blob: 04a45090b722675d179f32c4edb4d5282449fc26 [file] [log] [blame]
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::profiling::QueryInvocationId;
use rustc_data_structures::sharded::{self, Sharded};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::{AtomicU32, AtomicU64, Lock, Lrc, Ordering};
use rustc_data_structures::unlikely;
use rustc_errors::Diagnostic;
use rustc_index::vec::{Idx, IndexVec};
use parking_lot::{Condvar, Mutex};
use smallvec::{smallvec, SmallVec};
use std::collections::hash_map::Entry;
use std::env;
use std::hash::Hash;
use std::marker::PhantomData;
use std::mem;
use std::sync::atomic::Ordering::Relaxed;
use super::debug::EdgeFilter;
use super::prev::PreviousDepGraph;
use super::query::DepGraphQuery;
use super::serialized::{SerializedDepGraph, SerializedDepNodeIndex};
use super::{DepContext, DepKind, DepNode, WorkProductId};
#[derive(Clone)]
pub struct DepGraph<K: DepKind> {
data: Option<Lrc<DepGraphData<K>>>,
/// This field is used for assigning DepNodeIndices when running in
/// non-incremental mode. Even in non-incremental mode we make sure that
/// each task has a `DepNodeIndex` that uniquely identifies it. This unique
/// ID is used for self-profiling.
virtual_dep_node_index: Lrc<AtomicU32>,
}
rustc_index::newtype_index! {
pub struct DepNodeIndex { .. }
}
impl DepNodeIndex {
pub const INVALID: DepNodeIndex = DepNodeIndex::MAX;
}
impl std::convert::From<DepNodeIndex> for QueryInvocationId {
#[inline]
fn from(dep_node_index: DepNodeIndex) -> Self {
QueryInvocationId(dep_node_index.as_u32())
}
}
#[derive(PartialEq)]
pub enum DepNodeColor {
Red,
Green(DepNodeIndex),
}
impl DepNodeColor {
pub fn is_green(self) -> bool {
match self {
DepNodeColor::Red => false,
DepNodeColor::Green(_) => true,
}
}
}
struct DepGraphData<K: DepKind> {
/// The new encoding of the dependency graph, optimized for red/green
/// tracking. The `current` field is the dependency graph of only the
/// current compilation session: We don't merge the previous dep-graph into
/// current one anymore.
current: CurrentDepGraph<K>,
/// The dep-graph from the previous compilation session. It contains all
/// nodes and edges as well as all fingerprints of nodes that have them.
previous: PreviousDepGraph<K>,
colors: DepNodeColorMap,
/// A set of loaded diagnostics that is in the progress of being emitted.
emitting_diagnostics: Mutex<FxHashSet<DepNodeIndex>>,
/// Used to wait for diagnostics to be emitted.
emitting_diagnostics_cond_var: Condvar,
/// When we load, there may be `.o` files, cached MIR, or other such
/// things available to us. If we find that they are not dirty, we
/// load the path to the file storing those work-products here into
/// this map. We can later look for and extract that data.
previous_work_products: FxHashMap<WorkProductId, WorkProduct>,
dep_node_debug: Lock<FxHashMap<DepNode<K>, String>>,
}
pub fn hash_result<HashCtxt, R>(hcx: &mut HashCtxt, result: &R) -> Option<Fingerprint>
where
R: HashStable<HashCtxt>,
{
let mut stable_hasher = StableHasher::new();
result.hash_stable(hcx, &mut stable_hasher);
Some(stable_hasher.finish())
}
impl<K: DepKind> DepGraph<K> {
pub fn new(
prev_graph: PreviousDepGraph<K>,
prev_work_products: FxHashMap<WorkProductId, WorkProduct>,
) -> DepGraph<K> {
let prev_graph_node_count = prev_graph.node_count();
DepGraph {
data: Some(Lrc::new(DepGraphData {
previous_work_products: prev_work_products,
dep_node_debug: Default::default(),
current: CurrentDepGraph::new(prev_graph_node_count),
emitting_diagnostics: Default::default(),
emitting_diagnostics_cond_var: Condvar::new(),
previous: prev_graph,
colors: DepNodeColorMap::new(prev_graph_node_count),
})),
virtual_dep_node_index: Lrc::new(AtomicU32::new(0)),
}
}
pub fn new_disabled() -> DepGraph<K> {
DepGraph { data: None, virtual_dep_node_index: Lrc::new(AtomicU32::new(0)) }
}
/// Returns `true` if we are actually building the full dep-graph, and `false` otherwise.
