blob: 87348894a5ad9296012efde1930e7d201247bcd3 [file] [log] [blame]
// This implements the dead-code warning pass. It follows middle::reachable
// closely. The idea is that all reachable symbols are live, codes called
// from live codes are live, and everything else is dead.
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_hir as hir;
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
use rustc_hir::itemlikevisit::ItemLikeVisitor;
use rustc_hir::{Node, PatKind, TyKind};
use rustc_middle::hir::map::Map;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::middle::privacy;
use rustc_middle::ty::{self, DefIdTree, TyCtxt};
use rustc_session::lint;
use rustc_ast::{ast, attr};
use rustc_span::symbol::{sym, Symbol};
// Any local node that may call something in its body block should be
// explored. For example, if it's a live Node::Item that is a
// function, then we should explore its block to check for codes that
// may need to be marked as live.
fn should_explore(tcx: TyCtxt<'_>, hir_id: hir::HirId) -> bool {
match tcx.hir().find(hir_id) {
Some(
Node::Item(..)
| Node::ImplItem(..)
| Node::ForeignItem(..)
| Node::TraitItem(..)
| Node::Variant(..)
| Node::AnonConst(..)
| Node::Pat(..),
) => true,
_ => false,
}
}
struct MarkSymbolVisitor<'tcx> {
worklist: Vec<hir::HirId>,
tcx: TyCtxt<'tcx>,
maybe_typeck_tables: Option<&'tcx ty::TypeckTables<'tcx>>,
live_symbols: FxHashSet<hir::HirId>,
repr_has_repr_c: bool,
in_pat: bool,
inherited_pub_visibility: bool,
ignore_variant_stack: Vec<DefId>,
// maps from tuple struct constructors to tuple struct items
struct_constructors: FxHashMap<hir::HirId, hir::HirId>,
}
impl<'tcx> MarkSymbolVisitor<'tcx> {
/// Gets the type-checking side-tables for the current body.
/// As this will ICE if called outside bodies, only call when working with
/// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
#[track_caller]
fn tables(&self) -> &'tcx ty::TypeckTables<'tcx> {
self.maybe_typeck_tables.expect("`MarkSymbolVisitor::tables` called outside of body")
}
fn check_def_id(&mut self, def_id: DefId) {
if let Some(def_id) = def_id.as_local() {
let hir_id = self.tcx.hir().as_local_hir_id(def_id);
if should_explore(self.tcx, hir_id) || self.struct_constructors.contains_key(&hir_id) {
self.worklist.push(hir_id);
}
self.live_symbols.insert(hir_id);
}
}
fn insert_def_id(&mut self, def_id: DefId) {
if let Some(def_id) = def_id.as_local() {
let hir_id = self.tcx.hir().as_local_hir_id(def_id);
debug_assert!(!should_explore(self.tcx, hir_id));
self.live_symbols.insert(hir_id);
}
}
fn handle_res(&mut self, res: Res) {
match res {
Res::Def(DefKind::Const | DefKind::AssocConst | DefKind::TyAlias, _) => {
self.check_def_id(res.def_id());
}
_ if self.in_pat => {}
Res::PrimTy(..) | Res::SelfCtor(..) | Res::Local(..) => {}
Res::Def(DefKind::Ctor(CtorOf::Variant, ..), ctor_def_id) => {
let variant_id = self.tcx.parent(ctor_def_id).unwrap();
let enum_id = self.tcx.parent(variant_id).unwrap();
self.check_def_id(enum_id);
if !self.ignore_variant_stack.contains(&ctor_def_id) {
self.check_def_id(variant_id);
}
}
Res::Def(DefKind::Variant, variant_id) => {
let enum_id = self.tcx.parent(variant_id).unwrap();
self.check_def_id(enum_id);
if !self.ignore_variant_stack.contains(&variant_id) {
self.check_def_id(variant_id);
}
}
Res::SelfTy(t, i) => {
if let Some(t) = t {
self.check_def_id(t);
}
if let Some(i) = i {
self.check_def_id(i);
}
}
