodeId) {
self.lctx.modules.insert(n, hir::ModuleItems {
items: BTreeSet::new(),
trait_items: BTreeSet::new(),
impl_items: BTreeSet::new(),
});
let old = self.lctx.current_module;
self.lctx.current_module = n;
visit::walk_mod(self, m);
self.lctx.current_module = old;
}
fn visit_item(&mut self, item: &'tcx Item) {
let mut item_hir_id = None;
self.lctx.with_hir_id_owner(item.id, |lctx| {
lctx.without_in_scope_lifetime_defs(|lctx| {
if let Some(hir_item) = lctx.lower_item(item) {
item_hir_id = Some(hir_item.hir_id);
lctx.insert_item(hir_item);
}
})
});
if let Some(hir_id) = item_hir_id {
self.lctx.with_parent_item_lifetime_defs(hir_id, |this| {
let this = &mut ItemLowerer { lctx: this };
if let ItemKind::Impl(.., ref opt_trait_ref, _, _) = item.node {
this.with_trait_impl_ref(opt_trait_ref, |this| {
visit::walk_item(this, item)
});
} else {
visit::walk_item(this, item);
}
});
}
}
fn visit_trait_item(&mut self, item: &'tcx TraitItem) {
self.lctx.with_hir_id_owner(item.id, |lctx| {
let hir_item = lctx.lower_trait_item(item);
let id = hir::TraitItemId { hir_id: hir_item.hir_id };
lctx.trait_items.insert(id, hir_item);
lctx.modules.get_mut(&lctx.current_module).unwrap().trait_items.insert(id);
});
visit::walk_trait_item(self, item);
}
fn visit_impl_item(&mut self, item: &'tcx ImplItem) {
self.lctx.with_hir_id_owner(item.id, |lctx| {
let hir_item = lctx.lower_impl_item(item);
let id = hir::ImplItemId { hir_id: hir_item.hir_id };
lctx.impl_items.insert(id, hir_item);
lctx.modules.get_mut(&lctx.current_module).unwrap().impl_items.insert(id);
});
visit::walk_impl_item(self, item);
}
}
impl LoweringContext<'_> {
// Same as the method above, but accepts `hir::GenericParam`s
// instead of `ast::GenericParam`s.
// This should only be used with generics that have already had their
// in-band lifetimes added. In practice, this means that this function is
// only used when lowering a child item of a trait or impl.
fn with_parent_item_lifetime_defs<T>(
&mut self,
parent_hir_id: hir::HirId,
f: impl FnOnce(&mut LoweringContext<'_>) -> T,
) -> T {
let old_len = self.in_scope_lifetimes.len();
let parent_generics = match self.items.get(&parent_hir_id).unwrap().node {
hir::ItemKind::Impl(_, _, _, ref generics, ..)
| hir::ItemKind::Trait(_, _, ref generics, ..) => {
&generics.params[..]
}
_ => &[],
};
let lt_def_names = parent_generics.iter().filter_map(|param| match param.kind {
hir::GenericParamKind::Lifetime { .. } => Some(param.name.modern()),
_ => None,
});
self.in_scope_lifetimes.extend(lt_def_names);
let res = f(self);
self.in_scope_lifetimes.truncate(old_len);
res
}
// Clears (and restores) the `in_scope_lifetimes` field. Used when
// visiting nested items, which never inherit in-scope lifetimes
// from their surrounding environment.
fn without_in_scope_lifetime_defs<T>(
&mut self,
f: impl FnOnce(&mut LoweringContext<'_>) -> T,
) -> T {
let old_in_scope_lifetimes = std::mem::replace(&mut self.in_scope_lifetimes, vec![]);
// this vector is only used when walking over impl headers,
// input types, and the like, and should not be non-empty in
// between items
assert!(self.lifetimes_to_define.is_empty());
let res = f(self);
assert!(self.in_scope_lifetimes.is_empty());
self.in_scope_lifetimes = old_in_scope_lifetimes;
res
}
pub(super) fn lower_mod(&mut self, m: &Mod) -> hir::Mod {
hir::Mod {
inner: m.inner,
item_ids: m.items.iter().flat_map(|x| self.lower_item_id(x)).collect(),
}
}
pub(super) fn lower_item_id(&mut self, i: &Item) -> SmallVec<[hir::ItemId; 1]> {
let node_ids = match i.node {
ItemKind::Use(ref use_tree) => {
let mut vec = smallvec![i.id];
self.lower_item_id_use_tree(use_tree, i.id, &mut vec);
vec
}
ItemKind::MacroDef(..) => SmallVec::new(),
ItemKind::Fn(..) |
ItemKind::Impl(.., None, _, _) => smallvec![i.id],
ItemKind::Static(ref ty, ..) => {
let mut ids = smallvec![i.id];
if self.sess.features_untracked().impl_trait_in_bindings {
let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
visitor.visit_ty(ty);
}
ids
},
ItemKind::Const(ref ty, ..) => {
let mut ids = smallvec![i.id];
if self.sess.features_untracked().impl_trait_in_bindings {
let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
visitor.visit_ty(ty);
}
ids
},
_ => smallvec![i.id],
};
node_ids.into_iter().map(|node_id| hir::ItemId {
id: self.allocate_hir_id_counter(node_id)
}).collect()
}
fn lower_item_id_use_tree(
&mut self,
tree: &UseTree,
base_id: NodeId,
vec: &mut SmallVec<[NodeId; 1]>
) {
match tree.kind {
UseTreeKind::Nested(ref nested_vec) => for &(ref nested, id) in nested_vec {
vec.push(id);
self.lower_item_id_use_tree(nested, id, vec);
},
UseTreeKind::Glob => {}
UseTreeKind::Simple(_, id1, id2) => {
for (_, &id) in self.expect_full_res_from_use(base_id)
.skip(1)
.zip([id1, id2].iter())
{
vec.push(id);
}
},
}
}
pub fn lower_item(&mut self, i: &Item) -> Option<hir::Item> {
let mut ident = i.ident;
let mut vis = self.lower_visibility(&i.vis, None);
let mut attrs = self.lower_attrs_extendable(&i.attrs);
if self.resolver.has_derives(i.id, SpecialDerives::PARTIAL_EQ | SpecialDerives::EQ) {
// Add `#[structural_match]` if the item derived both `PartialEq` and `Eq`.
