blob: 9bfbfab06a0aca0fe56cbbb1591c227ded038131 [file] [log] [blame]
// Checking that `Vec<T>` cannot hide lifetimes within `T` when `T`
// implements `Drop` and might access methods of values that have
// since been deallocated.
//
// In this case, the values in question hold (non-zero) unique-ids
// that zero themselves out when dropped, and are wrapped in another
// type with a destructor that asserts that the ids it references are
// indeed non-zero (i.e., effectively checking that the id's are not
// dropped while there are still any outstanding references).
//
// However, the values in question are also formed into a
// cyclic-structure, ensuring that there is no way for all of the
// conditions above to be satisfied, meaning that if the dropck is
// sound, it should reject this code.
use std::cell::Cell;
use id::Id;
mod s {
use std::sync::atomic::{AtomicUsize, Ordering};
static S_COUNT: AtomicUsize = AtomicUsize::new(0);
/// generates globally unique count (global across the current
/// process, that is)
pub fn next_count() -> usize {
S_COUNT.fetch_add(1, Ordering::SeqCst) + 1
}
}
mod id {
use s;
/// Id represents a globally unique identifier (global across the
/// current process, that is). When dropped, it automatically
/// clears its `count` field, but leaves `orig_count` untouched,
/// so that if there are subsequent (erroneous) invocations of its
/// method (which is unsound), we can observe it by seeing that
/// the `count` is 0 while the `orig_count` is non-zero.
#[derive(Debug)]
pub struct Id {
orig_count: usize,
count: usize,
}
impl Id {
/// Creates an `Id` with a globally unique count.
pub fn new() -> Id {
let c = s::next_count();
println!("building Id {}", c);
Id { orig_count: c, count: c }
}
/// returns the `count` of self; should be non-zero if
/// everything is working.
pub fn count(&self) -> usize {
println!("Id::count on {} returns {}", self.orig_count, self.count);
self.count
}
}
impl Drop for Id {
fn drop(&mut self) {
println!("dropping Id {}", self.count);
self.count = 0;
}
}
}
trait HasId {
fn count(&self) -> usize;
}
#[derive(Debug)]
struct CheckId<T:HasId> {
v: T
}
#[allow(non_snake_case)]
fn CheckId<T:HasId>(t: T) -> CheckId<T> { CheckId{ v: t } }
impl<T:HasId> Drop for CheckId<T> {
fn drop(&mut self) {
assert!(self.v.count() > 0);
}
}
#[derive(Debug)]
struct C<'a> {
id: Id,
v: Vec<CheckId<Cell<Option<&'a C<'a>>>>>,
}
impl<'a> HasId for Cell<Option<&'a C<'a>>> {
fn count(&self) -> usize {
match self.get() {
None => 1,
Some(c) => c.id.count(),
}
}
}
impl<'a> C<'a> {
fn new() -> C<'a> {
C { id: Id::new(), v: Vec::new() }
}
}
fn f() {
let (mut c1, mut c2);
c1 = C::new();
c2 = C::new();
c1.v.push(CheckId(Cell::new(None)));
c2.v.push(CheckId(Cell::new(None)));
c1.v[0].v.set(Some(&c2));
//~^ ERROR `c2` does not live long enough
c2.v[0].v.set(Some(&c1));
//~^ ERROR `c1` does not live long enough
}
fn main() {
f();
}