blob: 8c6161a62647346b780450776524de5e5228a51d [file] [log] [blame]
//! Check properties that are required by built-in traits and set
//! up data structures required by type-checking/codegen.
use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::lang_items::{
CoerceUnsizedTraitLangItem, DispatchFromDynTraitLangItem, UnsizeTraitLangItem,
};
use rustc_hir::ItemKind;
use rustc_infer::infer;
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::{RegionckMode, TyCtxtInferExt};
use rustc_middle::ty::adjustment::CoerceUnsizedInfo;
use rustc_middle::ty::TypeFoldable;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
use rustc_trait_selection::traits::misc::{can_type_implement_copy, CopyImplementationError};
use rustc_trait_selection::traits::predicate_for_trait_def;
use rustc_trait_selection::traits::{self, ObligationCause, TraitEngine, TraitEngineExt};
pub fn check_trait(tcx: TyCtxt<'_>, trait_def_id: DefId) {
let lang_items = tcx.lang_items();
Checker { tcx, trait_def_id }
.check(lang_items.drop_trait(), visit_implementation_of_drop)
.check(lang_items.copy_trait(), visit_implementation_of_copy)
.check(lang_items.coerce_unsized_trait(), visit_implementation_of_coerce_unsized)
.check(lang_items.dispatch_from_dyn_trait(), visit_implementation_of_dispatch_from_dyn);
}
struct Checker<'tcx> {
tcx: TyCtxt<'tcx>,
trait_def_id: DefId,
}
impl<'tcx> Checker<'tcx> {
fn check<F>(&self, trait_def_id: Option<DefId>, mut f: F) -> &Self
where
F: FnMut(TyCtxt<'tcx>, LocalDefId),
{
if Some(self.trait_def_id) == trait_def_id {
for &impl_id in self.tcx.hir().trait_impls(self.trait_def_id) {
let impl_def_id = self.tcx.hir().local_def_id(impl_id);
f(self.tcx, impl_def_id);
}
}
self
}
}
fn visit_implementation_of_drop(tcx: TyCtxt<'_>, impl_did: LocalDefId) {
// Destructors only work on nominal types.
if let ty::Adt(..) | ty::Error(_) = tcx.type_of(impl_did).kind {
return;
}
let impl_hir_id = tcx.hir().as_local_hir_id(impl_did);
let sp = match tcx.hir().expect_item(impl_hir_id).kind {
ItemKind::Impl { self_ty, .. } => self_ty.span,
_ => bug!("expected Drop impl item"),
};
struct_span_err!(
tcx.sess,
sp,
E0120,
"the `Drop` trait may only be implemented for structs, enums, and unions",
)
.span_label(sp, "must be a struct, enum, or union")
.emit();
}
fn visit_implementation_of_copy(tcx: TyCtxt<'_>, impl_did: LocalDefId) {
debug!("visit_implementation_of_copy: impl_did={:?}", impl_did);
let impl_hir_id = tcx.hir().as_local_hir_id(impl_did);
let self_type = tcx.type_of(impl_did);
debug!("visit_implementation_of_copy: self_type={:?} (bound)", self_type);
let span = tcx.hir().span(impl_hir_id);
let param_env = tcx.param_env(impl_did);
assert!(!self_type.has_escaping_bound_vars());
debug!("visit_implementation_of_copy: self_type={:?} (free)", self_type);
match can_type_implement_copy(tcx, param_env, self_type) {
Ok(()) => {}
Err(CopyImplementationError::InfrigingFields(fields)) => {
let item = tcx.hir().expect_item(impl_hir_id);
let span = if let ItemKind::Impl { of_trait: Some(ref tr), .. } = item.kind {
tr.path.span
} else {
span
};
let mut err = struct_span_err!(
tcx.sess,
span,
E0204,
"the trait `Copy` may not be implemented for this type"
);
for span in fields.iter().map(|f| tcx.def_span(f.did)) {
err.span_label(span, "this field does not implement `Copy`");
}
err.emit()
}
Err(CopyImplementationError::NotAnAdt) => {
let item = tcx.hir().expect_item(impl_hir_id);
let span =
if let ItemKind::Impl { self_ty, .. } = item.kind { self_ty.span } else { span };
struct_span_err!(
tcx.sess,
span,
E0206,
"the trait `Copy` may not be implemented for this type"
)
.span_label(span, "type is not a structure or enumeration")
.emit();
}
Err(CopyImplementationError::HasDestructor) => {
struct_span_err!(
tcx.sess,
span,
E0184,
"the trait `Copy` may not be implemented for this type; the \
type has a destructor"
)
.span_label(span, "Copy not allowed on types with destructors")
.emit();
}
}
}
fn visit_implementation_of_coerce_unsized(tcx: TyCtxt<'tcx>, impl_did: LocalDefId) {
debug!("visit_implementation_of_coerce_unsized: impl_did={:?}", impl_did);
// Just compute this for the side-effects, in particular reporting
// errors; other parts of the code may demand it for the info of
// course.
