blob: 805727b6ce0d72c0711065f284f07d2bf9af9d30 [file] [log] [blame]
use crate::infer::{InferCtxt, ShallowResolver};
use crate::mir::interpret::{GlobalId, ErrorHandled};
use crate::ty::{self, Ty, TypeFoldable, ToPolyTraitRef};
use crate::ty::error::ExpectedFound;
use rustc_data_structures::obligation_forest::{DoCompleted, Error, ForestObligation};
use rustc_data_structures::obligation_forest::{ObligationForest, ObligationProcessor};
use rustc_data_structures::obligation_forest::{ProcessResult};
use std::marker::PhantomData;
use super::CodeAmbiguity;
use super::CodeProjectionError;
use super::CodeSelectionError;
use super::engine::{TraitEngine, TraitEngineExt};
use super::{FulfillmentError, FulfillmentErrorCode};
use super::{ObligationCause, PredicateObligation};
use super::project;
use super::select::SelectionContext;
use super::{Unimplemented, ConstEvalFailure};
impl<'tcx> ForestObligation for PendingPredicateObligation<'tcx> {
type Predicate = ty::Predicate<'tcx>;
fn as_predicate(&self) -> &Self::Predicate { &self.obligation.predicate }
}
/// The fulfillment context is used to drive trait resolution. It
/// consists of a list of obligations that must be (eventually)
/// satisfied. The job is to track which are satisfied, which yielded
/// errors, and which are still pending. At any point, users can call
/// `select_where_possible`, and the fulfillment context will try to do
/// selection, retaining only those obligations that remain
/// ambiguous. This may be helpful in pushing type inference
/// along. Once all type inference constraints have been generated, the
/// method `select_all_or_error` can be used to report any remaining
/// ambiguous cases as errors.
pub struct FulfillmentContext<'tcx> {
// A list of all obligations that have been registered with this
// fulfillment context.
predicates: ObligationForest<PendingPredicateObligation<'tcx>>,
// Should this fulfillment context register type-lives-for-region
// obligations on its parent infcx? In some cases, region
// obligations are either already known to hold (normalization) or
// hopefully verifed elsewhere (type-impls-bound), and therefore
// should not be checked.
//
// Note that if we are normalizing a type that we already
// know is well-formed, there should be no harm setting this
// to true - all the region variables should be determinable
// using the RFC 447 rules, which don't depend on
// type-lives-for-region constraints, and because the type
// is well-formed, the constraints should hold.
register_region_obligations: bool,
// Is it OK to register obligations into this infcx inside
// an infcx snapshot?
//
// The "primary fulfillment" in many cases in typeck lives
// outside of any snapshot, so any use of it inside a snapshot
// will lead to trouble and therefore is checked against, but
// other fulfillment contexts sometimes do live inside of
// a snapshot (they don't *straddle* a snapshot, so there
// is no trouble there).
usable_in_snapshot: bool
}
#[derive(Clone, Debug)]
pub struct PendingPredicateObligation<'tcx> {
pub obligation: PredicateObligation<'tcx>,
pub stalled_on: Vec<Ty<'tcx>>,
}
// `PendingPredicateObligation` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_arch = "x86_64")]
static_assert_size!(PendingPredicateObligation<'_>, 136);
impl<'a, 'tcx> FulfillmentContext<'tcx> {
/// Creates a new fulfillment context.
pub fn new() -> FulfillmentContext<'tcx> {
FulfillmentContext {
predicates: ObligationForest::new(),
register_region_obligations: true,
usable_in_snapshot: false,
}
}
pub fn new_in_snapshot() -> FulfillmentContext<'tcx> {
FulfillmentContext {
predicates: ObligationForest::new(),
register_region_obligations: true,
usable_in_snapshot: true,
}
}
pub fn new_ignoring_regions() -> FulfillmentContext<'tcx> {
FulfillmentContext {
predicates: ObligationForest::new(),
register_region_obligations: false,
usable_in_snapshot: false
}
}
/// Attempts to select obligations using `selcx`.
fn select(
&mut self,
selcx: &mut SelectionContext<'a, 'tcx>,
) -> Result<(), Vec<FulfillmentError<'tcx>>> {
debug!("select(obligation-forest-size={})", self.predicates.len());
let mut errors = Vec::new();
loop {
debug!("select: starting another iteration");
// Process pending obligations.
let outcome = self.predicates.process_obligations(&mut FulfillProcessor {
selcx,
register_region_obligations: self.register_region_obligations
}, DoCompleted::No);
debug!("select: outcome={:#?}", outcome);
// FIXME: if we kept the original cache key, we could mark projection
// obligations as complete for the projection cache here.