Res::ToolMod | Res::NonMacroAttr(..) | Res::Err => {}
_ => {
self.check_def_id(res.def_id());
}
}
}
fn lookup_and_handle_method(&mut self, id: hir::HirId) {
if let Some(def_id) = self.tables().type_dependent_def_id(id) {
self.check_def_id(def_id);
} else {
bug!("no type-dependent def for method");
}
}
fn handle_field_access(&mut self, lhs: &hir::Expr<'_>, hir_id: hir::HirId) {
match self.tables().expr_ty_adjusted(lhs).kind {
ty::Adt(def, _) => {
let index = self.tcx.field_index(hir_id, self.tables());
self.insert_def_id(def.non_enum_variant().fields[index].did);
}
ty::Tuple(..) => {}
_ => span_bug!(lhs.span, "named field access on non-ADT"),
}
}
fn handle_field_pattern_match(
&mut self,
lhs: &hir::Pat<'_>,
res: Res,
pats: &[hir::FieldPat<'_>],
) {
let variant = match self.tables().node_type(lhs.hir_id).kind {
ty::Adt(adt, _) => adt.variant_of_res(res),
_ => span_bug!(lhs.span, "non-ADT in struct pattern"),
};
for pat in pats {
if let PatKind::Wild = pat.pat.kind {
continue;
}
let index = self.tcx.field_index(pat.hir_id, self.tables());
self.insert_def_id(variant.fields[index].did);
}
}
fn mark_live_symbols(&mut self) {
let mut scanned = FxHashSet::default();
while let Some(id) = self.worklist.pop() {
if !scanned.insert(id) {
continue;
}
// in the case of tuple struct constructors we want to check the item, not the generated
// tuple struct constructor function
let id = self.struct_constructors.get(&id).cloned().unwrap_or(id);
if let Some(node) = self.tcx.hir().find(id) {
self.live_symbols.insert(id);
self.visit_node(node);
}
}
}
fn visit_node(&mut self, node: Node<'tcx>) {
let had_repr_c = self.repr_has_repr_c;
self.repr_has_repr_c = false;
let had_inherited_pub_visibility = self.inherited_pub_visibility;
self.inherited_pub_visibility = false;
match node {
Node::Item(item) => match item.kind {
hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) => {
let def_id = self.tcx.hir().local_def_id(item.hir_id);
let def = self.tcx.adt_def(def_id);
self.repr_has_repr_c = def.repr.c();
intravisit::walk_item(self, &item);
}
hir::ItemKind::Enum(..) => {
self.inherited_pub_visibility = item.vis.node.is_pub();
intravisit::walk_item(self, &item);
}
hir::ItemKind::ForeignMod(..) => {}
_ => {
intravisit::walk_item(self, &item);
}
},
Node::TraitItem(trait_item) => {
intravisit::walk_trait_item(self, trait_item);
}
Node::ImplItem(impl_item) => {
intravisit::walk_impl_item(self, impl_item);
}
Node::ForeignItem(foreign_item) => {
intravisit::walk_foreign_item(self, &foreign_item);
}
_ => {}
}
self.repr_has_repr_c = had_repr_c;
self.inherited_pub_visibility = had_inherited_pub_visibility;
}
fn mark_as_used_if_union(&mut self, adt: &ty::AdtDef, fields: &[hir::Field<'_>]) {
if adt.is_union() && adt.non_enum_variant().fields.len() > 1 && adt.did.is_local() {
for field in fields {
let index = self.tcx.field_index(field.hir_id, self.tables());
self.insert_def_id(adt.non_enum_variant().fields[index].did);
}
}
}
}
impl<'tcx> Visitor<'tcx> for MarkSymbolVisitor<'tcx> {
type Map = intravisit::ErasedMap<'tcx>;
fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_nested_body(&mut self, body: hir::BodyId) {
let old_maybe_typeck_tables = self.maybe_typeck_tables.replace(self.tcx.body_tables(body));
let body = self.tcx.hir().body(body);
self.visit_body(body);
self.maybe_typeck_tables = old_maybe_typeck_tables;
}
fn visit_variant_data(
&mut self,
def: &'tcx hir::VariantData<'tcx>,
_: Symbol,
_: &hir::Generics<'_>,