#[inline]
pub fn is_fully_enabled(&self) -> bool {
self.data.is_some()
}
pub fn query(&self) -> DepGraphQuery<K> {
let data = self.data.as_ref().unwrap().current.data.lock();
let nodes: Vec<_> = data.iter().map(|n| n.node).collect();
let mut edges = Vec::new();
for (from, edge_targets) in data.iter().map(|d| (d.node, &d.edges)) {
for &edge_target in edge_targets.iter() {
let to = data[edge_target].node;
edges.push((from, to));
}
}
DepGraphQuery::new(&nodes[..], &edges[..])
}
pub fn assert_ignored(&self) {
if let Some(..) = self.data {
K::read_deps(|task_deps| {
assert!(task_deps.is_none(), "expected no task dependency tracking");
})
}
}
pub fn with_ignore<OP, R>(&self, op: OP) -> R
where
OP: FnOnce() -> R,
{
K::with_deps(None, op)
}
/// Starts a new dep-graph task. Dep-graph tasks are specified
/// using a free function (`task`) and **not** a closure -- this
/// is intentional because we want to exercise tight control over
/// what state they have access to. In particular, we want to
/// prevent implicit 'leaks' of tracked state into the task (which
/// could then be read without generating correct edges in the
/// dep-graph -- see the [rustc dev guide] for more details on
/// the dep-graph). To this end, the task function gets exactly two
/// pieces of state: the context `cx` and an argument `arg`. Both
/// of these bits of state must be of some type that implements
/// `DepGraphSafe` and hence does not leak.
///
/// The choice of two arguments is not fundamental. One argument
/// would work just as well, since multiple values can be
/// collected using tuples. However, using two arguments works out
/// to be quite convenient, since it is common to need a context
/// (`cx`) and some argument (e.g., a `DefId` identifying what
/// item to process).
///
/// For cases where you need some other number of arguments:
///
/// - If you only need one argument, just use `()` for the `arg`
/// parameter.
/// - If you need 3+ arguments, use a tuple for the
/// `arg` parameter.
///
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/incremental-compilation.html
pub fn with_task<Ctxt: DepContext<DepKind = K>, A, R>(
&self,
key: DepNode<K>,
cx: Ctxt,
arg: A,
task: fn(Ctxt, A) -> R,
hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option<Fingerprint>,
) -> (R, DepNodeIndex) {
self.with_task_impl(
key,
cx,
arg,
false,
task,
|_key| {
Some(TaskDeps {
#[cfg(debug_assertions)]
node: Some(_key),
reads: SmallVec::new(),
read_set: Default::default(),
phantom_data: PhantomData,
})
},
|data, key, fingerprint, task| data.complete_task(key, task.unwrap(), fingerprint),
hash_result,
)
}
fn with_task_impl<Ctxt: DepContext<DepKind = K>, A, R>(
&self,
key: DepNode<K>,
cx: Ctxt,
arg: A,
no_tcx: bool,
task: fn(Ctxt, A) -> R,
create_task: fn(DepNode<K>) -> Option<TaskDeps<K>>,
finish_task_and_alloc_depnode: fn(
&CurrentDepGraph<K>,
DepNode<K>,
Fingerprint,
Option<TaskDeps<K>>,
) -> DepNodeIndex,
hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option<Fingerprint>,
) -> (R, DepNodeIndex) {
if let Some(ref data) = self.data {
let task_deps = create_task(key).map(Lock::new);
// In incremental mode, hash the result of the task. We don't
// do anything with the hash yet, but we are computing it
// anyway so that
// - we make sure that the infrastructure works and
// - we can get an idea of the runtime cost.
let mut hcx = cx.create_stable_hashing_context();
let result = if no_tcx {
task(cx, arg)
} else {
K::with_deps(task_deps.as_ref(), || task(cx, arg))
};
let current_fingerprint = hash_result(&mut hcx, &result);
let dep_node_index = finish_task_and_alloc_depnode(
&data.current,
key,
current_fingerprint.unwrap_or(Fingerprint::ZERO),
task_deps.map(|lock| lock.into_inner()),
);
let print_status = cfg!(debug_assertions) && cx.debug_dep_tasks();
// Determine the color of the new DepNode.
if let Some(prev_index) = data.previous.node_to_index_opt(&key) {
let prev_fingerprint = data.previous.fingerprint_by_index(prev_index);
let color = if let Some(current_fingerprint) = current_fingerprint {
if current_fingerprint == prev_fingerprint {
if print_status {
eprintln!("[task::green] {:?}", key);
}
DepNodeColor::Green(dep_node_index)
} else {
if print_status {
eprintln!("[task::red] {:?}", key);
}
DepNodeColor::Red
}
} else {
if print_status {
eprintln!("[task::unknown] {:?}", key);
}
// Mark the node as Red if we can't hash the result
DepNodeColor::Red
};
debug_assert!(
data.colors.get(prev_index).is_none(),
"DepGraph::with_task() - Duplicate DepNodeColor \
insertion for {:?}",
key
);
data.colors.insert(prev_index, color);
} else {
if print_status {
eprintln!("[task::new] {:?}", key);
}
}
(result, dep_node_index)
} else {
(task(cx, arg), self.next_virtual_depnode_index())
}
}
/// Executes something within an "anonymous" task, that is, a task the
/// `DepNode` of which is determined by the list of inputs it read from.