errors.extend(
outcome.errors.into_iter()
.map(|e| to_fulfillment_error(e)));
// If nothing new was added, no need to keep looping.
if outcome.stalled {
break;
}
}
debug!("select({} predicates remaining, {} errors) done",
self.predicates.len(), errors.len());
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
}
impl<'tcx> TraitEngine<'tcx> for FulfillmentContext<'tcx> {
/// "Normalize" a projection type `<SomeType as SomeTrait>::X` by
/// creating a fresh type variable `$0` as well as a projection
/// predicate `<SomeType as SomeTrait>::X == $0`. When the
/// inference engine runs, it will attempt to find an impl of
/// `SomeTrait` or a where-clause that lets us unify `$0` with
/// something concrete. If this fails, we'll unify `$0` with
/// `projection_ty` again.
fn normalize_projection_type(
&mut self,
infcx: &InferCtxt<'_, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
) -> Ty<'tcx> {
debug!("normalize_projection_type(projection_ty={:?})",
projection_ty);
debug_assert!(!projection_ty.has_escaping_bound_vars());
// FIXME(#20304) -- cache
let mut selcx = SelectionContext::new(infcx);
let mut obligations = vec![];
let normalized_ty = project::normalize_projection_type(&mut selcx,
param_env,
projection_ty,
cause,
0,
&mut obligations);
self.register_predicate_obligations(infcx, obligations);
debug!("normalize_projection_type: result={:?}", normalized_ty);
normalized_ty
}
fn register_predicate_obligation(
&mut self,
infcx: &InferCtxt<'_, 'tcx>,
obligation: PredicateObligation<'tcx>,
) {
// this helps to reduce duplicate errors, as well as making
// debug output much nicer to read and so on.
let obligation = infcx.resolve_vars_if_possible(&obligation);
debug!("register_predicate_obligation(obligation={:?})", obligation);
assert!(!infcx.is_in_snapshot() || self.usable_in_snapshot);
self.predicates.register_obligation(PendingPredicateObligation {
obligation,
stalled_on: vec![]
});
}
fn select_all_or_error(
&mut self,
infcx: &InferCtxt<'_, 'tcx>,
) -> Result<(), Vec<FulfillmentError<'tcx>>> {
self.select_where_possible(infcx)?;
let errors: Vec<_> =
self.predicates.to_errors(CodeAmbiguity)
.into_iter()
.map(|e| to_fulfillment_error(e))
.collect();
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
fn select_where_possible(
&mut self,
infcx: &InferCtxt<'_, 'tcx>,
) -> Result<(), Vec<FulfillmentError<'tcx>>> {
let mut selcx = SelectionContext::new(infcx);
self.select(&mut selcx)
}
fn pending_obligations(&self) -> Vec<PredicateObligation<'tcx>> {
self.predicates.map_pending_obligations(|o| o.obligation.clone())
}
}
struct FulfillProcessor<'a, 'b, 'tcx> {
selcx: &'a mut SelectionContext<'b, 'tcx>,
register_region_obligations: bool,
}
fn mk_pending(os: Vec<PredicateObligation<'tcx>>) -> Vec<PendingPredicateObligation<'tcx>> {
os.into_iter().map(|o| PendingPredicateObligation {
obligation: o,
stalled_on: vec![]
}).collect()
}
impl<'a, 'b, 'tcx> ObligationProcessor for FulfillProcessor<'a, 'b, 'tcx> {
type Obligation = PendingPredicateObligation<'tcx>;
type Error = FulfillmentErrorCode<'tcx>;
/// Processes a predicate obligation and returns either:
/// - `Changed(v)` if the predicate is true, presuming that `v` are also true
/// - `Unchanged` if we don't have enough info to be sure
/// - `Error(e)` if the predicate does not hold
///
/// This is always inlined, despite its size, because it has a single
/// callsite and it is called *very* frequently.