let ident = Ident::new(sym::structural_match, i.span);
attrs.push(attr::mk_attr_outer(attr::mk_word_item(ident)));
}
let attrs = attrs.into();
if let ItemKind::MacroDef(ref def) = i.node {
if !def.legacy || attr::contains_name(&i.attrs, sym::macro_export) {
let body = self.lower_token_stream(def.stream());
let hir_id = self.lower_node_id(i.id);
self.exported_macros.push(hir::MacroDef {
name: ident.name,
vis,
attrs,
hir_id,
span: i.span,
body,
legacy: def.legacy,
});
} else {
self.non_exported_macro_attrs.extend(attrs.into_iter());
}
return None;
}
let node = self.lower_item_kind(i.id, &mut ident, &attrs, &mut vis, &i.node);
Some(hir::Item {
hir_id: self.lower_node_id(i.id),
ident,
attrs,
node,
vis,
span: i.span,
})
}
fn lower_item_kind(
&mut self,
id: NodeId,
ident: &mut Ident,
attrs: &hir::HirVec<Attribute>,
vis: &mut hir::Visibility,
i: &ItemKind,
) -> hir::ItemKind {
match *i {
ItemKind::ExternCrate(orig_name) => hir::ItemKind::ExternCrate(orig_name),
ItemKind::Use(ref use_tree) => {
// Start with an empty prefix.
let prefix = Path {
segments: vec![],
span: use_tree.span,
};
self.lower_use_tree(use_tree, &prefix, id, vis, ident, attrs)
}
ItemKind::Static(ref t, m, ref e) => {
hir::ItemKind::Static(
self.lower_ty(
t,
if self.sess.features_untracked().impl_trait_in_bindings {
ImplTraitContext::OpaqueTy(None)
} else {
ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
}
),
self.lower_mutability(m),
self.lower_const_body(e),
)
}
ItemKind::Const(ref t, ref e) => {
hir::ItemKind::Const(
self.lower_ty(
t,
if self.sess.features_untracked().impl_trait_in_bindings {
ImplTraitContext::OpaqueTy(None)
} else {
ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
}
),
self.lower_const_body(e)
)
}
ItemKind::Fn(ref decl, header, ref generics, ref body) => {
let fn_def_id = self.resolver.definitions().local_def_id(id);
self.with_new_scopes(|this| {
this.current_item = Some(ident.span);
// Note: we don't need to change the return type from `T` to
// `impl Future<Output = T>` here because lower_body
// only cares about the input argument patterns in the function
// declaration (decl), not the return types.
let body_id = this.lower_maybe_async_body(&decl, header.asyncness.node, body);
let (generics, fn_decl) = this.add_in_band_defs(
generics,
fn_def_id,
AnonymousLifetimeMode::PassThrough,
|this, idty| this.lower_fn_decl(
&decl,
Some((fn_def_id, idty)),
true,
header.asyncness.node.opt_return_id()
),
);
hir::ItemKind::Fn(
fn_decl,
this.lower_fn_header(header),
generics,
body_id,
)
})
}
ItemKind::Mod(ref m) => hir::ItemKind::Mod(self.lower_mod(m)),
ItemKind::ForeignMod(ref nm) => hir::ItemKind::ForeignMod(self.lower_foreign_mod(nm)),
ItemKind::GlobalAsm(ref ga) => hir::ItemKind::GlobalAsm(self.lower_global_asm(ga)),
ItemKind::TyAlias(ref t, ref generics) => hir::ItemKind::TyAlias(
self.lower_ty(t, ImplTraitContext::disallowed()),
self.lower_generics(generics, ImplTraitContext::disallowed()),
),
ItemKind::OpaqueTy(ref b, ref generics) => hir::ItemKind::OpaqueTy(
hir::OpaqueTy {
generics: self.lower_generics(generics,
ImplTraitContext::OpaqueTy(None)),
bounds: self.lower_param_bounds(b,
ImplTraitContext::OpaqueTy(None)),
impl_trait_fn: None,
origin: hir::OpaqueTyOrigin::TypeAlias,
},
),
ItemKind::Enum(ref enum_definition, ref generics) => {
hir::ItemKind::Enum(
hir::EnumDef {
variants: enum_definition
.variants
.iter()
.map(|x| self.lower_variant(x))
.collect(),
},
self.lower_generics(generics, ImplTraitContext::disallowed()),
)
},
ItemKind::Struct(ref struct_def, ref generics) => {
let struct_def = self.lower_variant_data(struct_def);
hir::ItemKind::Struct(
struct_def,
self.lower_generics(generics, ImplTraitContext::disallowed()),
)
}
ItemKind::Union(ref vdata, ref generics) => {
let vdata = self.lower_variant_data(vdata);
hir::ItemKind::Union(
vdata,
self.lower_generics(generics, ImplTraitContext::disallowed()),
)
}
ItemKind::Impl(
unsafety,
polarity,
defaultness,
ref ast_generics,
ref trait_ref,
ref ty,
ref impl_items,
) => {
let def_id = self.resolver.definitions().local_def_id(id);
// Lower the "impl header" first. This ordering is important
// for in-band lifetimes! Consider `'a` here:
//
// impl Foo<'a> for u32 {
// fn method(&'a self) { .. }
// }
//
// Because we start by lowering the `Foo<'a> for u32`
// part, we will add `'a` to the list of generics on
// the impl. When we then encounter it later in the
// method, it will not be considered an in-band
// lifetime to be added, but rather a reference to a
// parent lifetime.