pub fn with_anon_task<OP, R>(&self, dep_kind: K, op: OP) -> (R, DepNodeIndex)
where
OP: FnOnce() -> R,
{
if let Some(ref data) = self.data {
let task_deps = Lock::new(TaskDeps::default());
let result = K::with_deps(Some(&task_deps), op);
let task_deps = task_deps.into_inner();
let dep_node_index = data.current.complete_anon_task(dep_kind, task_deps);
(result, dep_node_index)
} else {
(op(), self.next_virtual_depnode_index())
}
}
/// Executes something within an "eval-always" task which is a task
/// that runs whenever anything changes.
pub fn with_eval_always_task<Ctxt: DepContext<DepKind = K>, A, R>(
&self,
key: DepNode<K>,
cx: Ctxt,
arg: A,
task: fn(Ctxt, A) -> R,
hash_result: impl FnOnce(&mut Ctxt::StableHashingContext, &R) -> Option<Fingerprint>,
) -> (R, DepNodeIndex) {
self.with_task_impl(
key,
cx,
arg,
false,
task,
|_| None,
|data, key, fingerprint, _| data.alloc_node(key, smallvec![], fingerprint),
hash_result,
)
}
#[inline]
pub fn read(&self, v: DepNode<K>) {
if let Some(ref data) = self.data {
let map = data.current.node_to_node_index.get_shard_by_value(&v).lock();
if let Some(dep_node_index) = map.get(&v).copied() {
std::mem::drop(map);
data.read_index(dep_node_index);
} else {
panic!("DepKind {:?} should be pre-allocated but isn't.", v.kind)
}
}
}
#[inline]
pub fn read_index(&self, dep_node_index: DepNodeIndex) {
if let Some(ref data) = self.data {
data.read_index(dep_node_index);
}
}
#[inline]
pub fn dep_node_index_of(&self, dep_node: &DepNode<K>) -> DepNodeIndex {
self.data
.as_ref()
.unwrap()
.current
.node_to_node_index
.get_shard_by_value(dep_node)
.lock()
.get(dep_node)
.cloned()
.unwrap()
}
#[inline]
pub fn dep_node_exists(&self, dep_node: &DepNode<K>) -> bool {
if let Some(ref data) = self.data {
data.current
.node_to_node_index
.get_shard_by_value(&dep_node)
.lock()
.contains_key(dep_node)
} else {
false
}
}
#[inline]
pub fn fingerprint_of(&self, dep_node_index: DepNodeIndex) -> Fingerprint {
let data = self.data.as_ref().expect("dep graph enabled").current.data.lock();
data[dep_node_index].fingerprint
}
pub fn prev_fingerprint_of(&self, dep_node: &DepNode<K>) -> Option<Fingerprint> {
self.data.as_ref().unwrap().previous.fingerprint_of(dep_node)
}
#[inline]
pub fn prev_dep_node_index_of(&self, dep_node: &DepNode<K>) -> SerializedDepNodeIndex {
self.data.as_ref().unwrap().previous.node_to_index(dep_node)
}
/// Checks whether a previous work product exists for `v` and, if
/// so, return the path that leads to it. Used to skip doing work.
pub fn previous_work_product(&self, v: &WorkProductId) -> Option<WorkProduct> {
self.data.as_ref().and_then(|data| data.previous_work_products.get(v).cloned())
}
/// Access the map of work-products created during the cached run. Only
/// used during saving of the dep-graph.