_: hir::HirId,
_: rustc_span::Span,
) {
let has_repr_c = self.repr_has_repr_c;
let inherited_pub_visibility = self.inherited_pub_visibility;
let live_fields = def
.fields()
.iter()
.filter(|f| has_repr_c || inherited_pub_visibility || f.vis.node.is_pub());
self.live_symbols.extend(live_fields.map(|f| f.hir_id));
intravisit::walk_struct_def(self, def);
}
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
match expr.kind {
hir::ExprKind::Path(ref qpath @ hir::QPath::TypeRelative(..)) => {
let res = self.tables().qpath_res(qpath, expr.hir_id);
self.handle_res(res);
}
hir::ExprKind::MethodCall(..) => {
self.lookup_and_handle_method(expr.hir_id);
}
hir::ExprKind::Field(ref lhs, ..) => {
self.handle_field_access(&lhs, expr.hir_id);
}
hir::ExprKind::Struct(ref qpath, ref fields, _) => {
let res = self.tables().qpath_res(qpath, expr.hir_id);
self.handle_res(res);
if let ty::Adt(ref adt, _) = self.tables().expr_ty(expr).kind {
self.mark_as_used_if_union(adt, fields);
}
}
_ => (),
}
intravisit::walk_expr(self, expr);
}
fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) {
// Inside the body, ignore constructions of variants
// necessary for the pattern to match. Those construction sites
// can't be reached unless the variant is constructed elsewhere.
let len = self.ignore_variant_stack.len();
self.ignore_variant_stack.extend(arm.pat.necessary_variants());
intravisit::walk_arm(self, arm);
self.ignore_variant_stack.truncate(len);
}
fn visit_pat(&mut self, pat: &'tcx hir::Pat<'tcx>) {
match pat.kind {
PatKind::Struct(ref path, ref fields, _) => {
let res = self.tables().qpath_res(path, pat.hir_id);
self.handle_field_pattern_match(pat, res, fields);
}
PatKind::Path(ref qpath) => {
let res = self.tables().qpath_res(qpath, pat.hir_id);
self.handle_res(res);
}
_ => (),
}
self.in_pat = true;
intravisit::walk_pat(self, pat);
self.in_pat = false;
}
fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, _: hir::HirId) {
self.handle_res(path.res);
intravisit::walk_path(self, path);
}
fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
if let TyKind::OpaqueDef(item_id, _) = ty.kind {
let item = self.tcx.hir().expect_item(item_id.id);
intravisit::walk_item(self, item);
}
intravisit::walk_ty(self, ty);
}
fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
self.live_symbols.insert(c.hir_id);
intravisit::walk_anon_const(self, c);
}
}
fn has_allow_dead_code_or_lang_attr(
tcx: TyCtxt<'_>,
id: hir::HirId,
attrs: &[ast::Attribute],
) -> bool {
if attr::contains_name(attrs, sym::lang) {
return true;
}
// Stable attribute for #[lang = "panic_impl"]
if attr::contains_name(attrs, sym::panic_handler) {
return true;
}
// (To be) stable attribute for #[lang = "oom"]
if attr::contains_name(attrs, sym::alloc_error_handler) {
return true;
}
let def_id = tcx.hir().local_def_id(id);
let cg_attrs = tcx.codegen_fn_attrs(def_id);
// #[used], #[no_mangle], #[export_name], etc also keeps the item alive
// forcefully, e.g., for placing it in a specific section.
if cg_attrs.contains_extern_indicator() || cg_attrs.flags.contains(CodegenFnAttrFlags::USED) {
return true;
}
tcx.lint_level_at_node(lint::builtin::DEAD_CODE, id).0 == lint::Allow
}
// This visitor seeds items that
// 1) We want to explicitly consider as live:
// * Item annotated with #[allow(dead_code)]
// - This is done so that if we want to suppress warnings for a
// group of dead functions, we only have to annotate the "root".