#[inline(always)]
fn process_obligation(
&mut self,
pending_obligation: &mut Self::Obligation,
) -> ProcessResult<Self::Obligation, Self::Error> {
// If we were stalled on some unresolved variables, first check
// whether any of them have been resolved; if not, don't bother
// doing more work yet
if !pending_obligation.stalled_on.is_empty() {
let mut changed = false;
// This `for` loop was once a call to `all()`, but this lower-level
// form was a perf win. See #64545 for details.
for &ty in &pending_obligation.stalled_on {
if ShallowResolver::new(self.selcx.infcx()).shallow_resolve_changed(ty) {
changed = true;
break;
}
}
if !changed {
debug!("process_predicate: pending obligation {:?} still stalled on {:?}",
self.selcx.infcx()
.resolve_vars_if_possible(&pending_obligation.obligation),
pending_obligation.stalled_on);
return ProcessResult::Unchanged;
}
pending_obligation.stalled_on = vec![];
}
let obligation = &mut pending_obligation.obligation;
if obligation.predicate.has_infer_types() {
obligation.predicate =
self.selcx.infcx().resolve_vars_if_possible(&obligation.predicate);
}
debug!("process_obligation: obligation = {:?} cause = {:?}", obligation, obligation.cause);
match obligation.predicate {
ty::Predicate::Trait(ref data) => {
let trait_obligation = obligation.with(data.clone());
if data.is_global() {
// no type variables present, can use evaluation for better caching.
// FIXME: consider caching errors too.
if self.selcx.infcx().predicate_must_hold_considering_regions(&obligation) {
debug!("selecting trait `{:?}` at depth {} evaluated to holds",
data, obligation.recursion_depth);
return ProcessResult::Changed(vec![])
}
}
match self.selcx.select(&trait_obligation) {
Ok(Some(vtable)) => {
debug!("selecting trait `{:?}` at depth {} yielded Ok(Some)",
data, obligation.recursion_depth);
ProcessResult::Changed(mk_pending(vtable.nested_obligations()))
}
Ok(None) => {
debug!("selecting trait `{:?}` at depth {} yielded Ok(None)",
data, obligation.recursion_depth);
// This is a bit subtle: for the most part, the
// only reason we can fail to make progress on
// trait selection is because we don't have enough
// information about the types in the trait. One
// exception is that we sometimes haven't decided
// what kind of closure a closure is. *But*, in
// that case, it turns out, the type of the
// closure will also change, because the closure
// also includes references to its upvars as part
// of its type, and those types are resolved at
// the same time.
//
// FIXME(#32286) logic seems false if no upvars
pending_obligation.stalled_on =
trait_ref_type_vars(self.selcx, data.to_poly_trait_ref());
debug!("process_predicate: pending obligation {:?} now stalled on {:?}",
self.selcx.infcx().resolve_vars_if_possible(obligation),
pending_obligation.stalled_on);
ProcessResult::Unchanged
}
Err(selection_err) => {
info!("selecting trait `{:?}` at depth {} yielded Err",
data, obligation.recursion_depth);
ProcessResult::Error(CodeSelectionError(selection_err))
}
}
}
ty::Predicate::RegionOutlives(ref binder) => {
match self.selcx.infcx().region_outlives_predicate(&obligation.cause, binder) {
Ok(()) => ProcessResult::Changed(vec![]),
Err(_) => ProcessResult::Error(CodeSelectionError(Unimplemented)),
}
}
ty::Predicate::TypeOutlives(ref binder) => {
// Check if there are higher-ranked vars.
match binder.no_bound_vars() {
// If there are, inspect the underlying type further.
None => {
// Convert from `Binder<OutlivesPredicate<Ty, Region>>` to `Binder<Ty>`.
let binder = binder.map_bound_ref(|pred| pred.0);
// Check if the type has any bound vars.
match binder.no_bound_vars() {
// If so, this obligation is an error (for now). Eventually we should be
// able to support additional cases here, like `for<'a> &'a str: 'a`.
// NOTE: this is duplicate-implemented between here and fulfillment.
None => {
ProcessResult::Error(CodeSelectionError(Unimplemented))
}
// Otherwise, we have something of the form
// `for<'a> T: 'a where 'a not in T`, which we can treat as
// `T: 'static`.
Some(t_a) => {
let r_static = self.selcx.tcx().lifetimes.re_static;
if self.register_region_obligations {
self.selcx.infcx().register_region_obligation_with_cause(
t_a,
r_static,
&obligation.cause,
);
}
ProcessResult::Changed(vec![])
}
}
}
// If there aren't, register the obligation.