pub fn previous_work_products(&self) -> &FxHashMap<WorkProductId, WorkProduct> {
&self.data.as_ref().unwrap().previous_work_products
}
#[inline(always)]
pub fn register_dep_node_debug_str<F>(&self, dep_node: DepNode<K>, debug_str_gen: F)
where
F: FnOnce() -> String,
{
let dep_node_debug = &self.data.as_ref().unwrap().dep_node_debug;
if dep_node_debug.borrow().contains_key(&dep_node) {
return;
}
let debug_str = debug_str_gen();
dep_node_debug.borrow_mut().insert(dep_node, debug_str);
}
pub fn dep_node_debug_str(&self, dep_node: DepNode<K>) -> Option<String> {
self.data.as_ref()?.dep_node_debug.borrow().get(&dep_node).cloned()
}
pub fn edge_deduplication_data(&self) -> Option<(u64, u64)> {
if cfg!(debug_assertions) {
let current_dep_graph = &self.data.as_ref().unwrap().current;
Some((
current_dep_graph.total_read_count.load(Relaxed),
current_dep_graph.total_duplicate_read_count.load(Relaxed),
))
} else {
None
}
}
pub fn serialize(&self) -> SerializedDepGraph<K> {
let data = self.data.as_ref().unwrap().current.data.lock();
let fingerprints: IndexVec<SerializedDepNodeIndex, _> =
data.iter().map(|d| d.fingerprint).collect();
let nodes: IndexVec<SerializedDepNodeIndex, _> = data.iter().map(|d| d.node).collect();
let total_edge_count: usize = data.iter().map(|d| d.edges.len()).sum();
let mut edge_list_indices = IndexVec::with_capacity(nodes.len());
let mut edge_list_data = Vec::with_capacity(total_edge_count);
for (current_dep_node_index, edges) in data.iter_enumerated().map(|(i, d)| (i, &d.edges)) {
let start = edge_list_data.len() as u32;
// This should really just be a memcpy :/
edge_list_data.extend(edges.iter().map(|i| SerializedDepNodeIndex::new(i.index())));
let end = edge_list_data.len() as u32;
debug_assert_eq!(current_dep_node_index.index(), edge_list_indices.len());
edge_list_indices.push((start, end));
}
debug_assert!(edge_list_data.len() <= u32::MAX as usize);
debug_assert_eq!(edge_list_data.len(), total_edge_count);
SerializedDepGraph { nodes, fingerprints, edge_list_indices, edge_list_data }
}
pub fn node_color(&self, dep_node: &DepNode<K>) -> Option<DepNodeColor> {
if let Some(ref data) = self.data {
if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) {
return data.colors.get(prev_index);
} else {
// This is a node that did not exist in the previous compilation
// session, so we consider it to be red.
return Some(DepNodeColor::Red);
}
}
None
}
/// Try to read a node index for the node dep_node.
/// A node will have an index, when it's already been marked green, or when we can mark it
/// green. This function will mark the current task as a reader of the specified node, when
/// a node index can be found for that node.
pub fn try_mark_green_and_read<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
dep_node: &DepNode<K>,
) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
self.try_mark_green(tcx, dep_node).map(|(prev_index, dep_node_index)| {
debug_assert!(self.is_green(&dep_node));
self.read_index(dep_node_index);
(prev_index, dep_node_index)
})
}
pub fn try_mark_green<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
dep_node: &DepNode<K>,
) -> Option<(SerializedDepNodeIndex, DepNodeIndex)> {
debug_assert!(!dep_node.kind.is_eval_always());
// Return None if the dep graph is disabled
let data = self.data.as_ref()?;
// Return None if the dep node didn't exist in the previous session
let prev_index = data.previous.node_to_index_opt(dep_node)?;
match data.colors.get(prev_index) {
Some(DepNodeColor::Green(dep_node_index)) => Some((prev_index, dep_node_index)),
Some(DepNodeColor::Red) => None,
None => {
// This DepNode and the corresponding query invocation existed
// in the previous compilation session too, so we can try to
// mark it as green by recursively marking all of its
// dependencies green.
self.try_mark_previous_green(tcx, data, prev_index, &dep_node)
.map(|dep_node_index| (prev_index, dep_node_index))
}
}
}
/// Try to mark a dep-node which existed in the previous compilation session as green.
fn try_mark_previous_green<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
data: &DepGraphData<K>,
prev_dep_node_index: SerializedDepNodeIndex,
dep_node: &DepNode<K>,
) -> Option<DepNodeIndex> {
debug!("try_mark_previous_green({:?}) - BEGIN", dep_node);
#[cfg(not(parallel_compiler))]
{
debug_assert!(
!data
.current
.node_to_node_index
.get_shard_by_value(dep_node)
.lock()
.contains_key(dep_node)
);
debug_assert!(data.colors.get(prev_dep_node_index).is_none());
}
// We never try to mark eval_always nodes as green
debug_assert!(!dep_node.kind.is_eval_always());
debug_assert_eq!(data.previous.index_to_node(prev_dep_node_index), *dep_node);
let prev_deps = data.previous.edge_targets_from(prev_dep_node_index);
let mut current_deps = SmallVec::new();
for &dep_dep_node_index in prev_deps {
let dep_dep_node_color = data.colors.get(dep_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(node_index)) => {
// This dependency has been marked as green before, we are
// still fine and can continue with checking the other
// dependencies.
