blob: ebff2dd9b23c1e3e46780d2933bce28348e97524 [file] [log] [blame]
use crate::infer::InferCtxt;
use crate::opaque_types::required_region_bounds;
use crate::traits;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items;
use rustc_middle::ty::subst::{GenericArg, GenericArgKind, SubstsRef};
use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness};
use rustc_span::Span;
use std::rc::Rc;
/// Returns the set of obligations needed to make `arg` well-formed.
/// If `arg` contains unresolved inference variables, this may include
/// further WF obligations. However, if `arg` IS an unresolved
/// inference variable, returns `None`, because we are not able to
/// make any progress at all. This is to prevent "livelock" where we
/// say "$0 is WF if $0 is WF".
pub fn obligations<'a, 'tcx>(
infcx: &InferCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: hir::HirId,
arg: GenericArg<'tcx>,
span: Span,
) -> Option<Vec<traits::PredicateObligation<'tcx>>> {
// Handle the "livelock" case (see comment above) by bailing out if necessary.
let arg = match arg.unpack() {
GenericArgKind::Type(ty) => {
match ty.kind {
ty::Infer(ty::TyVar(_)) => {
let resolved_ty = infcx.shallow_resolve(ty);
if resolved_ty == ty {
// No progress, bail out to prevent "livelock".
return None;
}
resolved_ty
}
_ => ty,
}
.into()
}
GenericArgKind::Const(ct) => {
match ct.val {
ty::ConstKind::Infer(infer) => {
let resolved = infcx.shallow_resolve(infer);
if resolved == infer {
// No progress.
return None;
}
infcx.tcx.mk_const(ty::Const { val: ty::ConstKind::Infer(resolved), ty: ct.ty })
}
_ => ct,
}
.into()
}
// There is nothing we have to do for lifetimes.
GenericArgKind::Lifetime(..) => return Some(Vec::new()),
};
let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
wf.compute(arg);
debug!("wf::obligations({:?}, body_id={:?}) = {:?}", arg, body_id, wf.out);
let result = wf.normalize();
debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", arg, body_id, result);
Some(result)
}
/// Returns the obligations that make this trait reference
/// well-formed. For example, if there is a trait `Set` defined like
/// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
/// if `Bar: Eq`.
pub fn trait_obligations<'a, 'tcx>(
infcx: &InferCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: hir::HirId,
trait_ref: &ty::TraitRef<'tcx>,
span: Span,
item: Option<&'tcx hir::Item<'tcx>>,
) -> Vec<traits::PredicateObligation<'tcx>> {
let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item };
wf.compute_trait_ref(trait_ref, Elaborate::All);
wf.normalize()
}
pub fn predicate_obligations<'a, 'tcx>(
infcx: &InferCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: hir::HirId,
predicate: ty::Predicate<'tcx>,
span: Span,
) -> Vec<traits::PredicateObligation<'tcx>> {
let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
// (*) ok to skip binders, because wf code is prepared for it
match predicate.kind() {
ty::PredicateKind::Trait(t, _) => {
wf.compute_trait_ref(&t.skip_binder().trait_ref, Elaborate::None); // (*)
}
ty::PredicateKind::RegionOutlives(..) => {}
ty::PredicateKind::TypeOutlives(t) => {
wf.compute(t.skip_binder().0.into());
}
ty::PredicateKind::Projection(t) => {
let t = t.skip_binder(); // (*)
wf.compute_projection(t.projection_ty);
wf.compute(t.ty.into());
}
&ty::PredicateKind::WellFormed(arg) => {
wf.compute(arg);
}
ty::PredicateKind::ObjectSafe(_) => {}
ty::PredicateKind::ClosureKind(..) => {}
ty::PredicateKind::Subtype(data) => {
wf.compute(data.skip_binder().a.into()); // (*)
wf.compute(data.skip_binder().b.into()); // (*)
}
&ty::PredicateKind::ConstEvaluatable(def_id, substs) => {
let obligations = wf.nominal_obligations(def_id, substs);
wf.out.extend(obligations);
for arg in substs.iter() {
wf.compute(arg);
}
}
&ty::PredicateKind::ConstEquate(c1, c2) => {
wf.compute(c1.into());
wf.compute(c2.into());
}
}
wf.normalize()
}
struct WfPredicates<'a, 'tcx> {
infcx: &'a InferCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: hir::HirId,
span: Span,
out: Vec<traits::PredicateObligation<'tcx>>,
item: Option<&'tcx hir::Item<'tcx>>,
}
/// Controls whether we "elaborate" supertraits and so forth on the WF
/// predicates. This is a kind of hack to address #43784. The
/// underlying problem in that issue was a trait structure like:
///
/// ```
/// trait Foo: Copy { }
/// trait Bar: Foo { }
/// impl<T: Bar> Foo for T { }
/// impl<T> Bar for T { }
/// ```
///
/// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
/// we decide that this is true because `T: Bar` is in the
/// where-clauses (and we can elaborate that to include `T:
/// Copy`). This wouldn't be a problem, except that when we check the
/// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
/// impl. And so nowhere did we check that `T: Copy` holds!