let lowered_trait_impl_id = self.lower_node_id(id);
let (generics, (trait_ref, lowered_ty)) = self.add_in_band_defs(
ast_generics,
def_id,
AnonymousLifetimeMode::CreateParameter,
|this, _| {
let trait_ref = trait_ref.as_ref().map(|trait_ref| {
this.lower_trait_ref(trait_ref, ImplTraitContext::disallowed())
});
if let Some(ref trait_ref) = trait_ref {
if let Res::Def(DefKind::Trait, def_id) = trait_ref.path.res {
this.trait_impls.entry(def_id).or_default().push(
lowered_trait_impl_id);
}
}
let lowered_ty = this.lower_ty(ty, ImplTraitContext::disallowed());
(trait_ref, lowered_ty)
},
);
let new_impl_items = self.with_in_scope_lifetime_defs(
&ast_generics.params,
|this| {
impl_items
.iter()
.map(|item| this.lower_impl_item_ref(item))
.collect()
},
);
hir::ItemKind::Impl(
self.lower_unsafety(unsafety),
self.lower_impl_polarity(polarity),
self.lower_defaultness(defaultness, true /* [1] */),
generics,
trait_ref,
lowered_ty,
new_impl_items,
)
}
ItemKind::Trait(is_auto, unsafety, ref generics, ref bounds, ref items) => {
let bounds = self.lower_param_bounds(bounds, ImplTraitContext::disallowed());
let items = items
.iter()
.map(|item| self.lower_trait_item_ref(item))
.collect();
hir::ItemKind::Trait(
self.lower_is_auto(is_auto),
self.lower_unsafety(unsafety),
self.lower_generics(generics, ImplTraitContext::disallowed()),
bounds,
items,
)
}
ItemKind::TraitAlias(ref generics, ref bounds) => hir::ItemKind::TraitAlias(
self.lower_generics(generics, ImplTraitContext::disallowed()),
self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
),
ItemKind::MacroDef(..)
| ItemKind::Mac(..) => bug!("`TyMac` should have been expanded by now"),
}
// [1] `defaultness.has_value()` is never called for an `impl`, always `true` in order to
// not cause an assertion failure inside the `lower_defaultness` function.
}
fn lower_use_tree(
&mut self,
tree: &UseTree,
prefix: &Path,
id: NodeId,
vis: &mut hir::Visibility,
ident: &mut Ident,
attrs: &hir::HirVec<Attribute>,
) -> hir::ItemKind {
debug!("lower_use_tree(tree={:?})", tree);
debug!("lower_use_tree: vis = {:?}", vis);
let path = &tree.prefix;
let segments = prefix
.segments
.iter()
.chain(path.segments.iter())
.cloned()
.collect();
match tree.kind {
UseTreeKind::Simple(rename, id1, id2) => {
*ident = tree.ident();
// First, apply the prefix to the path.
let mut path = Path {
segments,
span: path.span,
};
// Correctly resolve `self` imports.
if path.segments.len() > 1
&& path.segments.last().unwrap().ident.name == kw::SelfLower
{
let _ = path.segments.pop();
if rename.is_none() {
*ident = path.segments.last().unwrap().ident;
}
}
let mut resolutions = self.expect_full_res_from_use(id);
// We want to return *something* from this function, so hold onto the first item
// for later.
let ret_res = self.lower_res(resolutions.next().unwrap_or(Res::Err));
// Here, we are looping over namespaces, if they exist for the definition
// being imported. We only handle type and value namespaces because we
// won't be dealing with macros in the rest of the compiler.
// Essentially a single `use` which imports two names is desugared into
// two imports.
for (res, &new_node_id) in resolutions.zip([id1, id2].iter()) {
let ident = *ident;
let mut path = path.clone();
for seg in &mut path.segments {
seg.id = self.sess.next_node_id();
}
let span = path.span;
self.with_hir_id_owner(new_node_id, |this| {
let new_id = this.lower_node_id(new_node_id);
let res = this.lower_res(res);
let path =
this.lower_path_extra(res, &path, ParamMode::Explicit, None);
let item = hir::ItemKind::Use(P(path), hir::UseKind::Single);
let vis = this.rebuild_vis(&vis);
this.insert_item(
hir::Item {
hir_id: new_id,
ident,
attrs: attrs.into_iter().cloned().collect(),
node: item,
vis,
span,
},
);
});
}
let path =
P(self.lower_path_extra(ret_res, &path, ParamMode::Explicit, None));
hir::ItemKind::Use(path, hir::UseKind::Single)
}
UseTreeKind::Glob => {
let path = P(self.lower_path(
id,
&Path {
segments,
span: path.span,
},
ParamMode::Explicit,
));
hir::ItemKind::Use(path, hir::UseKind::Glob)
}
UseTreeKind::Nested(ref trees) => {
// Nested imports are desugared into simple imports.
