blob: 800aef7284f9e3220fc7b69164f59acea2ed82ec [file] [log] [blame]
use crate::infer::{InferCtxt, TyOrConstInferVar};
use rustc_data_structures::obligation_forest::ProcessResult;
use rustc_data_structures::obligation_forest::{DoCompleted, Error, ForestObligation};
use rustc_data_structures::obligation_forest::{ObligationForest, ObligationProcessor};
use rustc_errors::ErrorReported;
use rustc_infer::traits::{TraitEngine, TraitEngineExt as _};
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::ty::error::ExpectedFound;
use rustc_middle::ty::{self, Const, ToPolyTraitRef, Ty, TypeFoldable};
use std::marker::PhantomData;
use super::project;
use super::select::SelectionContext;
use super::wf;
use super::CodeAmbiguity;
use super::CodeProjectionError;
use super::CodeSelectionError;
use super::{ConstEvalFailure, Unimplemented};
use super::{FulfillmentError, FulfillmentErrorCode};
use super::{ObligationCause, PredicateObligation};
use crate::traits::error_reporting::InferCtxtExt as _;
use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
impl<'tcx> ForestObligation for PendingPredicateObligation<'tcx> {
/// Note that we include both the `ParamEnv` and the `Predicate`,
/// as the `ParamEnv` can influence whether fulfillment succeeds
/// or fails.
type CacheKey = ty::ParamEnvAnd<'tcx, ty::Predicate<'tcx>>;
fn as_cache_key(&self) -> Self::CacheKey {
self.obligation.param_env.and(self.obligation.predicate)
}
}
/// The fulfillment context is used to drive trait resolution. It
/// consists of a list of obligations that must be (eventually)
/// satisfied. The job is to track which are satisfied, which yielded
/// errors, and which are still pending. At any point, users can call
/// `select_where_possible`, and the fulfillment context will try to do
/// selection, retaining only those obligations that remain
/// ambiguous. This may be helpful in pushing type inference
/// along. Once all type inference constraints have been generated, the
/// method `select_all_or_error` can be used to report any remaining
/// ambiguous cases as errors.
pub struct FulfillmentContext<'tcx> {
// A list of all obligations that have been registered with this
// fulfillment context.
predicates: ObligationForest<PendingPredicateObligation<'tcx>>,
// Should this fulfillment context register type-lives-for-region
// obligations on its parent infcx? In some cases, region
// obligations are either already known to hold (normalization) or
// hopefully verifed elsewhere (type-impls-bound), and therefore
// should not be checked.
//
// Note that if we are normalizing a type that we already
// know is well-formed, there should be no harm setting this
// to true - all the region variables should be determinable
// using the RFC 447 rules, which don't depend on
// type-lives-for-region constraints, and because the type
// is well-formed, the constraints should hold.
register_region_obligations: bool,
// Is it OK to register obligations into this infcx inside
// an infcx snapshot?
//
// The "primary fulfillment" in many cases in typeck lives
// outside of any snapshot, so any use of it inside a snapshot
// will lead to trouble and therefore is checked against, but
// other fulfillment contexts sometimes do live inside of
// a snapshot (they don't *straddle* a snapshot, so there
// is no trouble there).
usable_in_snapshot: bool,
}
#[derive(Clone, Debug)]
pub struct PendingPredicateObligation<'tcx> {
pub obligation: PredicateObligation<'tcx>,
// This is far more often read than modified, meaning that we
// should mostly optimize for reading speed, while modifying is not as relevant.
//
// For whatever reason using a boxed slice is slower than using a `Vec` here.
pub stalled_on: Vec<TyOrConstInferVar<'tcx>>,
}
// `PendingPredicateObligation` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_arch = "x86_64")]
static_assert_size!(PendingPredicateObligation<'_>, 64);
impl<'a, 'tcx> FulfillmentContext<'tcx> {
/// Creates a new fulfillment context.