let span = tcx.def_span(impl_did);
tcx.at(span).coerce_unsized_info(impl_did);
}
fn visit_implementation_of_dispatch_from_dyn(tcx: TyCtxt<'_>, impl_did: LocalDefId) {
debug!("visit_implementation_of_dispatch_from_dyn: impl_did={:?}", impl_did);
let impl_hir_id = tcx.hir().as_local_hir_id(impl_did);
let span = tcx.hir().span(impl_hir_id);
let dispatch_from_dyn_trait = tcx.require_lang_item(DispatchFromDynTraitLangItem, Some(span));
let source = tcx.type_of(impl_did);
assert!(!source.has_escaping_bound_vars());
let target = {
let trait_ref = tcx.impl_trait_ref(impl_did).unwrap();
assert_eq!(trait_ref.def_id, dispatch_from_dyn_trait);
trait_ref.substs.type_at(1)
};
debug!("visit_implementation_of_dispatch_from_dyn: {:?} -> {:?}", source, target);
let param_env = tcx.param_env(impl_did);
let create_err = |msg: &str| struct_span_err!(tcx.sess, span, E0378, "{}", msg);
tcx.infer_ctxt().enter(|infcx| {
let cause = ObligationCause::misc(span, impl_hir_id);
use ty::TyKind::*;
match (&source.kind, &target.kind) {
(&Ref(r_a, _, mutbl_a), Ref(r_b, _, mutbl_b))
if infcx.at(&cause, param_env).eq(r_a, r_b).is_ok() && mutbl_a == *mutbl_b => {}
(&RawPtr(tm_a), &RawPtr(tm_b)) if tm_a.mutbl == tm_b.mutbl => (),
(&Adt(def_a, substs_a), &Adt(def_b, substs_b))
if def_a.is_struct() && def_b.is_struct() =>
{
if def_a != def_b {
let source_path = tcx.def_path_str(def_a.did);
let target_path = tcx.def_path_str(def_b.did);
create_err(&format!(
"the trait `DispatchFromDyn` may only be implemented \
for a coercion between structures with the same \
definition; expected `{}`, found `{}`",
source_path, target_path,
))
.emit();
return;
}
if def_a.repr.c() || def_a.repr.packed() {
create_err(
"structs implementing `DispatchFromDyn` may not have \
`#[repr(packed)]` or `#[repr(C)]`",
)
.emit();
}
let fields = &def_a.non_enum_variant().fields;
let coerced_fields = fields
.iter()
.filter_map(|field| {
let ty_a = field.ty(tcx, substs_a);
let ty_b = field.ty(tcx, substs_b);
if let Ok(layout) = tcx.layout_of(param_env.and(ty_a)) {
if layout.is_zst() && layout.align.abi.bytes() == 1 {
// ignore ZST fields with alignment of 1 byte
return None;
}
}
if let Ok(ok) = infcx.at(&cause, param_env).eq(ty_a, ty_b) {
if ok.obligations.is_empty() {
create_err(
"the trait `DispatchFromDyn` may only be implemented \
for structs containing the field being coerced, \
ZST fields with 1 byte alignment, and nothing else",
)
.note(&format!(
"extra field `{}` of type `{}` is not allowed",
field.ident, ty_a,
))
.emit();
return None;
}
}
Some(field)
})
.collect::<Vec<_>>();
if coerced_fields.is_empty() {
create_err(
"the trait `DispatchFromDyn` may only be implemented \
for a coercion between structures with a single field \
being coerced, none found",
)
.emit();
} else if coerced_fields.len() > 1 {
create_err(
"implementing the `DispatchFromDyn` trait requires multiple coercions",
)
.note(
"the trait `DispatchFromDyn` may only be implemented \
for a coercion between structures with a single field \
being coerced",
)
.note(&format!(
"currently, {} fields need coercions: {}",
coerced_fields.len(),
coerced_fields
.iter()
.map(|field| {
format!(
"`{}` (`{}` to `{}`)",
field.ident,
field.ty(tcx, substs_a),
field.ty(tcx, substs_b),
)
})
.collect::<Vec<_>>()
.join(", ")
))
.emit();
} else {
let mut fulfill_cx = TraitEngine::new(infcx.tcx);
for field in coerced_fields {
let predicate = predicate_for_trait_def(
tcx,
param_env,
cause.clone(),
dispatch_from_dyn_trait,
0,
field.ty(tcx, substs_a),
&[field.ty(tcx, substs_b).into()],
);
fulfill_cx.register_predicate_obligation(&infcx, predicate);
}
// Check that all transitive obligations are satisfied.