// So, if we start with
//
// ```
// pub(x) use foo::{a, b};
// ```
//
// we will create three items:
//
// ```
// pub(x) use foo::a;
// pub(x) use foo::b;
// pub(x) use foo::{}; // <-- this is called the `ListStem`
// ```
//
// The first two are produced by recursively invoking
// `lower_use_tree` (and indeed there may be things
// like `use foo::{a::{b, c}}` and so forth). They
// wind up being directly added to
// `self.items`. However, the structure of this
// function also requires us to return one item, and
// for that we return the `{}` import (called the
// `ListStem`).
let prefix = Path {
segments,
span: prefix.span.to(path.span),
};
// Add all the nested `PathListItem`s to the HIR.
for &(ref use_tree, id) in trees {
let new_hir_id = self.lower_node_id(id);
let mut prefix = prefix.clone();
// Give the segments new node-ids since they are being cloned.
for seg in &mut prefix.segments {
seg.id = self.sess.next_node_id();
}
// Each `use` import is an item and thus are owners of the
// names in the path. Up to this point the nested import is
// the current owner, since we want each desugared import to
// own its own names, we have to adjust the owner before
// lowering the rest of the import.
self.with_hir_id_owner(id, |this| {
let mut vis = this.rebuild_vis(&vis);
let mut ident = *ident;
let item = this.lower_use_tree(use_tree,
&prefix,
id,
&mut vis,
&mut ident,
attrs);
this.insert_item(
hir::Item {
hir_id: new_hir_id,
ident,
attrs: attrs.into_iter().cloned().collect(),
node: item,
vis,
span: use_tree.span,
},
);
});
}
// Subtle and a bit hacky: we lower the privacy level
// of the list stem to "private" most of the time, but
// not for "restricted" paths. The key thing is that
// we don't want it to stay as `pub` (with no caveats)
// because that affects rustdoc and also the lints
// about `pub` items. But we can't *always* make it
// private -- particularly not for restricted paths --
// because it contains node-ids that would then be
// unused, failing the check that HirIds are "densely
// assigned".
match vis.node {
hir::VisibilityKind::Public |
hir::VisibilityKind::Crate(_) |
hir::VisibilityKind::Inherited => {
*vis = respan(prefix.span.shrink_to_lo(), hir::VisibilityKind::Inherited);
}
hir::VisibilityKind::Restricted { .. } => {
// Do nothing here, as described in the comment on the match.
}
}
let res = self.expect_full_res_from_use(id).next().unwrap_or(Res::Err);
let res = self.lower_res(res);
let path = P(self.lower_path_extra(res, &prefix, ParamMode::Explicit, None));
hir::ItemKind::Use(path, hir::UseKind::ListStem)
}
}
}
/// Paths like the visibility path in `pub(super) use foo::{bar, baz}` are repeated
/// many times in the HIR tree; for each occurrence, we need to assign distinct
/// `NodeId`s. (See, e.g., #56128.)
fn rebuild_use_path(&mut self, path: &hir::Path) -> hir::Path {
debug!("rebuild_use_path(path = {:?})", path);
let segments = path.segments.iter().map(|seg| hir::PathSegment {
ident: seg.ident,
hir_id: seg.hir_id.map(|_| self.next_id()),
res: seg.res,
args: None,
infer_args: seg.infer_args,
}).collect();
hir::Path {
span: path.span,
res: path.res,
segments,
}
}
fn rebuild_vis(&mut self, vis: &hir::Visibility) -> hir::Visibility {
let vis_kind = match vis.node {
hir::VisibilityKind::Public => hir::VisibilityKind::Public,
hir::VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar),
hir::VisibilityKind::Inherited => hir::VisibilityKind::Inherited,
hir::VisibilityKind::Restricted { ref path, hir_id: _ } => {
hir::VisibilityKind::Restricted {
path: P(self.rebuild_use_path(path)),
hir_id: self.next_id(),
}
}
};
respan(vis.span, vis_kind)
}
fn lower_foreign_item(&mut self, i: &ForeignItem) -> hir::ForeignItem {
let def_id = self.resolver.definitions().local_def_id(i.id);
hir::ForeignItem {
hir_id: self.lower_node_id(i.id),
ident: i.ident,
attrs: self.lower_attrs(&i.attrs),
node: match i.node {
ForeignItemKind::Fn(ref fdec, ref generics) => {
let (generics, (fn_dec, fn_args)) = self.add_in_band_defs(
generics,
def_id,
AnonymousLifetimeMode::PassThrough,
|this, _| {
(
// Disallow `impl Trait` in foreign items.