pub fn new() -> FulfillmentContext<'tcx> {
FulfillmentContext {
predicates: ObligationForest::new(),
register_region_obligations: true,
usable_in_snapshot: false,
}
}
pub fn new_in_snapshot() -> FulfillmentContext<'tcx> {
FulfillmentContext {
predicates: ObligationForest::new(),
register_region_obligations: true,
usable_in_snapshot: true,
}
}
pub fn new_ignoring_regions() -> FulfillmentContext<'tcx> {
FulfillmentContext {
predicates: ObligationForest::new(),
register_region_obligations: false,
usable_in_snapshot: false,
}
}
/// Attempts to select obligations using `selcx`.
fn select(
&mut self,
selcx: &mut SelectionContext<'a, 'tcx>,
) -> Result<(), Vec<FulfillmentError<'tcx>>> {
debug!("select(obligation-forest-size={})", self.predicates.len());
let mut errors = Vec::new();
loop {
debug!("select: starting another iteration");
// Process pending obligations.
let outcome = self.predicates.process_obligations(
&mut FulfillProcessor {
selcx,
register_region_obligations: self.register_region_obligations,
},
DoCompleted::No,
);
debug!("select: outcome={:#?}", outcome);
// FIXME: if we kept the original cache key, we could mark projection
// obligations as complete for the projection cache here.
errors.extend(outcome.errors.into_iter().map(to_fulfillment_error));
// If nothing new was added, no need to keep looping.
if outcome.stalled {
break;
}
}
debug!(
"select({} predicates remaining, {} errors) done",
self.predicates.len(),
errors.len()
);
if errors.is_empty() { Ok(()) } else { Err(errors) }
}
}
impl<'tcx> TraitEngine<'tcx> for FulfillmentContext<'tcx> {
/// "Normalize" a projection type `<SomeType as SomeTrait>::X` by
/// creating a fresh type variable `$0` as well as a projection
/// predicate `<SomeType as SomeTrait>::X == $0`. When the
/// inference engine runs, it will attempt to find an impl of
/// `SomeTrait` or a where-clause that lets us unify `$0` with
/// something concrete. If this fails, we'll unify `$0` with
/// `projection_ty` again.
fn normalize_projection_type(
&mut self,
infcx: &InferCtxt<'_, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
) -> Ty<'tcx> {
debug!("normalize_projection_type(projection_ty={:?})", projection_ty);
debug_assert!(!projection_ty.has_escaping_bound_vars());
// FIXME(#20304) -- cache
let mut selcx = SelectionContext::new(infcx);
let mut obligations = vec![];
let normalized_ty = project::normalize_projection_type(
&mut selcx,
param_env,
projection_ty,
cause,
0,
&mut obligations,
);
self.register_predicate_obligations(infcx, obligations);
debug!("normalize_projection_type: result={:?}", normalized_ty);
normalized_ty
}
fn register_predicate_obligation(
&mut self,
infcx: &InferCtxt<'_, 'tcx>,
obligation: PredicateObligation<'tcx>,
) {
// this helps to reduce duplicate errors, as well as making
// debug output much nicer to read and so on.
let obligation = infcx.resolve_vars_if_possible(&obligation);
debug!("register_predicate_obligation(obligation={:?})", obligation);
assert!(!infcx.is_in_snapshot() || self.usable_in_snapshot);
self.predicates
.register_obligation(PendingPredicateObligation { obligation, stalled_on: vec![] });
}
fn select_all_or_error(
&mut self,
infcx: &InferCtxt<'_, 'tcx>,
) -> Result<(), Vec<FulfillmentError<'tcx>>> {
self.select_where_possible(infcx)?;
let errors: Vec<_> = self
.predicates
.to_errors(CodeAmbiguity)
.into_iter()
.map(to_fulfillment_error)
.collect();
if errors.is_empty() { Ok(()) } else { Err(errors) }
}
fn select_where_possible(
&mut self,
infcx: &InferCtxt<'_, 'tcx>,
) -> Result<(), Vec<FulfillmentError<'tcx>>> {
let mut selcx = SelectionContext::new(infcx);
self.select(&mut selcx)
}
fn pending_obligations(&self) -> Vec<PredicateObligation<'tcx>> {
self.predicates.map_pending_obligations(|o| o.obligation.clone())
}
}
struct FulfillProcessor<'a, 'b, 'tcx> {
selcx: &'a mut SelectionContext<'b, 'tcx>,
register_region_obligations: bool,
}
fn mk_pending(os: Vec<PredicateObligation<'tcx>>) -> Vec<PendingPredicateObligation<'tcx>> {
os.into_iter()
.map(|o| PendingPredicateObligation { obligation: o, stalled_on: vec![] })
.collect()
}
impl<'a, 'b, 'tcx> ObligationProcessor for FulfillProcessor<'a, 'b, 'tcx> {
type Obligation = PendingPredicateObligation<'tcx>;
type Error = FulfillmentErrorCode<'tcx>;
/// Processes a predicate obligation and returns either:
/// - `Changed(v)` if the predicate is true, presuming that `v` are also true
/// - `Unchanged` if we don't have enough info to be sure
/// - `Error(e)` if the predicate does not hold
///
/// This is always inlined, despite its size, because it has a single
/// callsite and it is called *very* frequently.