// For example, if both `f` and `g` are dead and `f` calls `g`,
// then annotating `f` with `#[allow(dead_code)]` will suppress
// warning for both `f` and `g`.
// * Item annotated with #[lang=".."]
// - This is because lang items are always callable from elsewhere.
// or
// 2) We are not sure to be live or not
// * Implementation of a trait method
struct LifeSeeder<'k, 'tcx> {
worklist: Vec<hir::HirId>,
krate: &'k hir::Crate<'k>,
tcx: TyCtxt<'tcx>,
// see `MarkSymbolVisitor::struct_constructors`
struct_constructors: FxHashMap<hir::HirId, hir::HirId>,
}
impl<'v, 'k, 'tcx> ItemLikeVisitor<'v> for LifeSeeder<'k, 'tcx> {
fn visit_item(&mut self, item: &hir::Item<'_>) {
let allow_dead_code = has_allow_dead_code_or_lang_attr(self.tcx, item.hir_id, &item.attrs);
if allow_dead_code {
self.worklist.push(item.hir_id);
}
match item.kind {
hir::ItemKind::Enum(ref enum_def, _) => {
if allow_dead_code {
self.worklist.extend(enum_def.variants.iter().map(|variant| variant.id));
}
for variant in enum_def.variants {
if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
self.struct_constructors.insert(ctor_hir_id, variant.id);
}
}
}
hir::ItemKind::Trait(.., trait_item_refs) => {
for trait_item_ref in trait_item_refs {
let trait_item = self.krate.trait_item(trait_item_ref.id);
match trait_item.kind {
hir::TraitItemKind::Const(_, Some(_))
| hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)) => {
if has_allow_dead_code_or_lang_attr(
self.tcx,
trait_item.hir_id,
&trait_item.attrs,
) {
self.worklist.push(trait_item.hir_id);
}
}
_ => {}
}
}
}
hir::ItemKind::Impl { ref of_trait, items, .. } => {
for impl_item_ref in items {
let impl_item = self.krate.impl_item(impl_item_ref.id);
if of_trait.is_some()
|| has_allow_dead_code_or_lang_attr(
self.tcx,
impl_item.hir_id,
&impl_item.attrs,
)
{
self.worklist.push(impl_item_ref.id.hir_id);
}
}
}
hir::ItemKind::Struct(ref variant_data, _) => {
if let Some(ctor_hir_id) = variant_data.ctor_hir_id() {
self.struct_constructors.insert(ctor_hir_id, item.hir_id);
}
}
_ => (),
}
}
fn visit_trait_item(&mut self, _item: &hir::TraitItem<'_>) {
// ignore: we are handling this in `visit_item` above
}
fn visit_impl_item(&mut self, _item: &hir::ImplItem<'_>) {
// ignore: we are handling this in `visit_item` above
}
}
fn create_and_seed_worklist<'tcx>(
tcx: TyCtxt<'tcx>,
access_levels: &privacy::AccessLevels,
krate: &hir::Crate<'_>,
) -> (Vec<hir::HirId>, FxHashMap<hir::HirId, hir::HirId>) {
let worklist = access_levels
.map
.iter()
.filter_map(
|(&id, level)| {
if level >= &privacy::AccessLevel::Reachable { Some(id) } else { None }
},
)
.chain(
// Seed entry point
tcx.entry_fn(LOCAL_CRATE).map(|(def_id, _)| tcx.hir().as_local_hir_id(def_id)),
)
.collect::<Vec<_>>();
// Seed implemented trait items
let mut life_seeder =
LifeSeeder { worklist, krate, tcx, struct_constructors: Default::default() };
krate.visit_all_item_likes(&mut life_seeder);
(life_seeder.worklist, life_seeder.struct_constructors)
}
fn find_live<'tcx>(
tcx: TyCtxt<'tcx>,
access_levels: &privacy::AccessLevels,
krate: &hir::Crate<'_>,
) -> FxHashSet<hir::HirId> {
let (worklist, struct_constructors) = create_and_seed_worklist(tcx, access_levels, krate);
let mut symbol_visitor = MarkSymbolVisitor {
worklist,
tcx,
maybe_typeck_tables: None,
live_symbols: Default::default(),
repr_has_repr_c: false,
in_pat: false,
inherited_pub_visibility: false,
ignore_variant_stack: vec![],
struct_constructors,
};
symbol_visitor.mark_live_symbols();
symbol_visitor.live_symbols
}
struct DeadVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
live_symbols: FxHashSet<hir::HirId>,
}
impl DeadVisitor<'tcx> {
fn should_warn_about_item(&mut self, item: &hir::Item<'_>) -> bool {
let should_warn = match item.kind {
hir::ItemKind::Static(..)