this.lower_fn_decl(fdec, None, false, None),
this.lower_fn_params_to_names(fdec),
)
},
);
hir::ForeignItemKind::Fn(fn_dec, fn_args, generics)
}
ForeignItemKind::Static(ref t, m) => {
hir::ForeignItemKind::Static(
self.lower_ty(t, ImplTraitContext::disallowed()), self.lower_mutability(m))
}
ForeignItemKind::Ty => hir::ForeignItemKind::Type,
ForeignItemKind::Macro(_) => panic!("macro shouldn't exist here"),
},
vis: self.lower_visibility(&i.vis, None),
span: i.span,
}
}
fn lower_foreign_mod(&mut self, fm: &ForeignMod) -> hir::ForeignMod {
hir::ForeignMod {
abi: fm.abi,
items: fm.items
.iter()
.map(|x| self.lower_foreign_item(x))
.collect(),
}
}
fn lower_global_asm(&mut self, ga: &GlobalAsm) -> P<hir::GlobalAsm> {
P(hir::GlobalAsm { asm: ga.asm })
}
fn lower_variant(&mut self, v: &Variant) -> hir::Variant {
hir::Variant {
attrs: self.lower_attrs(&v.attrs),
data: self.lower_variant_data(&v.data),
disr_expr: v.disr_expr.as_ref().map(|e| self.lower_anon_const(e)),
id: self.lower_node_id(v.id),
ident: v.ident,
span: v.span,
}
}
fn lower_variant_data(&mut self, vdata: &VariantData) -> hir::VariantData {
match *vdata {
VariantData::Struct(ref fields, recovered) => hir::VariantData::Struct(
fields.iter().enumerate().map(|f| self.lower_struct_field(f)).collect(),
recovered,
),
VariantData::Tuple(ref fields, id) => {
hir::VariantData::Tuple(
fields
.iter()
.enumerate()
.map(|f| self.lower_struct_field(f))
.collect(),
self.lower_node_id(id),
)
},
VariantData::Unit(id) => {
hir::VariantData::Unit(self.lower_node_id(id))
},
}
}
fn lower_struct_field(&mut self, (index, f): (usize, &StructField)) -> hir::StructField {
let ty = if let TyKind::Path(ref qself, ref path) = f.ty.node {
let t = self.lower_path_ty(
&f.ty,
qself,
path,
ParamMode::ExplicitNamed, // no `'_` in declarations (Issue #61124)
ImplTraitContext::disallowed()
);
P(t)
} else {
self.lower_ty(&f.ty, ImplTraitContext::disallowed())
};
hir::StructField {
span: f.span,
hir_id: self.lower_node_id(f.id),
ident: match f.ident {
Some(ident) => ident,
// FIXME(jseyfried): positional field hygiene.
None => Ident::new(sym::integer(index), f.span),
},
vis: self.lower_visibility(&f.vis, None),
ty,
attrs: self.lower_attrs(&f.attrs),
}
}
fn lower_trait_item(&mut self, i: &TraitItem) -> hir::TraitItem {
let trait_item_def_id = self.resolver.definitions().local_def_id(i.id);
let (generics, node) = match i.node {
TraitItemKind::Const(ref ty, ref default) => (
self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
hir::TraitItemKind::Const(
self.lower_ty(ty, ImplTraitContext::disallowed()),
default
.as_ref()
.map(|x| self.lower_const_body(x)),
),
),
TraitItemKind::Method(ref sig, None) => {
let names = self.lower_fn_params_to_names(&sig.decl);
let (generics, sig) = self.lower_method_sig(
&i.generics,
sig,
trait_item_def_id,
false,
None,
);
(generics, hir::TraitItemKind::Method(sig, hir::TraitMethod::Required(names)))
}
TraitItemKind::Method(ref sig, Some(ref body)) => {
let body_id = self.lower_fn_body_block(&sig.decl, body);
let (generics, sig) = self.lower_method_sig(
&i.generics,
sig,
trait_item_def_id,
false,
None,
);
(generics, hir::TraitItemKind::Method(sig, hir::TraitMethod::Provided(body_id)))
}
TraitItemKind::Type(ref bounds, ref default) => {
let generics = self.lower_generics(&i.generics, ImplTraitContext::disallowed());
let node = hir::TraitItemKind::Type(
self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
default
.as_ref()
.map(|x| self.lower_ty(x, ImplTraitContext::disallowed())),
);
(generics, node)
},
TraitItemKind::Macro(..) => bug!("macro item shouldn't exist at this point"),
};
hir::TraitItem {
hir_id: self.lower_node_id(i.id),
ident: i.ident,
attrs: self.lower_attrs(&i.attrs),
generics,
node,
span: i.span,
}
}
fn lower_trait_item_ref(&mut self, i: &TraitItem) -> hir::TraitItemRef {
let (kind, has_default) = match i.node {
TraitItemKind::Const(_, ref default) => {
(hir::AssocItemKind::Const, default.is_some())
}
TraitItemKind::Type(_, ref default) => {
(hir::AssocItemKind::Type, default.is_some())
}
TraitItemKind::Method(ref sig, ref default) => (
hir::AssocItemKind::Method {
has_self: sig.decl.has_self(),
},
default.is_some(),
),
TraitItemKind::Macro(..) => unimplemented!(),
};
hir::TraitItemRef {
id: hir::TraitItemId { hir_id: self.lower_node_id(i.id) },
ident: i.ident,
span: i.span,
defaultness: self.lower_defaultness(Defaultness::Default, has_default),
kind,
}
}
fn lower_impl_item(&mut self, i: &ImplItem) -> hir::ImplItem {
let impl_item_def_id = self.resolver.definitions().local_def_id(i.id);
let (generics, node) = match i.node {
ImplItemKind::Const(ref ty, ref expr) => (
self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
hir::ImplItemKind::Const(
self.lower_ty(ty, ImplTraitContext::disallowed()),
self.lower_const_body(expr),
),
),
ImplItemKind::Method(ref sig, ref body) => {
self.current_item = Some(i.span);
let body_id = self.lower_maybe_async_body(
&sig.decl, sig.header.asyncness.node, body
);
let impl_trait_return_allow = !self.is_in_trait_impl;
let (generics, sig) = self.lower_method_sig(