debug!(
"try_mark_previous_green({:?}) --- found dependency {:?} to \
be immediately green",
dep_node,
data.previous.index_to_node(dep_dep_node_index)
);
current_deps.push(node_index);
}
Some(DepNodeColor::Red) => {
// We found a dependency the value of which has changed
// compared to the previous compilation session. We cannot
// mark the DepNode as green and also don't need to bother
// with checking any of the other dependencies.
debug!(
"try_mark_previous_green({:?}) - END - dependency {:?} was \
immediately red",
dep_node,
data.previous.index_to_node(dep_dep_node_index)
);
return None;
}
None => {
let dep_dep_node = &data.previous.index_to_node(dep_dep_node_index);
// We don't know the state of this dependency. If it isn't
// an eval_always node, let's try to mark it green recursively.
if !dep_dep_node.kind.is_eval_always() {
debug!(
"try_mark_previous_green({:?}) --- state of dependency {:?} \
is unknown, trying to mark it green",
dep_node, dep_dep_node
);
let node_index = self.try_mark_previous_green(
tcx,
data,
dep_dep_node_index,
dep_dep_node,
);
if let Some(node_index) = node_index {
debug!(
"try_mark_previous_green({:?}) --- managed to MARK \
dependency {:?} as green",
dep_node, dep_dep_node
);
current_deps.push(node_index);
continue;
}
}
// We failed to mark it green, so we try to force the query.
debug!(
"try_mark_previous_green({:?}) --- trying to force \
dependency {:?}",
dep_node, dep_dep_node
);
if tcx.try_force_from_dep_node(dep_dep_node) {
let dep_dep_node_color = data.colors.get(dep_dep_node_index);
match dep_dep_node_color {
Some(DepNodeColor::Green(node_index)) => {
debug!(
"try_mark_previous_green({:?}) --- managed to \
FORCE dependency {:?} to green",
dep_node, dep_dep_node
);
current_deps.push(node_index);
}
Some(DepNodeColor::Red) => {
debug!(
"try_mark_previous_green({:?}) - END - \
dependency {:?} was red after forcing",
dep_node, dep_dep_node
);
return None;
}
None => {
if !tcx.has_errors_or_delayed_span_bugs() {
panic!(
"try_mark_previous_green() - Forcing the DepNode \
should have set its color"
)
} else {
// If the query we just forced has resulted in
// some kind of compilation error, we cannot rely on
// the dep-node color having been properly updated.
// This means that the query system has reached an
// invalid state. We let the compiler continue (by
// returning `None`) so it can emit error messages
// and wind down, but rely on the fact that this
// invalid state will not be persisted to the
// incremental compilation cache because of
// compilation errors being present.
debug!(
"try_mark_previous_green({:?}) - END - \
dependency {:?} resulted in compilation error",
dep_node, dep_dep_node
);
return None;
}
}
}
} else {
// The DepNode could not be forced.
debug!(
"try_mark_previous_green({:?}) - END - dependency {:?} \
could not be forced",
dep_node, dep_dep_node
);
return None;
}
}
}
}
// If we got here without hitting a `return` that means that all
// dependencies of this DepNode could be marked as green. Therefore we
// can also mark this DepNode as green.
// There may be multiple threads trying to mark the same dep node green concurrently
let dep_node_index = {
// Copy the fingerprint from the previous graph,
// so we don't have to recompute it
let fingerprint = data.previous.fingerprint_by_index(prev_dep_node_index);
// We allocating an entry for the node in the current dependency graph and
// adding all the appropriate edges imported from the previous graph
data.current.intern_node(*dep_node, current_deps, fingerprint)
};
// ... emitting any stored diagnostic ...
// FIXME: Store the fact that a node has diagnostics in a bit in the dep graph somewhere
// Maybe store a list on disk and encode this fact in the DepNodeState
let diagnostics = tcx.load_diagnostics(prev_dep_node_index);
#[cfg(not(parallel_compiler))]
debug_assert!(
data.colors.get(prev_dep_node_index).is_none(),
"DepGraph::try_mark_previous_green() - Duplicate DepNodeColor \
insertion for {:?}",
dep_node
);
if unlikely!(!diagnostics.is_empty()) {
self.emit_diagnostics(tcx, data, dep_node_index, prev_dep_node_index, diagnostics);
}
// ... and finally storing a "Green" entry in the color map.
// Multiple threads can all write the same color here
data.colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index));
debug!("try_mark_previous_green({:?}) - END - successfully marked as green", dep_node);
Some(dep_node_index)
}
/// Atomically emits some loaded diagnostics.
/// This may be called concurrently on multiple threads for the same dep node.