#[inline(always)]
fn process_obligation(
&mut self,
pending_obligation: &mut Self::Obligation,
) -> ProcessResult<Self::Obligation, Self::Error> {
// If we were stalled on some unresolved variables, first check whether
// any of them have been resolved; if not, don't bother doing more work
// yet.
let change = match pending_obligation.stalled_on.len() {
// Match arms are in order of frequency, which matters because this
// code is so hot. 1 and 0 dominate; 2+ is fairly rare.
1 => {
let infer_var = pending_obligation.stalled_on[0];
self.selcx.infcx().ty_or_const_infer_var_changed(infer_var)
}
0 => {
// In this case we haven't changed, but wish to make a change.
true
}
_ => {
// This `for` loop was once a call to `all()`, but this lower-level
// form was a perf win. See #64545 for details.
(|| {
for &infer_var in &pending_obligation.stalled_on {
if self.selcx.infcx().ty_or_const_infer_var_changed(infer_var) {
return true;
}
}
false
})()
}
};
if !change {
debug!(
"process_predicate: pending obligation {:?} still stalled on {:?}",
self.selcx.infcx().resolve_vars_if_possible(&pending_obligation.obligation),
pending_obligation.stalled_on
);
return ProcessResult::Unchanged;
}
// This part of the code is much colder.
pending_obligation.stalled_on.truncate(0);
let obligation = &mut pending_obligation.obligation;
if obligation.predicate.has_infer_types_or_consts() {
obligation.predicate =
self.selcx.infcx().resolve_vars_if_possible(&obligation.predicate);
}
debug!("process_obligation: obligation = {:?} cause = {:?}", obligation, obligation.cause);
let infcx = self.selcx.infcx();
match obligation.predicate.kind() {
ty::PredicateKind::Trait(ref data, _) => {
let trait_obligation = obligation.with(*data);
if obligation.predicate.is_global() {
// no type variables present, can use evaluation for better caching.
// FIXME: consider caching errors too.
if infcx.predicate_must_hold_considering_regions(&obligation) {
debug!(
"selecting trait `{:?}` at depth {} evaluated to holds",
data, obligation.recursion_depth
);
return ProcessResult::Changed(vec![]);
}
}
match self.selcx.select(&trait_obligation) {
Ok(Some(impl_source)) => {
debug!(
"selecting trait `{:?}` at depth {} yielded Ok(Some)",
data, obligation.recursion_depth
);
ProcessResult::Changed(mk_pending(impl_source.nested_obligations()))
}
Ok(None) => {
debug!(
"selecting trait `{:?}` at depth {} yielded Ok(None)",
data, obligation.recursion_depth
);
// This is a bit subtle: for the most part, the
// only reason we can fail to make progress on
// trait selection is because we don't have enough
// information about the types in the trait.
pending_obligation.stalled_on =
trait_ref_infer_vars(self.selcx, data.to_poly_trait_ref());
debug!(
"process_predicate: pending obligation {:?} now stalled on {:?}",
infcx.resolve_vars_if_possible(obligation),
pending_obligation.stalled_on
);
ProcessResult::Unchanged
}
Err(selection_err) => {
info!(
"selecting trait `{:?}` at depth {} yielded Err",
data, obligation.recursion_depth
);
ProcessResult::Error(CodeSelectionError(selection_err))
}
}
}
&ty::PredicateKind::RegionOutlives(binder) => {
match infcx.region_outlives_predicate(&obligation.cause, binder) {
Ok(()) => ProcessResult::Changed(vec![]),
Err(_) => ProcessResult::Error(CodeSelectionError(Unimplemented)),
}
}
ty::PredicateKind::TypeOutlives(ref binder) => {
// Check if there are higher-ranked vars.
match binder.no_bound_vars() {
// If there are, inspect the underlying type further.