&i.generics,
sig,
impl_item_def_id,
impl_trait_return_allow,
sig.header.asyncness.node.opt_return_id(),
);
(generics, hir::ImplItemKind::Method(sig, body_id))
}
ImplItemKind::TyAlias(ref ty) => (
self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
hir::ImplItemKind::TyAlias(self.lower_ty(ty, ImplTraitContext::disallowed())),
),
ImplItemKind::OpaqueTy(ref bounds) => (
self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
hir::ImplItemKind::OpaqueTy(
self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
),
),
ImplItemKind::Macro(..) => bug!("`TyMac` should have been expanded by now"),
};
hir::ImplItem {
hir_id: self.lower_node_id(i.id),
ident: i.ident,
attrs: self.lower_attrs(&i.attrs),
generics,
vis: self.lower_visibility(&i.vis, None),
defaultness: self.lower_defaultness(i.defaultness, true /* [1] */),
node,
span: i.span,
}
// [1] since `default impl` is not yet implemented, this is always true in impls
}
fn lower_impl_item_ref(&mut self, i: &ImplItem) -> hir::ImplItemRef {
hir::ImplItemRef {
id: hir::ImplItemId { hir_id: self.lower_node_id(i.id) },
ident: i.ident,
span: i.span,
vis: self.lower_visibility(&i.vis, Some(i.id)),
defaultness: self.lower_defaultness(i.defaultness, true /* [1] */),
kind: match i.node {
ImplItemKind::Const(..) => hir::AssocItemKind::Const,
ImplItemKind::TyAlias(..) => hir::AssocItemKind::Type,
ImplItemKind::OpaqueTy(..) => hir::AssocItemKind::OpaqueTy,
ImplItemKind::Method(ref sig, _) => hir::AssocItemKind::Method {
has_self: sig.decl.has_self(),
},
ImplItemKind::Macro(..) => unimplemented!(),
},
}
// [1] since `default impl` is not yet implemented, this is always true in impls
}
/// If an `explicit_owner` is given, this method allocates the `HirId` in
/// the address space of that item instead of the item currently being
/// lowered. This can happen during `lower_impl_item_ref()` where we need to
/// lower a `Visibility` value although we haven't lowered the owning
/// `ImplItem` in question yet.
fn lower_visibility(
&mut self,
v: &Visibility,
explicit_owner: Option<NodeId>,
) -> hir::Visibility {
let node = match v.node {
VisibilityKind::Public => hir::VisibilityKind::Public,
VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar),
VisibilityKind::Restricted { ref path, id } => {
debug!("lower_visibility: restricted path id = {:?}", id);
let lowered_id = if let Some(owner) = explicit_owner {
self.lower_node_id_with_owner(id, owner)
} else {
self.lower_node_id(id)
};
let res = self.expect_full_res(id);
let res = self.lower_res(res);
hir::VisibilityKind::Restricted {
path: P(self.lower_path_extra(
res,
path,
ParamMode::Explicit,
explicit_owner,
)),
hir_id: lowered_id,
}
},
VisibilityKind::Inherited => hir::VisibilityKind::Inherited,
};
respan(v.span, node)
}
fn lower_defaultness(&self, d: Defaultness, has_value: bool) -> hir::Defaultness {
match d {
Defaultness::Default => hir::Defaultness::Default {
has_value: has_value,
},
Defaultness::Final => {
assert!(has_value);
hir::Defaultness::Final
}
}
}
fn lower_impl_polarity(&mut self, i: ImplPolarity) -> hir::ImplPolarity {
match i {
ImplPolarity::Positive => hir::ImplPolarity::Positive,
ImplPolarity::Negative => hir::ImplPolarity::Negative,
}
}
fn record_body(&mut self, params: HirVec<hir::Param>, value: hir::Expr) -> hir::BodyId {
let body = hir::Body {
generator_kind: self.generator_kind,
params,
value,
};
let id = body.id();
self.bodies.insert(id, body);
id
}
fn lower_body(
&mut self,
f: impl FnOnce(&mut LoweringContext<'_>) -> (HirVec<hir::Param>, hir::Expr),
) -> hir::BodyId {
let prev_gen_kind = self.generator_kind.take();
let (parameters, result) = f(self);
let body_id = self.record_body(parameters, result);
self.generator_kind = prev_gen_kind;
body_id
}
fn lower_param(&mut self, param: &Param) -> hir::Param {
hir::Param {
attrs: self.lower_attrs(&param.attrs),
hir_id: self.lower_node_id(param.id),
pat: self.lower_pat(&param.pat),
span: param.span,
}
}
pub(super) fn lower_fn_body(
&mut self,
decl: &FnDecl,
body: impl FnOnce(&mut LoweringContext<'_>) -> hir::Expr,
) -> hir::BodyId {
self.lower_body(|this| (
decl.inputs.iter().map(|x| this.lower_param(x)).collect(),
body(this),
))
}
fn lower_fn_body_block(&mut self, decl: &FnDecl, body: &Block) -> hir::BodyId {
self.lower_fn_body(decl, |this| {
let body = this.lower_block(body, false);
this.expr_block(body, ThinVec::new())
})
}
pub(super) fn lower_const_body(&mut self, expr: &Expr) -> hir::BodyId {
self.lower_body(|this| (hir_vec![], this.lower_expr(expr)))
}
fn lower_maybe_async_body(
&mut self,
decl: &FnDecl,
asyncness: IsAsync,
body: &Block,
) -> hir::BodyId {
let closure_id = match asyncness {
IsAsync::Async { closure_id, .. } => closure_id,
IsAsync::NotAsync => return self.lower_fn_body_block(decl, body),
};
self.lower_body(|this| {
let mut parameters: Vec<hir::Param> = Vec::new();
let mut statements: Vec<hir::Stmt> = Vec::new();
// Async function parameters are lowered into the closure body so that they are
// captured and so that the drop order matches the equivalent non-async functions.