///
/// To resolve this, we elaborate the WF requirements that must be
/// proven when checking impls. This means that (e.g.) the `impl Bar
/// for T` will be forced to prove not only that `T: Foo` but also `T:
/// Copy` (which it won't be able to do, because there is no `Copy`
/// impl for `T`).
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
enum Elaborate {
All,
None,
}
fn extend_cause_with_original_assoc_item_obligation<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: &ty::TraitRef<'tcx>,
item: Option<&hir::Item<'tcx>>,
cause: &mut traits::ObligationCause<'tcx>,
pred: &ty::Predicate<'_>,
mut trait_assoc_items: impl Iterator<Item = &'tcx ty::AssocItem>,
) {
debug!(
"extended_cause_with_original_assoc_item_obligation {:?} {:?} {:?} {:?}",
trait_ref, item, cause, pred
);
let items = match item {
Some(hir::Item { kind: hir::ItemKind::Impl { items, .. }, .. }) => items,
_ => return,
};
let fix_span =
|impl_item_ref: &hir::ImplItemRef<'_>| match tcx.hir().impl_item(impl_item_ref.id).kind {
hir::ImplItemKind::Const(ty, _) | hir::ImplItemKind::TyAlias(ty) => ty.span,
_ => impl_item_ref.span,
};
match pred.kind() {
ty::PredicateKind::Projection(proj) => {
// The obligation comes not from the current `impl` nor the `trait` being implemented,
// but rather from a "second order" obligation, where an associated type has a
// projection coming from another associated type. See
// `src/test/ui/associated-types/point-at-type-on-obligation-failure.rs` and
// `traits-assoc-type-in-supertrait-bad.rs`.
let kind = &proj.ty().skip_binder().kind;
if let ty::Projection(projection_ty) = kind {
let trait_assoc_item = tcx.associated_item(projection_ty.item_def_id);
if let Some(impl_item_span) =
items.iter().find(|item| item.ident == trait_assoc_item.ident).map(fix_span)
{
cause.make_mut().span = impl_item_span;
}
}
}
ty::PredicateKind::Trait(pred, _) => {
// An associated item obligation born out of the `trait` failed to be met. An example
// can be seen in `ui/associated-types/point-at-type-on-obligation-failure-2.rs`.
debug!("extended_cause_with_original_assoc_item_obligation trait proj {:?}", pred);
if let ty::Projection(ty::ProjectionTy { item_def_id, .. }) =
&pred.skip_binder().self_ty().kind
{
if let Some(impl_item_span) = trait_assoc_items
.find(|i| i.def_id == *item_def_id)
.and_then(|trait_assoc_item| {
items.iter().find(|i| i.ident == trait_assoc_item.ident).map(fix_span)
})
{
cause.make_mut().span = impl_item_span;
}
}
}
_ => {}
}
}
impl<'a, 'tcx> WfPredicates<'a, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn cause(&self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
traits::ObligationCause::new(self.span, self.body_id, code)
}
fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
let cause = self.cause(traits::MiscObligation);
let infcx = &mut self.infcx;
let param_env = self.param_env;
let mut obligations = Vec::with_capacity(self.out.len());
for pred in &self.out {
assert!(!pred.has_escaping_bound_vars());
let mut selcx = traits::SelectionContext::new(infcx);
let i = obligations.len();
let value =
traits::normalize_to(&mut selcx, param_env, cause.clone(), pred, &mut obligations);
obligations.insert(i, value);
}
obligations
}
/// Pushes the obligations required for `trait_ref` to be WF into `self.out`.
fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>, elaborate: Elaborate) {
let tcx = self.infcx.tcx;
let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
debug!("compute_trait_ref obligations {:?}", obligations);
let cause = self.cause(traits::MiscObligation);
let param_env = self.param_env;
let item = self.item;
let extend = |obligation: traits::PredicateObligation<'tcx>| {
let mut cause = cause.clone();
if let Some(parent_trait_ref) = obligation.predicate.to_opt_poly_trait_ref() {
let derived_cause = traits::DerivedObligationCause {
parent_trait_ref,
parent_code: Rc::new(obligation.cause.code.clone()),
};
cause.make_mut().code =
traits::ObligationCauseCode::DerivedObligation(derived_cause);
}
extend_cause_with_original_assoc_item_obligation(
tcx,
trait_ref,
item,
&mut cause,
&obligation.predicate,
tcx.associated_items(trait_ref.def_id).in_definition_order(),
);
traits::Obligation::new(cause, param_env, obligation.predicate)
};
if let Elaborate::All = elaborate {
let implied_obligations = traits::util::elaborate_obligations(tcx, obligations);
let implied_obligations = implied_obligations.map(extend);
self.out.extend(implied_obligations);
} else {
self.out.extend(obligations);
}
let tcx = self.tcx();
self.out.extend(
trait_ref
.substs
.iter()
.filter(|arg| {
matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
})
.filter(|arg| !arg.has_escaping_bound_vars())
.map(|arg| {
traits::Obligation::new(
cause.clone(),
param_env,
ty::PredicateKind::WellFormed(arg).to_predicate(tcx),
)
}),
);
}
/// Pushes the obligations required for `trait_ref::Item` to be WF
/// into `self.out`.
fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
// A projection is well-formed if (a) the trait ref itself is
// WF and (b) the trait-ref holds. (It may also be
// normalizable and be WF that way.)
let trait_ref = data.trait_ref(self.infcx.tcx);
self.compute_trait_ref(&trait_ref, Elaborate::None);
if !data.has_escaping_bound_vars() {
let predicate = trait_ref.without_const().to_predicate(self.infcx.tcx);
let cause = self.cause(traits::ProjectionWf(data));
self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
}
}
fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
if !subty.has_escaping_bound_vars() {
let cause = self.cause(cause);
let trait_ref = ty::TraitRef {
def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem, None),
substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
};
self.out.push(traits::Obligation::new(
cause,
self.param_env,
trait_ref.without_const().to_predicate(self.infcx.tcx),
));
}
}
/// Pushes all the predicates needed to validate that `ty` is WF into `out`.
fn compute(&mut self, arg: GenericArg<'tcx>) {
let mut walker = arg.walk();
let param_env = self.param_env;
while let Some(arg) = walker.next() {
let ty = match arg.unpack() {
GenericArgKind::Type(ty) => ty,
// No WF constraints for lifetimes being present, any outlives
// obligations are handled by the parent (e.g. `ty::Ref`).
GenericArgKind::Lifetime(_) => continue,
GenericArgKind::Const(constant) => {
match constant.val {
ty::ConstKind::Unevaluated(def_id, substs, promoted) => {
assert!(promoted.is_none());
let obligations = self.nominal_obligations(def_id, substs);
self.out.extend(obligations);
let predicate = ty::PredicateKind::ConstEvaluatable(def_id, substs)
.to_predicate(self.tcx());
let cause = self.cause(traits::MiscObligation);
self.out.push(traits::Obligation::new(
cause,
self.param_env,
predicate,
));
}
ty::ConstKind::Infer(infer) => {
let resolved = self.infcx.shallow_resolve(infer);
// the `InferConst` changed, meaning that we made progress.
if resolved != infer {
let cause = self.cause(traits::MiscObligation);
let resolved_constant = self.infcx.tcx.mk_const(ty::Const {
val: ty::ConstKind::Infer(resolved),
..*constant
});
self.out.push(traits::Obligation::new(
cause,
self.param_env,
ty::PredicateKind::WellFormed(resolved_constant.into())
.to_predicate(self.tcx()),
));
}
}
ty::ConstKind::Error(_)
| ty::ConstKind::Param(_)
| ty::ConstKind::Bound(..)
| ty::ConstKind::Placeholder(..) => {
// These variants are trivially WF, so nothing to do here.
}
ty::ConstKind::Value(..) => {
// FIXME: Enforce that values are structurally-matchable.