| hir::ItemKind::Const(..)
| hir::ItemKind::Fn(..)
| hir::ItemKind::TyAlias(..)
| hir::ItemKind::Enum(..)
| hir::ItemKind::Struct(..)
| hir::ItemKind::Union(..) => true,
_ => false,
};
should_warn && !self.symbol_is_live(item.hir_id)
}
fn should_warn_about_field(&mut self, field: &hir::StructField<'_>) -> bool {
let field_type = self.tcx.type_of(self.tcx.hir().local_def_id(field.hir_id));
!field.is_positional()
&& !self.symbol_is_live(field.hir_id)
&& !field_type.is_phantom_data()
&& !has_allow_dead_code_or_lang_attr(self.tcx, field.hir_id, &field.attrs)
}
fn should_warn_about_variant(&mut self, variant: &hir::Variant<'_>) -> bool {
!self.symbol_is_live(variant.id)
&& !has_allow_dead_code_or_lang_attr(self.tcx, variant.id, &variant.attrs)
}
fn should_warn_about_foreign_item(&mut self, fi: &hir::ForeignItem<'_>) -> bool {
!self.symbol_is_live(fi.hir_id)
&& !has_allow_dead_code_or_lang_attr(self.tcx, fi.hir_id, &fi.attrs)
}
// id := HIR id of an item's definition.
fn symbol_is_live(&mut self, id: hir::HirId) -> bool {
if self.live_symbols.contains(&id) {
return true;
}
// If it's a type whose items are live, then it's live, too.
// This is done to handle the case where, for example, the static
// method of a private type is used, but the type itself is never
// called directly.
let def_id = self.tcx.hir().local_def_id(id);
let inherent_impls = self.tcx.inherent_impls(def_id);
for &impl_did in inherent_impls.iter() {
for &item_did in &self.tcx.associated_item_def_ids(impl_did)[..] {
if let Some(did) = item_did.as_local() {
let item_hir_id = self.tcx.hir().as_local_hir_id(did);
if self.live_symbols.contains(&item_hir_id) {
return true;
}
}
}
}
false
}
fn warn_dead_code(
&mut self,
id: hir::HirId,
span: rustc_span::Span,
name: Symbol,
participle: &str,
) {
if !name.as_str().starts_with('_') {
self.tcx.struct_span_lint_hir(lint::builtin::DEAD_CODE, id, span, |lint| {
let def_id = self.tcx.hir().local_def_id(id);
let descr = self.tcx.def_kind(def_id).descr(def_id.to_def_id());
lint.build(&format!("{} is never {}: `{}`", descr, participle, name)).emit()
});
}
}
}
impl Visitor<'tcx> for DeadVisitor<'tcx> {
type Map = Map<'tcx>;
/// Walk nested items in place so that we don't report dead-code
/// on inner functions when the outer function is already getting
/// an error. We could do this also by checking the parents, but
/// this is how the code is setup and it seems harmless enough.