//
// from:
//
// async fn foo(<pattern>: <ty>, <pattern>: <ty>, <pattern>: <ty>) {
// async move {
// }
// }
//
// into:
//
// fn foo(__arg0: <ty>, __arg1: <ty>, __arg2: <ty>) {
// async move {
// let __arg2 = __arg2;
// let <pattern> = __arg2;
// let __arg1 = __arg1;
// let <pattern> = __arg1;
// let __arg0 = __arg0;
// let <pattern> = __arg0;
// }
// }
//
// If `<pattern>` is a simple ident, then it is lowered to a single
// `let <pattern> = <pattern>;` statement as an optimization.
for (index, parameter) in decl.inputs.iter().enumerate() {
let parameter = this.lower_param(parameter);
let span = parameter.pat.span;
// Check if this is a binding pattern, if so, we can optimize and avoid adding a
// `let <pat> = __argN;` statement. In this case, we do not rename the parameter.
let (ident, is_simple_parameter) = match parameter.pat.node {
hir::PatKind::Binding(hir::BindingAnnotation::Unannotated, _, ident, _) =>
(ident, true),
_ => {
// Replace the ident for bindings that aren't simple.
let name = format!("__arg{}", index);
let ident = Ident::from_str(&name);
(ident, false)
},
};
let desugared_span =
this.mark_span_with_reason(DesugaringKind::Async, span, None);
// Construct a parameter representing `__argN: <ty>` to replace the parameter of the
// async function.
//
// If this is the simple case, this parameter will end up being the same as the
// original parameter, but with a different pattern id.
let mut stmt_attrs = ThinVec::new();
stmt_attrs.extend(parameter.attrs.iter().cloned());
let (new_parameter_pat, new_parameter_id) = this.pat_ident(desugared_span, ident);
let new_parameter = hir::Param {
attrs: parameter.attrs,
hir_id: parameter.hir_id,
pat: new_parameter_pat,
span: parameter.span,
};
if is_simple_parameter {
// If this is the simple case, then we only insert one statement that is
// `let <pat> = <pat>;`. We re-use the original argument's pattern so that
// `HirId`s are densely assigned.
let expr = this.expr_ident(desugared_span, ident, new_parameter_id);
let stmt = this.stmt_let_pat(
stmt_attrs,
desugared_span,
Some(P(expr)),
parameter.pat,
hir::LocalSource::AsyncFn
);
statements.push(stmt);
} else {
// If this is not the simple case, then we construct two statements:
//
// ```
// let __argN = __argN;
// let <pat> = __argN;
// ```
//
// The first statement moves the parameter into the closure and thus ensures
// that the drop order is correct.
//
// The second statement creates the bindings that the user wrote.
// Construct the `let mut __argN = __argN;` statement. It must be a mut binding
// because the user may have specified a `ref mut` binding in the next
// statement.
let (move_pat, move_id) = this.pat_ident_binding_mode(
desugared_span, ident, hir::BindingAnnotation::Mutable);
let move_expr = this.expr_ident(desugared_span, ident, new_parameter_id);
let move_stmt = this.stmt_let_pat(
ThinVec::new(),
desugared_span,
Some(P(move_expr)),
move_pat,
hir::LocalSource::AsyncFn
);
// Construct the `let <pat> = __argN;` statement. We re-use the original
// parameter's pattern so that `HirId`s are densely assigned.