#[cold]
#[inline(never)]
fn emit_diagnostics<Ctxt: DepContext<DepKind = K>>(
&self,
tcx: Ctxt,
data: &DepGraphData<K>,
dep_node_index: DepNodeIndex,
prev_dep_node_index: SerializedDepNodeIndex,
diagnostics: Vec<Diagnostic>,
) {
let mut emitting = data.emitting_diagnostics.lock();
if data.colors.get(prev_dep_node_index) == Some(DepNodeColor::Green(dep_node_index)) {
// The node is already green so diagnostics must have been emitted already
return;
}
if emitting.insert(dep_node_index) {
// We were the first to insert the node in the set so this thread
// must emit the diagnostics and signal other potentially waiting
// threads after.
mem::drop(emitting);
// Promote the previous diagnostics to the current session.
tcx.store_diagnostics(dep_node_index, diagnostics.clone().into());
let handle = tcx.diagnostic();
for diagnostic in diagnostics {
handle.emit_diagnostic(&diagnostic);
}
// Mark the node as green now that diagnostics are emitted
data.colors.insert(prev_dep_node_index, DepNodeColor::Green(dep_node_index));
// Remove the node from the set
data.emitting_diagnostics.lock().remove(&dep_node_index);
// Wake up waiters
data.emitting_diagnostics_cond_var.notify_all();
} else {
// We must wait for the other thread to finish emitting the diagnostic
loop {
data.emitting_diagnostics_cond_var.wait(&mut emitting);
if data.colors.get(prev_dep_node_index) == Some(DepNodeColor::Green(dep_node_index))
{
break;
}
}
}
}
// Returns true if the given node has been marked as green during the
// current compilation session. Used in various assertions
pub fn is_green(&self, dep_node: &DepNode<K>) -> bool {
self.node_color(dep_node).map(|c| c.is_green()).unwrap_or(false)
}
// This method loads all on-disk cacheable query results into memory, so
// they can be written out to the new cache file again. Most query results
// will already be in memory but in the case where we marked something as
// green but then did not need the value, that value will never have been
// loaded from disk.
//
// This method will only load queries that will end up in the disk cache.
// Other queries will not be executed.
pub fn exec_cache_promotions<Ctxt: DepContext<DepKind = K>>(&self, tcx: Ctxt) {
let _prof_timer = tcx.profiler().generic_activity("incr_comp_query_cache_promotion");
let data = self.data.as_ref().unwrap();
for prev_index in data.colors.values.indices() {
match data.colors.get(prev_index) {
Some(DepNodeColor::Green(_)) => {
let dep_node = data.previous.index_to_node(prev_index);
tcx.try_load_from_on_disk_cache(&dep_node);
}
None | Some(DepNodeColor::Red) => {
// We can skip red nodes because a node can only be marked
// as red if the query result was recomputed and thus is
// already in memory.
}
}
}
}
fn next_virtual_depnode_index(&self) -> DepNodeIndex {
let index = self.virtual_dep_node_index.fetch_add(1, Relaxed);
DepNodeIndex::from_u32(index)
}
}
/// A "work product" is an intermediate result that we save into the
/// incremental directory for later re-use. The primary example are
/// the object files that we save for each partition at code
/// generation time.
///
/// Each work product is associated with a dep-node, representing the
/// process that produced the work-product. If that dep-node is found
/// to be dirty when we load up, then we will delete the work-product
/// at load time. If the work-product is found to be clean, then we
/// will keep a record in the `previous_work_products` list.
///
/// In addition, work products have an associated hash. This hash is
/// an extra hash that can be used to decide if the work-product from
/// a previous compilation can be re-used (in addition to the dirty
/// edges check).
///
/// As the primary example, consider the object files we generate for
/// each partition. In the first run, we create partitions based on
/// the symbols that need to be compiled. For each partition P, we
/// hash the symbols in P and create a `WorkProduct` record associated
/// with `DepNode::CodegenUnit(P)`; the hash is the set of symbols
/// in P.
///
/// The next time we compile, if the `DepNode::CodegenUnit(P)` is
/// judged to be clean (which means none of the things we read to
/// generate the partition were found to be dirty), it will be loaded
/// into previous work products. We will then regenerate the set of
/// symbols in the partition P and hash them (note that new symbols
/// may be added -- for example, new monomorphizations -- even if
/// nothing in P changed!). We will compare that hash against the
/// previous hash. If it matches up, we can reuse the object file.
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct WorkProduct {
pub cgu_name: String,
/// Saved file associated with this CGU.
pub saved_file: Option<String>,
}
#[derive(Clone)]
struct DepNodeData<K> {
node: DepNode<K>,
edges: EdgesVec,
fingerprint: Fingerprint,
}
/// `CurrentDepGraph` stores the dependency graph for the current session.