if let Err(errors) = fulfill_cx.select_all_or_error(&infcx) {
infcx.report_fulfillment_errors(&errors, None, false);
}
// Finally, resolve all regions.
let outlives_env = OutlivesEnvironment::new(param_env);
infcx.resolve_regions_and_report_errors(
impl_did.to_def_id(),
&outlives_env,
RegionckMode::default(),
);
}
}
_ => {
create_err(
"the trait `DispatchFromDyn` may only be implemented \
for a coercion between structures",
)
.emit();
}
}
})
}
pub fn coerce_unsized_info(tcx: TyCtxt<'tcx>, impl_did: DefId) -> CoerceUnsizedInfo {
debug!("compute_coerce_unsized_info(impl_did={:?})", impl_did);
// this provider should only get invoked for local def-ids
let impl_hir_id = tcx.hir().as_local_hir_id(impl_did.expect_local());
let span = tcx.hir().span(impl_hir_id);
let coerce_unsized_trait = tcx.require_lang_item(CoerceUnsizedTraitLangItem, Some(span));
let unsize_trait = tcx.lang_items().require(UnsizeTraitLangItem).unwrap_or_else(|err| {
tcx.sess.fatal(&format!("`CoerceUnsized` implementation {}", err));
});
let source = tcx.type_of(impl_did);
let trait_ref = tcx.impl_trait_ref(impl_did).unwrap();
assert_eq!(trait_ref.def_id, coerce_unsized_trait);
let target = trait_ref.substs.type_at(1);
debug!("visit_implementation_of_coerce_unsized: {:?} -> {:?} (bound)", source, target);
let param_env = tcx.param_env(impl_did);
assert!(!source.has_escaping_bound_vars());
let err_info = CoerceUnsizedInfo { custom_kind: None };
debug!("visit_implementation_of_coerce_unsized: {:?} -> {:?} (free)", source, target);
tcx.infer_ctxt().enter(|infcx| {
let cause = ObligationCause::misc(span, impl_hir_id);
let check_mutbl = |mt_a: ty::TypeAndMut<'tcx>,
mt_b: ty::TypeAndMut<'tcx>,
mk_ptr: &dyn Fn(Ty<'tcx>) -> Ty<'tcx>| {
if (mt_a.mutbl, mt_b.mutbl) == (hir::Mutability::Not, hir::Mutability::Mut) {
infcx
.report_mismatched_types(
&cause,
mk_ptr(mt_b.ty),
target,
ty::error::TypeError::Mutability,
)
.emit();
}
(mt_a.ty, mt_b.ty, unsize_trait, None)
};
let (source, target, trait_def_id, kind) = match (&source.kind, &target.kind) {
(&ty::Ref(r_a, ty_a, mutbl_a), &ty::Ref(r_b, ty_b, mutbl_b)) => {
infcx.sub_regions(infer::RelateObjectBound(span), r_b, r_a);
let mt_a = ty::TypeAndMut { ty: ty_a, mutbl: mutbl_a };
let mt_b = ty::TypeAndMut { ty: ty_b, mutbl: mutbl_b };
check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ref(r_b, ty))
}
(&ty::Ref(_, ty_a, mutbl_a), &ty::RawPtr(mt_b)) => {
let mt_a = ty::TypeAndMut { ty: ty_a, mutbl: mutbl_a };
check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ptr(ty))
}
(&ty::RawPtr(mt_a), &ty::RawPtr(mt_b)) => {
check_mutbl(mt_a, mt_b, &|ty| tcx.mk_imm_ptr(ty))
}
(&ty::Adt(def_a, substs_a), &ty::Adt(def_b, substs_b))
if def_a.is_struct() && def_b.is_struct() =>
{
if def_a != def_b {
let source_path = tcx.def_path_str(def_a.did);
let target_path = tcx.def_path_str(def_b.did);
struct_span_err!(
tcx.sess,
span,
E0377,
"the trait `CoerceUnsized` may only be implemented \
for a coercion between structures with the same \
definition; expected `{}`, found `{}`",
source_path,
target_path
)
.emit();
return err_info;
}
// Here we are considering a case of converting
// `S<P0...Pn>` to S<Q0...Qn>`. As an example, let's imagine a struct `Foo<T, U>`,
// which acts like a pointer to `U`, but carries along some extra data of type `T`:
//
// struct Foo<T, U> {
// extra: T,
// ptr: *mut U,
// }
//
// We might have an impl that allows (e.g.) `Foo<T, [i32; 3]>` to be unsized
// to `Foo<T, [i32]>`. That impl would look like:
//
// impl<T, U: Unsize<V>, V> CoerceUnsized<Foo<T, V>> for Foo<T, U> {}
//
// Here `U = [i32; 3]` and `V = [i32]`. At runtime,
// when this coercion occurs, we would be changing the
// field `ptr` from a thin pointer of type `*mut [i32;
// 3]` to a fat pointer of type `*mut [i32]` (with
// extra data `3`). **The purpose of this check is to
// make sure that we know how to do this conversion.**
//
// To check if this impl is legal, we would walk down
// the fields of `Foo` and consider their types with
// both substitutes. We are looking to find that
// exactly one (non-phantom) field has changed its
// type, which we will expect to be the pointer that
// is becoming fat (we could probably generalize this
// to multiple thin pointers of the same type becoming
// fat, but we don't). In this case:
//
// - `extra` has type `T` before and type `T` after
// - `ptr` has type `*mut U` before and type `*mut V` after
//
// Since just one field changed, we would then check
// that `*mut U: CoerceUnsized<*mut V>` is implemented
// (in other words, that we know how to do this
// conversion). This will work out because `U:
// Unsize<V>`, and we have a builtin rule that `*mut
// U` can be coerced to `*mut V` if `U: Unsize<V>`.