let pattern_expr = this.expr_ident(desugared_span, ident, move_id);
let pattern_stmt = this.stmt_let_pat(
stmt_attrs,
desugared_span,
Some(P(pattern_expr)),
parameter.pat,
hir::LocalSource::AsyncFn
);
statements.push(move_stmt);
statements.push(pattern_stmt);
};
parameters.push(new_parameter);
}
let async_expr = this.make_async_expr(
CaptureBy::Value, closure_id, None, body.span,
|this| {
let body = this.lower_block_with_stmts(body, false, statements);
this.expr_block(body, ThinVec::new())
});
(HirVec::from(parameters), this.expr(body.span, async_expr, ThinVec::new()))
})
}
fn lower_method_sig(
&mut self,
generics: &Generics,
sig: &MethodSig,
fn_def_id: DefId,
impl_trait_return_allow: bool,
is_async: Option<NodeId>,
) -> (hir::Generics, hir::MethodSig) {
let header = self.lower_fn_header(sig.header);
let (generics, decl) = self.add_in_band_defs(
generics,
fn_def_id,
AnonymousLifetimeMode::PassThrough,
|this, idty| this.lower_fn_decl(
&sig.decl,
Some((fn_def_id, idty)),
impl_trait_return_allow,
is_async,
),
);
(generics, hir::MethodSig { header, decl })
}
fn lower_is_auto(&mut self, a: IsAuto) -> hir::IsAuto {
match a {
IsAuto::Yes => hir::IsAuto::Yes,
IsAuto::No => hir::IsAuto::No,
}
}
fn lower_fn_header(&mut self, h: FnHeader) -> hir::FnHeader {
hir::FnHeader {
unsafety: self.lower_unsafety(h.unsafety),
asyncness: self.lower_asyncness(h.asyncness.node),
constness: self.lower_constness(h.constness),
abi: h.abi,
}
}
pub(super) fn lower_unsafety(&mut self, u: Unsafety) -> hir::Unsafety {
match u {
Unsafety::Unsafe => hir::Unsafety::Unsafe,
Unsafety::Normal => hir::Unsafety::Normal,
}
}
fn lower_constness(&mut self, c: Spanned<Constness>) -> hir::Constness {
match c.node {
Constness::Const => hir::Constness::Const,
Constness::NotConst => hir::Constness::NotConst,
}
}
fn lower_asyncness(&mut self, a: IsAsync) -> hir::IsAsync {
match a {
IsAsync::Async { .. } => hir::IsAsync::Async,
IsAsync::NotAsync => hir::IsAsync::NotAsync,
}
}
pub(super) fn lower_generics(
&mut self,
generics: &Generics,
itctx: ImplTraitContext<'_>)
-> hir::Generics
{
// Collect `?Trait` bounds in where clause and move them to parameter definitions.
// FIXME: this could probably be done with less rightward drift. It also looks like two
// control paths where `report_error` is called are the only paths that advance to after the
// match statement, so the error reporting could probably just be moved there.
let mut add_bounds: NodeMap<Vec<_>> = Default::default();
for pred in &generics.where_clause.predicates {
if let WherePredicate::BoundPredicate(ref bound_pred) = *pred {
'next_bound: for bound in &bound_pred.bounds {
if let GenericBound::Trait(_, TraitBoundModifier::Maybe) = *bound {
let report_error = |this: &mut Self| {
this.diagnostic().span_err(
bound_pred.bounded_ty.span,
"`?Trait` bounds are only permitted at the \
point where a type parameter is declared",
);
};
// Check if the where clause type is a plain type parameter.
match bound_pred.bounded_ty.node {
TyKind::Path(None, ref path)
if path.segments.len() == 1
&& bound_pred.bound_generic_params.is_empty() =>
{
if let Some(Res::Def(DefKind::TyParam, def_id)) = self.resolver
.get_partial_res(bound_pred.bounded_ty.id)
.map(|d| d.base_res())
{
if let Some(node_id) =
self.resolver.definitions().as_local_node_id(def_id)
{
for param in &generics.params {
match param.kind {
GenericParamKind::Type { .. } => {
if node_id == param.id {
add_bounds.entry(param.id)
.or_default()
.push(bound.clone());
continue 'next_bound;
}
}
_ => {}
}
}
}
}
report_error(self)
}
_ => report_error(self),
}
}
}
}
}
hir::Generics {
params: self.lower_generic_params(&generics.params, &add_bounds, itctx),
where_clause: self.lower_where_clause(&generics.where_clause),
span: generics.span,
}
}
fn lower_where_clause(&mut self, wc: &WhereClause) -> hir::WhereClause {
self.with_anonymous_lifetime_mode(
AnonymousLifetimeMode::ReportError,
|this| {
hir::WhereClause {
predicates: wc.predicates
.iter()
.map(|predicate| this.lower_where_predicate(predicate))
.collect(),
span: wc.span,
}
},
)
}
fn lower_where_predicate(&mut self, pred: &WherePredicate) -> hir::WherePredicate {
match *pred {
WherePredicate::BoundPredicate(WhereBoundPredicate {
ref bound_generic_params,
ref bounded_ty,
ref bounds,
span,
}) => {
self.with_in_scope_lifetime_defs(
&bound_generic_params,
|this| {
hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
bound_generic_params: this.lower_generic_params(
bound_generic_params,
&NodeMap::default(),
ImplTraitContext::disallowed(),
),
bounded_ty: this.lower_ty(bounded_ty, ImplTraitContext::disallowed()),
bounds: bounds
.iter()
.filter_map(|bound| match *bound {
// Ignore `?Trait` bounds.
// They were copied into type parameters already.
GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
_ => Some(this.lower_param_bound(
bound,
ImplTraitContext::disallowed(),
)),
})
.collect(),
span,
})
},
)
}
WherePredicate::RegionPredicate(WhereRegionPredicate {
ref lifetime,
ref bounds,
span,
}) => hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
span,
lifetime: self.lower_lifetime(lifetime),
bounds: self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
}),
WherePredicate::EqPredicate(WhereEqPredicate {
id,
ref lhs_ty,
ref rhs_ty,
span,
}) => {
hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
hir_id: self.lower_node_id(id),
lhs_ty: self.lower_ty(lhs_ty, ImplTraitContext::disallowed()),
rhs_ty: self.lower_ty(rhs_ty, ImplTraitContext::disallowed()),
span,
})
},
}
}
}