blob: c9b0e97c9b05c61847e79409a6232055c2ba1647 [file] [log] [blame]
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use ty::{self, Ty, TyCtxt};
use ty::error::TypeError;
use ty::relate::{self, Relate, TypeRelation, RelateResult};
/// A type "A" *matches* "B" if the fresh types in B could be
/// substituted with values so as to make it equal to A. Matching is
/// intended to be used only on freshened types, and it basically
/// indicates if the non-freshened versions of A and B could have been
/// unified.
///
/// It is only an approximation. If it yields false, unification would
/// definitely fail, but a true result doesn't mean unification would
/// succeed. This is because we don't track the "side-constraints" on
/// type variables, nor do we track if the same freshened type appears
/// more than once. To some extent these approximations could be
/// fixed, given effort.
///
/// Like subtyping, matching is really a binary relation, so the only
/// important thing about the result is Ok/Err. Also, matching never
/// affects any type variables or unification state.
pub struct Match<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
tcx: TyCtxt<'a, 'gcx, 'tcx>
}
impl<'a, 'gcx, 'tcx> Match<'a, 'gcx, 'tcx> {
pub fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Match<'a, 'gcx, 'tcx> {
Match { tcx: tcx }
}
}
impl<'a, 'gcx, 'tcx> TypeRelation<'a, 'gcx, 'tcx> for Match<'a, 'gcx, 'tcx> {
fn tag(&self) -> &'static str { "Match" }
fn tcx(&self) -> TyCtxt<'a, 'gcx, 'tcx> { self.tcx }
fn a_is_expected(&self) -> bool { true } // irrelevant
fn relate_with_variance<T: Relate<'tcx>>(&mut self,
_: ty::Variance,
a: &T,
b: &T)
-> RelateResult<'tcx, T>
{
self.relate(a, b)
}
fn regions(&mut self, a: ty::Region<'tcx>, b: ty::Region<'tcx>)
-> RelateResult<'tcx, ty::Region<'tcx>> {
debug!("{}.regions({:?}, {:?})",
self.tag(),
a,
b);
Ok(a)
}
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
debug!("{}.tys({:?}, {:?})", self.tag(),
a, b);
if a == b { return Ok(a); }
match (&a.sty, &b.sty) {
(_, &ty::Infer(ty::FreshTy(_))) |
(_, &ty::Infer(ty::FreshIntTy(_))) |
(_, &ty::Infer(ty::FreshFloatTy(_))) => {
Ok(a)
}
(&ty::Infer(_), _) |
(_, &ty::Infer(_)) => {
Err(TypeError::Sorts(relate::expected_found(self, &a, &b)))
}
(&ty::Error, _) | (_, &ty::Error) => {
Ok(self.tcx().types.err)
}
_ => {
relate::super_relate_tys(self, a, b)
}
}
}
fn binders<T>(&mut self, a: &ty::Binder<T>, b: &ty::Binder<T>)
-> RelateResult<'tcx, ty::Binder<T>>
where T: Relate<'tcx>
{
Ok(ty::Binder::bind(self.relate(a.skip_binder(), b.skip_binder())?))
}
}