/// It will be populated as we run queries or tasks.
///
/// The nodes in it are identified by an index (`DepNodeIndex`).
/// The data for each node is stored in its `DepNodeData`, found in the `data` field.
///
/// We never remove nodes from the graph: they are only added.
///
/// This struct uses two locks internally. The `data` and `node_to_node_index` fields are
/// locked separately. Operations that take a `DepNodeIndex` typically just access
/// the data field.
///
/// The only operation that must manipulate both locks is adding new nodes, in which case
/// we first acquire the `node_to_node_index` lock and then, once a new node is to be inserted,
/// acquire the lock on `data.`
pub(super) struct CurrentDepGraph<K> {
data: Lock<IndexVec<DepNodeIndex, DepNodeData<K>>>,
node_to_node_index: Sharded<FxHashMap<DepNode<K>, DepNodeIndex>>,
/// Used to trap when a specific edge is added to the graph.
/// This is used for debug purposes and is only active with `debug_assertions`.
#[allow(dead_code)]
forbidden_edge: Option<EdgeFilter>,
/// Anonymous `DepNode`s are nodes whose IDs we compute from the list of
/// their edges. This has the beneficial side-effect that multiple anonymous
/// nodes can be coalesced into one without changing the semantics of the
/// dependency graph. However, the merging of nodes can lead to a subtle
/// problem during red-green marking: The color of an anonymous node from
/// the current session might "shadow" the color of the node with the same
/// ID from the previous session. In order to side-step this problem, we make
/// sure that anonymous `NodeId`s allocated in different sessions don't overlap.
/// This is implemented by mixing a session-key into the ID fingerprint of
/// each anon node. The session-key is just a random number generated when
/// the `DepGraph` is created.
anon_id_seed: Fingerprint,
/// These are simple counters that are for profiling and
/// debugging and only active with `debug_assertions`.
total_read_count: AtomicU64,
total_duplicate_read_count: AtomicU64,
}
impl<K: DepKind> CurrentDepGraph<K> {
fn new(prev_graph_node_count: usize) -> CurrentDepGraph<K> {
use std::time::{SystemTime, UNIX_EPOCH};
let duration = SystemTime::now().duration_since(UNIX_EPOCH).unwrap();
let nanos = duration.as_secs() * 1_000_000_000 + duration.subsec_nanos() as u64;
let mut stable_hasher = StableHasher::new();
nanos.hash(&mut stable_hasher);
let forbidden_edge = if cfg!(debug_assertions) {
match env::var("RUST_FORBID_DEP_GRAPH_EDGE") {
Ok(s) => match EdgeFilter::new(&s) {
Ok(f) => Some(f),
Err(err) => panic!("RUST_FORBID_DEP_GRAPH_EDGE invalid: {}", err),
},
Err(_) => None,
}
} else {
None
};
// Pre-allocate the dep node structures. We over-allocate a little so
// that we hopefully don't have to re-allocate during this compilation
// session. The over-allocation is 2% plus a small constant to account
// for the fact that in very small crates 2% might not be enough.
let new_node_count_estimate = (prev_graph_node_count * 102) / 100 + 200;
CurrentDepGraph {
data: Lock::new(IndexVec::with_capacity(new_node_count_estimate)),
node_to_node_index: Sharded::new(|| {
FxHashMap::with_capacity_and_hasher(
new_node_count_estimate / sharded::SHARDS,
Default::default(),
)
}),
anon_id_seed: stable_hasher.finish(),
forbidden_edge,
total_read_count: AtomicU64::new(0),
total_duplicate_read_count: AtomicU64::new(0),
}
}
fn complete_task(
&self,
node: DepNode<K>,
task_deps: TaskDeps<K>,
fingerprint: Fingerprint,
) -> DepNodeIndex {
self.alloc_node(node, task_deps.reads, fingerprint)
}
fn complete_anon_task(&self, kind: K, task_deps: TaskDeps<K>) -> DepNodeIndex {
debug_assert!(!kind.is_eval_always());
let mut hasher = StableHasher::new();
// The dep node indices are hashed here instead of hashing the dep nodes of the
// dependencies. These indices may refer to different nodes per session, but this isn't
// a problem here because we that ensure the final dep node hash is per session only by
// combining it with the per session random number `anon_id_seed`. This hash only need
// to map the dependencies to a single value on a per session basis.
task_deps.reads.hash(&mut hasher);
let target_dep_node = DepNode {
kind,
// Fingerprint::combine() is faster than sending Fingerprint
// through the StableHasher (at least as long as StableHasher
// is so slow).