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::All(self.tcx.hir())
}
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
if self.should_warn_about_item(item) {
// For most items, we want to highlight its identifier
let span = match item.kind {
hir::ItemKind::Fn(..)
| hir::ItemKind::Mod(..)
| hir::ItemKind::Enum(..)
| hir::ItemKind::Struct(..)
| hir::ItemKind::Union(..)
| hir::ItemKind::Trait(..)
| hir::ItemKind::Impl { .. } => {
// FIXME(66095): Because item.span is annotated with things
// like expansion data, and ident.span isn't, we use the
// def_span method if it's part of a macro invocation
// (and thus has a source_callee set).
// We should probably annotate ident.span with the macro
// context, but that's a larger change.
if item.span.source_callee().is_some() {
self.tcx.sess.source_map().guess_head_span(item.span)
} else {
item.ident.span
}
}
_ => item.span,
};
let participle = match item.kind {
hir::ItemKind::Struct(..) => "constructed", // Issue #52325
_ => "used",
};
self.warn_dead_code(item.hir_id, span, item.ident.name, participle);
} else {
// Only continue if we didn't warn
intravisit::walk_item(self, item);
}
}
fn visit_variant(
&mut self,
variant: &'tcx hir::Variant<'tcx>,
g: &'tcx hir::Generics<'tcx>,
id: hir::HirId,
) {
if self.should_warn_about_variant(&variant) {
self.warn_dead_code(variant.id, variant.span, variant.ident.name, "constructed");
} else {
intravisit::walk_variant(self, variant, g, id);
}
}
fn visit_foreign_item(&mut self, fi: &'tcx hir::ForeignItem<'tcx>) {
if self.should_warn_about_foreign_item(fi) {
self.warn_dead_code(fi.hir_id, fi.span, fi.ident.name, "used");
}
intravisit::walk_foreign_item(self, fi);
}
fn visit_struct_field(&mut self, field: &'tcx hir::StructField<'tcx>) {
if self.should_warn_about_field(&field) {
self.warn_dead_code(field.hir_id, field.span, field.ident.name, "read");
}
intravisit::walk_struct_field(self, field);
}
fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
match impl_item.kind {
hir::ImplItemKind::Const(_, body_id) => {
if !self.symbol_is_live(impl_item.hir_id) {
self.warn_dead_code(
impl_item.hir_id,
impl_item.span,
impl_item.ident.name,
"used",
);
}
self.visit_nested_body(body_id)
}
hir::ImplItemKind::Fn(_, body_id) => {
if !self.symbol_is_live(impl_item.hir_id) {
// FIXME(66095): Because impl_item.span is annotated with things
// like expansion data, and ident.span isn't, we use the
// def_span method if it's part of a macro invocation
// (and thus has a source_callee set).
// We should probably annotate ident.span with the macro
// context, but that's a larger change.
let span = if impl_item.span.source_callee().is_some() {
self.tcx.sess.source_map().guess_head_span(impl_item.span)
} else {
impl_item.ident.span
};
self.warn_dead_code(impl_item.hir_id, span, impl_item.ident.name, "used");
}
self.visit_nested_body(body_id)
}
hir::ImplItemKind::TyAlias(..) => {}
}
}
// Overwrite so that we don't warn the trait item itself.
fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
match trait_item.kind {
hir::TraitItemKind::Const(_, Some(body_id))
| hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(body_id)) => {
self.visit_nested_body(body_id)
}
hir::TraitItemKind::Const(_, None)
| hir::TraitItemKind::Fn(_, hir::TraitFn::Required(_))
| hir::TraitItemKind::Type(..) => {}
}
}
}
pub fn check_crate(tcx: TyCtxt<'_>) {
let access_levels = &tcx.privacy_access_levels(LOCAL_CRATE);
let krate = tcx.hir().krate();
let live_symbols = find_live(tcx, access_levels, krate);
let mut visitor = DeadVisitor { tcx, live_symbols };
intravisit::walk_crate(&mut visitor, krate);
}