}
}
continue;
}
};
match ty.kind {
ty::Bool
| ty::Char
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..)
| ty::Error(_)
| ty::Str
| ty::GeneratorWitness(..)
| ty::Never
| ty::Param(_)
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Foreign(..) => {
// WfScalar, WfParameter, etc
}
// Can only infer to `ty::Int(_) | ty::Uint(_)`.
ty::Infer(ty::IntVar(_)) => {}
// Can only infer to `ty::Float(_)`.
ty::Infer(ty::FloatVar(_)) => {}
ty::Slice(subty) => {
self.require_sized(subty, traits::SliceOrArrayElem);
}
ty::Array(subty, _) => {
self.require_sized(subty, traits::SliceOrArrayElem);
// Note that we handle the len is implicitly checked while walking `arg`.
}
ty::Tuple(ref tys) => {
if let Some((_last, rest)) = tys.split_last() {
for elem in rest {
self.require_sized(elem.expect_ty(), traits::TupleElem);
}
}
}
ty::RawPtr(_) => {
// Simple cases that are WF if their type args are WF.
}
ty::Projection(data) => {
walker.skip_current_subtree(); // Subtree handled by compute_projection.
self.compute_projection(data);
}
ty::Adt(def, substs) => {
// WfNominalType
let obligations = self.nominal_obligations(def.did, substs);
self.out.extend(obligations);
}
ty::FnDef(did, substs) => {
let obligations = self.nominal_obligations(did, substs);
self.out.extend(obligations);
}
ty::Ref(r, rty, _) => {
// WfReference
if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
self.out.push(traits::Obligation::new(
cause,
param_env,
ty::PredicateKind::TypeOutlives(ty::Binder::dummy(
ty::OutlivesPredicate(rty, r),
))
.to_predicate(self.tcx()),
));
}
}
ty::Generator(..) => {
// Walk ALL the types in the generator: this will
// include the upvar types as well as the yield
// type. Note that this is mildly distinct from
// the closure case, where we have to be careful
// about the signature of the closure. We don't
// have the problem of implied bounds here since
// generators don't take arguments.
}
ty::Closure(_, substs) => {
// Only check the upvar types for WF, not the rest
// of the types within. This is needed because we
// capture the signature and it may not be WF
// without the implied bounds. Consider a closure
// like `|x: &'a T|` -- it may be that `T: 'a` is
// not known to hold in the creator's context (and
// indeed the closure may not be invoked by its
// creator, but rather turned to someone who *can*
// verify that).
//
// The special treatment of closures here really
// ought not to be necessary either; the problem
// is related to #25860 -- there is no way for us
// to express a fn type complete with the implied
// bounds that it is assuming. I think in reality
// the WF rules around fn are a bit messed up, and
// that is the rot problem: `fn(&'a T)` should
// probably always be WF, because it should be
// shorthand for something like `where(T: 'a) {
// fn(&'a T) }`, as discussed in #25860.
//
// Note that we are also skipping the generic
// types. This is consistent with the `outlives`
// code, but anyway doesn't matter: within the fn
// body where they are created, the generics will
// always be WF, and outside of that fn body we
// are not directly inspecting closure types
// anyway, except via auto trait matching (which
// only inspects the upvar types).
walker.skip_current_subtree(); // subtree handled below
for upvar_ty in substs.as_closure().upvar_tys() {
// FIXME(eddyb) add the type to `walker` instead of recursing.
self.compute(upvar_ty.into());
}
}
ty::FnPtr(_) => {
// let the loop iterate into the argument/return
// types appearing in the fn signature
}
ty::Opaque(did, substs) => {
// all of the requirements on type parameters
// should've been checked by the instantiation
// of whatever returned this exact `impl Trait`.
// for named opaque `impl Trait` types we still need to check them
if ty::is_impl_trait_defn(self.infcx.tcx, did).is_none() {
let obligations = self.nominal_obligations(did, substs);
self.out.extend(obligations);
}
}
ty::Dynamic(data, r) => {
// WfObject
//
// Here, we defer WF checking due to higher-ranked
// regions. This is perhaps not ideal.
self.from_object_ty(ty, data, r);
// FIXME(#27579) RFC also considers adding trait
// obligations that don't refer to Self and
// checking those
let defer_to_coercion = self.tcx().features().object_safe_for_dispatch;
if !defer_to_coercion {
let cause = self.cause(traits::MiscObligation);
let component_traits = data.auto_traits().chain(data.principal_def_id());
let tcx = self.tcx();
self.out.extend(component_traits.map(|did| {
traits::Obligation::new(
cause.clone(),
param_env,
ty::PredicateKind::ObjectSafe(did).to_predicate(tcx),
)
}));
}
}
// Inference variables are the complicated case, since we don't
// know what type they are. We do two things:
//
// 1. Check if they have been resolved, and if so proceed with
// THAT type.