let fields = &def_a.non_enum_variant().fields;
let diff_fields = fields
.iter()
.enumerate()
.filter_map(|(i, f)| {
let (a, b) = (f.ty(tcx, substs_a), f.ty(tcx, substs_b));
if tcx.type_of(f.did).is_phantom_data() {
// Ignore PhantomData fields
return None;
}
// Ignore fields that aren't changed; it may
// be that we could get away with subtyping or
// something more accepting, but we use
// equality because we want to be able to
// perform this check without computing
// variance where possible. (This is because
// we may have to evaluate constraint
// expressions in the course of execution.)
// See e.g., #41936.
if let Ok(ok) = infcx.at(&cause, param_env).eq(a, b) {
if ok.obligations.is_empty() {
return None;
}
}
// Collect up all fields that were significantly changed
// i.e., those that contain T in coerce_unsized T -> U
Some((i, a, b))
})
.collect::<Vec<_>>();
if diff_fields.is_empty() {
struct_span_err!(
tcx.sess,
span,
E0374,
"the trait `CoerceUnsized` may only be implemented \
for a coercion between structures with one field \
being coerced, none found"
)
.emit();
return err_info;
} else if diff_fields.len() > 1 {
let item = tcx.hir().expect_item(impl_hir_id);
let span = if let ItemKind::Impl { of_trait: Some(ref t), .. } = item.kind {
t.path.span
} else {
tcx.hir().span(impl_hir_id)
};
struct_span_err!(
tcx.sess,
span,
E0375,
"implementing the trait \
`CoerceUnsized` requires multiple \
coercions"
)
.note(
"`CoerceUnsized` may only be implemented for \
a coercion between structures with one field being coerced",
)
.note(&format!(
"currently, {} fields need coercions: {}",
diff_fields.len(),
diff_fields
.iter()
.map(|&(i, a, b)| {
format!("`{}` (`{}` to `{}`)", fields[i].ident, a, b)
})
.collect::<Vec<_>>()
.join(", ")
))
.span_label(span, "requires multiple coercions")
.emit();
return err_info;
}
let (i, a, b) = diff_fields[0];
let kind = ty::adjustment::CustomCoerceUnsized::Struct(i);
(a, b, coerce_unsized_trait, Some(kind))
}
_ => {
struct_span_err!(
tcx.sess,
span,
E0376,
"the trait `CoerceUnsized` may only be implemented \
for a coercion between structures"
)
.emit();
return err_info;
}
};
let mut fulfill_cx = TraitEngine::new(infcx.tcx);
// Register an obligation for `A: Trait<B>`.
let cause = traits::ObligationCause::misc(span, impl_hir_id);
let predicate = predicate_for_trait_def(
tcx,
param_env,
cause,
trait_def_id,
0,
source,
&[target.into()],
);
fulfill_cx.register_predicate_obligation(&infcx, predicate);
// Check that all transitive obligations are satisfied.
if let Err(errors) = fulfill_cx.select_all_or_error(&infcx) {
infcx.report_fulfillment_errors(&errors, None, false);
}
// Finally, resolve all regions.
let outlives_env = OutlivesEnvironment::new(param_env);
infcx.resolve_regions_and_report_errors(impl_did, &outlives_env, RegionckMode::default());
CoerceUnsizedInfo { custom_kind: kind }
})
}