Some(ty::OutlivesPredicate(t_a, r_b)) => {
if self.register_region_obligations {
self.selcx.infcx().register_region_obligation_with_cause(
t_a,
r_b,
&obligation.cause,
);
}
ProcessResult::Changed(vec![])
}
}
}
ty::Predicate::Projection(ref data) => {
let project_obligation = obligation.with(data.clone());
match project::poly_project_and_unify_type(self.selcx, &project_obligation) {
Ok(None) => {
let tcx = self.selcx.tcx();
pending_obligation.stalled_on =
trait_ref_type_vars(self.selcx, data.to_poly_trait_ref(tcx));
ProcessResult::Unchanged
}
Ok(Some(os)) => ProcessResult::Changed(mk_pending(os)),
Err(e) => ProcessResult::Error(CodeProjectionError(e))
}
}
ty::Predicate::ObjectSafe(trait_def_id) => {
if !self.selcx.tcx().is_object_safe(trait_def_id) {
ProcessResult::Error(CodeSelectionError(Unimplemented))
} else {
ProcessResult::Changed(vec![])
}
}
ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => {
match self.selcx.infcx().closure_kind(closure_def_id, closure_substs) {
Some(closure_kind) => {
if closure_kind.extends(kind) {
ProcessResult::Changed(vec![])
} else {
ProcessResult::Error(CodeSelectionError(Unimplemented))
}
}
None => {
ProcessResult::Unchanged
}
}
}
ty::Predicate::WellFormed(ty) => {
match ty::wf::obligations(
self.selcx.infcx(),
obligation.param_env,
obligation.cause.body_id,
ty,
obligation.cause.span,
) {
None => {
pending_obligation.stalled_on = vec![ty];
ProcessResult::Unchanged
}
Some(os) => ProcessResult::Changed(mk_pending(os))
}
}
ty::Predicate::Subtype(ref subtype) => {
match self.selcx.infcx().subtype_predicate(&obligation.cause,
obligation.param_env,
subtype) {
None => {
// None means that both are unresolved.
pending_obligation.stalled_on = vec![subtype.skip_binder().a,
subtype.skip_binder().b];
ProcessResult::Unchanged
}
Some(Ok(ok)) => {
ProcessResult::Changed(mk_pending(ok.obligations))
}
Some(Err(err)) => {
let expected_found = ExpectedFound::new(subtype.skip_binder().a_is_expected,
subtype.skip_binder().a,
subtype.skip_binder().b);
ProcessResult::Error(
FulfillmentErrorCode::CodeSubtypeError(expected_found, err))
}
}
}
ty::Predicate::ConstEvaluatable(def_id, substs) => {
if obligation.param_env.has_local_value() {
ProcessResult::Unchanged
} else {
if !substs.has_local_value() {
let instance = ty::Instance::resolve(
self.selcx.tcx().global_tcx(),
obligation.param_env,
def_id,
substs,
);
if let Some(instance) = instance {
let cid = GlobalId {
instance,
promoted: None,
};
match self.selcx.tcx().at(obligation.cause.span)
.const_eval(obligation.param_env.and(cid)) {
Ok(_) => ProcessResult::Changed(vec![]),
Err(err) => ProcessResult::Error(
CodeSelectionError(ConstEvalFailure(err)))
}
} else {
ProcessResult::Error(CodeSelectionError(
ConstEvalFailure(ErrorHandled::TooGeneric)
))
}
} else {
pending_obligation.stalled_on = substs.types().collect();
ProcessResult::Unchanged
}
}
}
}
}
fn process_backedge<'c, I>(&mut self, cycle: I,
_marker: PhantomData<&'c PendingPredicateObligation<'tcx>>)
where I: Clone + Iterator<Item=&'c PendingPredicateObligation<'tcx>>,
{
if self.selcx.coinductive_match(cycle.clone().map(|s| s.obligation.predicate)) {
debug!("process_child_obligations: coinductive match");
} else {
let cycle: Vec<_> = cycle.map(|c| c.obligation.clone()).collect();
self.selcx.infcx().report_overflow_error_cycle(&cycle);
}
}
}
/// Returns the set of type variables contained in a trait ref
fn trait_ref_type_vars<'a, 'tcx>(
selcx: &mut SelectionContext<'a, 'tcx>,
t: ty::PolyTraitRef<'tcx>,
) -> Vec<Ty<'tcx>> {
t.skip_binder() // ok b/c this check doesn't care about regions
.input_types()
.map(|t| selcx.infcx().resolve_vars_if_possible(&t))
.filter(|t| t.has_infer_types())
.flat_map(|t| t.walk())
.filter(|t| match t.sty { ty::Infer(_) => true, _ => false })
.collect()
}
fn to_fulfillment_error<'tcx>(
error: Error<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>>)
-> FulfillmentError<'tcx>
{
let obligation = error.backtrace.into_iter().next().unwrap().obligation;
FulfillmentError::new(obligation, error.error)
}