None => {
// Convert from `Binder<OutlivesPredicate<Ty, Region>>` to `Binder<Ty>`.
let binder = binder.map_bound_ref(|pred| pred.0);
// Check if the type has any bound vars.
match binder.no_bound_vars() {
// If so, this obligation is an error (for now). Eventually we should be
// able to support additional cases here, like `for<'a> &'a str: 'a`.
// NOTE: this is duplicate-implemented between here and fulfillment.
None => ProcessResult::Error(CodeSelectionError(Unimplemented)),
// Otherwise, we have something of the form
// `for<'a> T: 'a where 'a not in T`, which we can treat as
// `T: 'static`.
Some(t_a) => {
let r_static = self.selcx.tcx().lifetimes.re_static;
if self.register_region_obligations {
self.selcx.infcx().register_region_obligation_with_cause(
t_a,
r_static,
&obligation.cause,
);
}
ProcessResult::Changed(vec![])
}
}
}
// If there aren't, register the obligation.
Some(ty::OutlivesPredicate(t_a, r_b)) => {
if self.register_region_obligations {
self.selcx.infcx().register_region_obligation_with_cause(
t_a,
r_b,
&obligation.cause,
);
}
ProcessResult::Changed(vec![])
}
}
}
ty::PredicateKind::Projection(ref data) => {
let project_obligation = obligation.with(*data);
match project::poly_project_and_unify_type(self.selcx, &project_obligation) {
Ok(None) => {
let tcx = self.selcx.tcx();
pending_obligation.stalled_on =
trait_ref_infer_vars(self.selcx, data.to_poly_trait_ref(tcx));
ProcessResult::Unchanged
}
Ok(Some(os)) => ProcessResult::Changed(mk_pending(os)),
Err(e) => ProcessResult::Error(CodeProjectionError(e)),
}
}
&ty::PredicateKind::ObjectSafe(trait_def_id) => {
if !self.selcx.tcx().is_object_safe(trait_def_id) {
ProcessResult::Error(CodeSelectionError(Unimplemented))
} else {
ProcessResult::Changed(vec![])
}
}
&ty::PredicateKind::ClosureKind(_, closure_substs, kind) => {
match self.selcx.infcx().closure_kind(closure_substs) {
Some(closure_kind) => {
if closure_kind.extends(kind) {
ProcessResult::Changed(vec![])
} else {
ProcessResult::Error(CodeSelectionError(Unimplemented))
}
}
None => ProcessResult::Unchanged,
}
}
&ty::PredicateKind::WellFormed(arg) => {
match wf::obligations(
self.selcx.infcx(),
obligation.param_env,
obligation.cause.body_id,
arg,
obligation.cause.span,
) {
None => {
pending_obligation.stalled_on =
vec![TyOrConstInferVar::maybe_from_generic_arg(arg).unwrap()];
ProcessResult::Unchanged
}
Some(os) => ProcessResult::Changed(mk_pending(os)),
}
}
&ty::PredicateKind::Subtype(subtype) => {
match self.selcx.infcx().subtype_predicate(
&obligation.cause,
obligation.param_env,
subtype,
) {
None => {
// None means that both are unresolved.