hash: self.anon_id_seed.combine(hasher.finish()),
};
self.intern_node(target_dep_node, task_deps.reads, Fingerprint::ZERO)
}
fn alloc_node(
&self,
dep_node: DepNode<K>,
edges: EdgesVec,
fingerprint: Fingerprint,
) -> DepNodeIndex {
debug_assert!(
!self.node_to_node_index.get_shard_by_value(&dep_node).lock().contains_key(&dep_node)
);
self.intern_node(dep_node, edges, fingerprint)
}
fn intern_node(
&self,
dep_node: DepNode<K>,
edges: EdgesVec,
fingerprint: Fingerprint,
) -> DepNodeIndex {
match self.node_to_node_index.get_shard_by_value(&dep_node).lock().entry(dep_node) {
Entry::Occupied(entry) => *entry.get(),
Entry::Vacant(entry) => {
let mut data = self.data.lock();
let dep_node_index = DepNodeIndex::new(data.len());
data.push(DepNodeData { node: dep_node, edges, fingerprint });
entry.insert(dep_node_index);
dep_node_index
}
}
}
}
impl<K: DepKind> DepGraphData<K> {
#[inline(never)]
fn read_index(&self, source: DepNodeIndex) {
K::read_deps(|task_deps| {
if let Some(task_deps) = task_deps {
let mut task_deps = task_deps.lock();
let task_deps = &mut *task_deps;
if cfg!(debug_assertions) {
self.current.total_read_count.fetch_add(1, Relaxed);
}
// As long as we only have a low number of reads we can avoid doing a hash
// insert and potentially allocating/reallocating the hashmap
let new_read = if task_deps.reads.len() < TASK_DEPS_READS_CAP {
task_deps.reads.iter().all(|other| *other != source)
} else {
task_deps.read_set.insert(source)
};
if new_read {
task_deps.reads.push(source);
if task_deps.reads.len() == TASK_DEPS_READS_CAP {
// Fill `read_set` with what we have so far so we can use the hashset next
// time
task_deps.read_set.extend(task_deps.reads.iter().copied());
}
#[cfg(debug_assertions)]
{
if let Some(target) = task_deps.node {
let data = self.current.data.lock();
if let Some(ref forbidden_edge) = self.current.forbidden_edge {
let source = data[source].node;
if forbidden_edge.test(&source, &target) {
panic!("forbidden edge {:?} -> {:?} created", source, target)
}
}
}
}
} else if cfg!(debug_assertions) {
self.current.total_duplicate_read_count.fetch_add(1, Relaxed);
}
}
})
}
}
/// The capacity of the `reads` field `SmallVec`
const TASK_DEPS_READS_CAP: usize = 8;
type EdgesVec = SmallVec<[DepNodeIndex; TASK_DEPS_READS_CAP]>;
pub struct TaskDeps<K> {
#[cfg(debug_assertions)]
node: Option<DepNode<K>>,
reads: EdgesVec,
read_set: FxHashSet<DepNodeIndex>,
phantom_data: PhantomData<DepNode<K>>,
}
impl<K> Default for TaskDeps<K> {
fn default() -> Self {
Self {
#[cfg(debug_assertions)]
node: None,
reads: EdgesVec::new(),
read_set: FxHashSet::default(),
phantom_data: PhantomData,
}
}
}
// A data structure that stores Option<DepNodeColor> values as a contiguous
// array, using one u32 per entry.
struct DepNodeColorMap {
values: IndexVec<SerializedDepNodeIndex, AtomicU32>,
}
const COMPRESSED_NONE: u32 = 0;
const COMPRESSED_RED: u32 = 1;
const COMPRESSED_FIRST_GREEN: u32 = 2;
impl DepNodeColorMap {
fn new(size: usize) -> DepNodeColorMap {
DepNodeColorMap { values: (0..size).map(|_| AtomicU32::new(COMPRESSED_NONE)).collect() }
}
#[inline]
fn get(&self, index: SerializedDepNodeIndex) -> Option<DepNodeColor> {
match self.values[index].load(Ordering::Acquire) {
COMPRESSED_NONE => None,
COMPRESSED_RED => Some(DepNodeColor::Red),
value => {
Some(DepNodeColor::Green(DepNodeIndex::from_u32(value - COMPRESSED_FIRST_GREEN)))
}
}
}
fn insert(&self, index: SerializedDepNodeIndex, color: DepNodeColor) {
self.values[index].store(
match color {
DepNodeColor::Red => COMPRESSED_RED,
DepNodeColor::Green(index) => index.as_u32() + COMPRESSED_FIRST_GREEN,
},
Ordering::Release,
)
}
}