blob: dc895ad34a93205017fdd623c22e083b606e9dfa [file] [log] [blame]
use crate::traits::query::outlives_bounds::InferCtxtExt as _;
use crate::traits::{self, TraitEngine, TraitEngineExt};
use rustc_hir as hir;
use rustc_hir::lang_items;
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::traits::ObligationCause;
use rustc_middle::arena::ArenaAllocatable;
use rustc_middle::infer::canonical::{Canonical, CanonicalizedQueryResponse, QueryResponse};
use rustc_middle::traits::query::Fallible;
use rustc_middle::ty::{self, Ty, TypeFoldable};
use rustc_span::{Span, DUMMY_SP};
use std::fmt::Debug;
pub use rustc_infer::infer::*;
pub trait InferCtxtExt<'tcx> {
fn type_is_copy_modulo_regions(
&self,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
span: Span,
) -> bool;
fn partially_normalize_associated_types_in<T>(
&self,
span: Span,
body_id: hir::HirId,
param_env: ty::ParamEnv<'tcx>,
value: &T,
) -> InferOk<'tcx, T>
where
T: TypeFoldable<'tcx>;
}
impl<'cx, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'cx, 'tcx> {
fn type_is_copy_modulo_regions(
&self,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
span: Span,
) -> bool {
let ty = self.resolve_vars_if_possible(&ty);
if !(param_env, ty).needs_infer() {
return ty.is_copy_modulo_regions(self.tcx.at(span), param_env);
}
let copy_def_id = self.tcx.require_lang_item(lang_items::CopyTraitLangItem, None);
// This can get called from typeck (by euv), and `moves_by_default`
// rightly refuses to work with inference variables, but
// moves_by_default has a cache, which we want to use in other
// cases.
traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, copy_def_id, span)
}
/// Normalizes associated types in `value`, potentially returning
/// new obligations that must further be processed.
fn partially_normalize_associated_types_in<T>(
&self,
span: Span,
body_id: hir::HirId,
param_env: ty::ParamEnv<'tcx>,
value: &T,
) -> InferOk<'tcx, T>
where
T: TypeFoldable<'tcx>,
{
debug!("partially_normalize_associated_types_in(value={:?})", value);
let mut selcx = traits::SelectionContext::new(self);
let cause = ObligationCause::misc(span, body_id);
let traits::Normalized { value, obligations } =
traits::normalize(&mut selcx, param_env, cause, value);
debug!(
"partially_normalize_associated_types_in: result={:?} predicates={:?}",
value, obligations
);
InferOk { value, obligations }
}
}
pub trait InferCtxtBuilderExt<'tcx> {
fn enter_canonical_trait_query<K, R>(
&mut self,
canonical_key: &Canonical<'tcx, K>,
operation: impl FnOnce(&InferCtxt<'_, 'tcx>, &mut dyn TraitEngine<'tcx>, K) -> Fallible<R>,
) -> Fallible<CanonicalizedQueryResponse<'tcx, R>>
where
K: TypeFoldable<'tcx>,
R: Debug + TypeFoldable<'tcx>,
Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>;
}
impl<'tcx> InferCtxtBuilderExt<'tcx> for InferCtxtBuilder<'tcx> {
/// The "main method" for a canonicalized trait query. Given the
/// canonical key `canonical_key`, this method will create a new
/// inference context, instantiate the key, and run your operation
/// `op`. The operation should yield up a result (of type `R`) as
/// well as a set of trait obligations that must be fully
/// satisfied. These obligations will be processed and the
/// canonical result created.
///
/// Returns `NoSolution` in the event of any error.
///
/// (It might be mildly nicer to implement this on `TyCtxt`, and
/// not `InferCtxtBuilder`, but that is a bit tricky right now.
/// In part because we would need a `for<'tcx>` sort of
/// bound for the closure and in part because it is convenient to
/// have `'tcx` be free on this function so that we can talk about
/// `K: TypeFoldable<'tcx>`.)
fn enter_canonical_trait_query<K, R>(
&mut self,
canonical_key: &Canonical<'tcx, K>,
operation: impl FnOnce(&InferCtxt<'_, 'tcx>, &mut dyn TraitEngine<'tcx>, K) -> Fallible<R>,
) -> Fallible<CanonicalizedQueryResponse<'tcx, R>>
where
K: TypeFoldable<'tcx>,
R: Debug + TypeFoldable<'tcx>,
Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>,
{
self.enter_with_canonical(
DUMMY_SP,
canonical_key,
|ref infcx, key, canonical_inference_vars| {
let mut fulfill_cx = TraitEngine::new(infcx.tcx);
let value = operation(infcx, &mut *fulfill_cx, key)?;
infcx.make_canonicalized_query_response(
canonical_inference_vars,
value,
&mut *fulfill_cx,
)
},
)
}
}
pub trait OutlivesEnvironmentExt<'tcx> {
fn add_implied_bounds(
&mut self,
infcx: &InferCtxt<'a, 'tcx>,
fn_sig_tys: &[Ty<'tcx>],
body_id: hir::HirId,
span: Span,
);
}
impl<'tcx> OutlivesEnvironmentExt<'tcx> for OutlivesEnvironment<'tcx> {
/// This method adds "implied bounds" into the outlives environment.
/// Implied bounds are outlives relationships that we can deduce
/// on the basis that certain types must be well-formed -- these are
/// either the types that appear in the function signature or else
/// the input types to an impl. For example, if you have a function
/// like
///
/// ```
/// fn foo<'a, 'b, T>(x: &'a &'b [T]) { }
/// ```
///
/// we can assume in the caller's body that `'b: 'a` and that `T:
/// 'b` (and hence, transitively, that `T: 'a`). This method would
/// add those assumptions into the outlives-environment.
///
/// Tests: `src/test/compile-fail/regions-free-region-ordering-*.rs`
fn add_implied_bounds(
&mut self,
infcx: &InferCtxt<'a, 'tcx>,
fn_sig_tys: &[Ty<'tcx>],
body_id: hir::HirId,
span: Span,
) {
debug!("add_implied_bounds()");
for &ty in fn_sig_tys {
let ty = infcx.resolve_vars_if_possible(&ty);
debug!("add_implied_bounds: ty = {}", ty);
let implied_bounds = infcx.implied_outlives_bounds(self.param_env, body_id, ty, span);
self.add_outlives_bounds(Some(infcx), implied_bounds)
}
}
}