pending_obligation.stalled_on = vec![
TyOrConstInferVar::maybe_from_ty(subtype.skip_binder().a).unwrap(),
TyOrConstInferVar::maybe_from_ty(subtype.skip_binder().b).unwrap(),
];
ProcessResult::Unchanged
}
Some(Ok(ok)) => ProcessResult::Changed(mk_pending(ok.obligations)),
Some(Err(err)) => {
let expected_found = ExpectedFound::new(
subtype.skip_binder().a_is_expected,
subtype.skip_binder().a,
subtype.skip_binder().b,
);
ProcessResult::Error(FulfillmentErrorCode::CodeSubtypeError(
expected_found,
err,
))
}
}
}
&ty::PredicateKind::ConstEvaluatable(def_id, substs) => {
match self.selcx.infcx().const_eval_resolve(
obligation.param_env,
def_id,
substs,
None,
Some(obligation.cause.span),
) {
Ok(_) => ProcessResult::Changed(vec![]),
Err(err) => ProcessResult::Error(CodeSelectionError(ConstEvalFailure(err))),
}
}
ty::PredicateKind::ConstEquate(c1, c2) => {
debug!("equating consts: c1={:?} c2={:?}", c1, c2);
let stalled_on = &mut pending_obligation.stalled_on;
let mut evaluate = |c: &'tcx Const<'tcx>| {
if let ty::ConstKind::Unevaluated(def_id, substs, promoted) = c.val {
match self.selcx.infcx().const_eval_resolve(
obligation.param_env,
def_id,
substs,
promoted,
Some(obligation.cause.span),
) {
Ok(val) => Ok(Const::from_value(self.selcx.tcx(), val, c.ty)),
Err(ErrorHandled::TooGeneric) => {
stalled_on.append(
&mut substs
.types()
.filter_map(|ty| TyOrConstInferVar::maybe_from_ty(ty))
.collect(),
);
Err(ErrorHandled::TooGeneric)
}
Err(err) => Err(err),
}
} else {
Ok(c)
}
};
match (evaluate(c1), evaluate(c2)) {
(Ok(c1), Ok(c2)) => {
match self
.selcx
.infcx()
.at(&obligation.cause, obligation.param_env)
.eq(c1, c2)
{
Ok(_) => ProcessResult::Changed(vec![]),
Err(err) => {
ProcessResult::Error(FulfillmentErrorCode::CodeConstEquateError(
ExpectedFound::new(true, c1, c2),
err,
))
}
}
}
(Err(ErrorHandled::Reported(ErrorReported)), _)
| (_, Err(ErrorHandled::Reported(ErrorReported))) => ProcessResult::Error(
CodeSelectionError(ConstEvalFailure(ErrorHandled::Reported(ErrorReported))),
),
(Err(ErrorHandled::Linted), _) | (_, Err(ErrorHandled::Linted)) => span_bug!(
obligation.cause.span(self.selcx.tcx()),
"ConstEquate: const_eval_resolve returned an unexpected error"
),
(Err(ErrorHandled::TooGeneric), _) | (_, Err(ErrorHandled::TooGeneric)) => {
ProcessResult::Unchanged
}
}
}
}
}
fn process_backedge<'c, I>(
&mut self,
cycle: I,
_marker: PhantomData<&'c PendingPredicateObligation<'tcx>>,
) where
I: Clone + Iterator<Item = &'c PendingPredicateObligation<'tcx>>,
{
if self.selcx.coinductive_match(cycle.clone().map(|s| s.obligation.predicate)) {
debug!("process_child_obligations: coinductive match");
} else {
let cycle: Vec<_> = cycle.map(|c| c.obligation.clone()).collect();
self.selcx.infcx().report_overflow_error_cycle(&cycle);
}
}
}
/// Returns the set of inference variables contained in a trait ref.
fn trait_ref_infer_vars<'a, 'tcx>(
selcx: &mut SelectionContext<'a, 'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
) -> Vec<TyOrConstInferVar<'tcx>> {
selcx
.infcx()
.resolve_vars_if_possible(&trait_ref)
.skip_binder() // ok b/c this check doesn't care about regions
.substs
.iter()
// FIXME(eddyb) try using `skip_current_subtree` to skip everything that
// doesn't contain inference variables, not just the outermost level.
.filter(|arg| arg.has_infer_types_or_consts())
.flat_map(|arg| arg.walk())
.filter_map(TyOrConstInferVar::maybe_from_generic_arg)
.collect()
}
fn to_fulfillment_error<'tcx>(
error: Error<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>>,
) -> FulfillmentError<'tcx> {
let obligation = error.backtrace.into_iter().next().unwrap().obligation;
FulfillmentError::new(obligation, error.error)
}