// 2. If not, we've at least simplified things (e.g., we went
// from `Vec<$0>: WF` to `$0: WF`), so we can
// register a pending obligation and keep
// moving. (Goal is that an "inductive hypothesis"
// is satisfied to ensure termination.)
// See also the comment on `fn obligations`, describing "livelock"
// prevention, which happens before this can be reached.
ty::Infer(_) => {
let ty = self.infcx.shallow_resolve(ty);
if let ty::Infer(ty::TyVar(_)) = ty.kind {
// Not yet resolved, but we've made progress.
let cause = self.cause(traits::MiscObligation);
self.out.push(traits::Obligation::new(
cause,
param_env,
ty::PredicateKind::WellFormed(ty.into()).to_predicate(self.tcx()),
));
} else {
// Yes, resolved, proceed with the result.
// FIXME(eddyb) add the type to `walker` instead of recursing.
self.compute(ty.into());
}
}
}
}
}
fn nominal_obligations(
&mut self,
def_id: DefId,
substs: SubstsRef<'tcx>,
) -> Vec<traits::PredicateObligation<'tcx>> {
let predicates = self.infcx.tcx.predicates_of(def_id).instantiate(self.infcx.tcx, substs);
predicates
.predicates
.into_iter()
.zip(predicates.spans.into_iter())
.map(|(pred, span)| {
let cause = self.cause(traits::BindingObligation(def_id, span));
traits::Obligation::new(cause, self.param_env, pred)
})
.filter(|pred| !pred.has_escaping_bound_vars())
.collect()
}
fn from_object_ty(
&mut self,
ty: Ty<'tcx>,
data: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
region: ty::Region<'tcx>,
) {
// Imagine a type like this:
//
// trait Foo { }
// trait Bar<'c> : 'c { }
//
// &'b (Foo+'c+Bar<'d>)
// ^
//
// In this case, the following relationships must hold:
//
// 'b <= 'c
// 'd <= 'c
//
// The first conditions is due to the normal region pointer
// rules, which say that a reference cannot outlive its
// referent.
//
// The final condition may be a bit surprising. In particular,
// you may expect that it would have been `'c <= 'd`, since
// usually lifetimes of outer things are conservative
// approximations for inner things. However, it works somewhat
// differently with trait objects: here the idea is that if the
// user specifies a region bound (`'c`, in this case) it is the
// "master bound" that *implies* that bounds from other traits are
// all met. (Remember that *all bounds* in a type like
// `Foo+Bar+Zed` must be met, not just one, hence if we write
// `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
// 'y.)
//
// Note: in fact we only permit builtin traits, not `Bar<'d>`, I
// am looking forward to the future here.
if !data.has_escaping_bound_vars() && !region.has_escaping_bound_vars() {
let implicit_bounds = object_region_bounds(self.infcx.tcx, data);
let explicit_bound = region;
self.out.reserve(implicit_bounds.len());
for implicit_bound in implicit_bounds {
let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
let outlives =
ty::Binder::dummy(ty::OutlivesPredicate(explicit_bound, implicit_bound));
self.out.push(traits::Obligation::new(
cause,
self.param_env,
outlives.to_predicate(self.infcx.tcx),
));
}
}
}
}
/// Given an object type like `SomeTrait + Send`, computes the lifetime
/// bounds that must hold on the elided self type. These are derived
/// from the declarations of `SomeTrait`, `Send`, and friends -- if
/// they declare `trait SomeTrait : 'static`, for example, then
/// `'static` would appear in the list. The hard work is done by
/// `infer::required_region_bounds`, see that for more information.
pub fn object_region_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
) -> Vec<ty::Region<'tcx>> {
// Since we don't actually *know* the self type for an object,
// this "open(err)" serves as a kind of dummy standin -- basically
// a placeholder type.
let open_ty = tcx.mk_ty_infer(ty::FreshTy(0));
let predicates = existential_predicates.iter().filter_map(|predicate| {
if let ty::ExistentialPredicate::Projection(_) = predicate.skip_binder() {
None
} else {
Some(predicate.with_self_ty(tcx, open_ty))
}
});
required_region_bounds(tcx, open_ty, predicates)
}