blob: 6c53df40a7c9a6c732ea2753e7e1cab0d856778d [file] [log] [blame]
//! Visitor for a run-time value with a given layout: Traverse enums, structs and other compound
//! types until we arrive at the leaves, with custom handling for primitive types.
use rustc_middle::mir::interpret::InterpResult;
use rustc_middle::ty;
use rustc_middle::ty::layout::TyAndLayout;
use rustc_target::abi::{FieldsShape, VariantIdx, Variants};
use std::num::NonZeroUsize;
use super::{InterpCx, MPlaceTy, Machine, OpTy};
// A thing that we can project into, and that has a layout.
// This wouldn't have to depend on `Machine` but with the current type inference,
// that's just more convenient to work with (avoids repeating all the `Machine` bounds).
pub trait Value<'mir, 'tcx, M: Machine<'mir, 'tcx>>: Copy {
/// Gets this value's layout.
fn layout(&self) -> TyAndLayout<'tcx>;
/// Makes this into an `OpTy`.
fn to_op(self, ecx: &InterpCx<'mir, 'tcx, M>) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>>;
/// Creates this from an `MPlaceTy`.
fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self;
/// Projects to the given enum variant.
fn project_downcast(
self,
ecx: &InterpCx<'mir, 'tcx, M>,
variant: VariantIdx,
) -> InterpResult<'tcx, Self>;
/// Projects to the n-th field.
fn project_field(self, ecx: &InterpCx<'mir, 'tcx, M>, field: usize)
-> InterpResult<'tcx, Self>;
}
// Operands and memory-places are both values.
// Places in general are not due to `place_field` having to do `force_allocation`.
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> Value<'mir, 'tcx, M> for OpTy<'tcx, M::PointerTag> {
#[inline(always)]
fn layout(&self) -> TyAndLayout<'tcx> {
self.layout
}
#[inline(always)]
fn to_op(
self,
_ecx: &InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
Ok(self)
}
#[inline(always)]
fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self {
mplace.into()
}
#[inline(always)]
fn project_downcast(
self,
ecx: &InterpCx<'mir, 'tcx, M>,
variant: VariantIdx,
) -> InterpResult<'tcx, Self> {
ecx.operand_downcast(self, variant)
}
#[inline(always)]
fn project_field(
self,
ecx: &InterpCx<'mir, 'tcx, M>,
field: usize,
) -> InterpResult<'tcx, Self> {
ecx.operand_field(self, field)
}
}
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> Value<'mir, 'tcx, M>
for MPlaceTy<'tcx, M::PointerTag>
{
#[inline(always)]
fn layout(&self) -> TyAndLayout<'tcx> {
self.layout
}
#[inline(always)]
fn to_op(
self,
_ecx: &InterpCx<'mir, 'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
Ok(self.into())
}
#[inline(always)]
fn from_mem_place(mplace: MPlaceTy<'tcx, M::PointerTag>) -> Self {
mplace
}
#[inline(always)]
fn project_downcast(
self,
ecx: &InterpCx<'mir, 'tcx, M>,
variant: VariantIdx,
) -> InterpResult<'tcx, Self> {
ecx.mplace_downcast(self, variant)
}
#[inline(always)]
fn project_field(
self,
ecx: &InterpCx<'mir, 'tcx, M>,
field: usize,
) -> InterpResult<'tcx, Self> {
ecx.mplace_field(self, field)
}
}
macro_rules! make_value_visitor {
($visitor_trait_name:ident, $($mutability:ident)?) => {
// How to traverse a value and what to do when we are at the leaves.
pub trait $visitor_trait_name<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>>: Sized {
type V: Value<'mir, 'tcx, M>;
/// The visitor must have an `InterpCx` in it.
fn ecx(&$($mutability)? self)
-> &$($mutability)? InterpCx<'mir, 'tcx, M>;
/// `read_discriminant` can be hooked for better error messages.
#[inline(always)]
fn read_discriminant(
&mut self,
op: OpTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, VariantIdx> {
Ok(self.ecx().read_discriminant(op)?.1)
}
// Recursive actions, ready to be overloaded.
/// Visits the given value, dispatching as appropriate to more specialized visitors.
#[inline(always)]
fn visit_value(&mut self, v: Self::V) -> InterpResult<'tcx>
{
self.walk_value(v)
}
/// Visits the given value as a union. No automatic recursion can happen here.
#[inline(always)]
fn visit_union(&mut self, _v: Self::V, _fields: NonZeroUsize) -> InterpResult<'tcx>
{
Ok(())
}
/// Visits this value as an aggregate, you are getting an iterator yielding
/// all the fields (still in an `InterpResult`, you have to do error handling yourself).
/// Recurses into the fields.
#[inline(always)]
fn visit_aggregate(
&mut self,
v: Self::V,
fields: impl Iterator<Item=InterpResult<'tcx, Self::V>>,
) -> InterpResult<'tcx> {
self.walk_aggregate(v, fields)
}
/// Called each time we recurse down to a field of a "product-like" aggregate
/// (structs, tuples, arrays and the like, but not enums), passing in old (outer)
/// and new (inner) value.
/// This gives the visitor the chance to track the stack of nested fields that
/// we are descending through.
#[inline(always)]
fn visit_field(
&mut self,
_old_val: Self::V,
_field: usize,
new_val: Self::V,
) -> InterpResult<'tcx> {
self.visit_value(new_val)
}
/// Called when recursing into an enum variant.
/// This gives the visitor the chance to track the stack of nested fields that
/// we are descending through.
#[inline(always)]
fn visit_variant(
&mut self,
_old_val: Self::V,
_variant: VariantIdx,
new_val: Self::V,
) -> InterpResult<'tcx> {
self.visit_value(new_val)
}
// Default recursors. Not meant to be overloaded.
fn walk_aggregate(
&mut self,
v: Self::V,
fields: impl Iterator<Item=InterpResult<'tcx, Self::V>>,
) -> InterpResult<'tcx> {
// Now iterate over it.
for (idx, field_val) in fields.enumerate() {
self.visit_field(v, idx, field_val?)?;
}
Ok(())
}
fn walk_value(&mut self, v: Self::V) -> InterpResult<'tcx>
{
trace!("walk_value: type: {}", v.layout().ty);
// Special treatment for special types, where the (static) layout is not sufficient.
match v.layout().ty.kind {
// If it is a trait object, switch to the real type that was used to create it.
ty::Dynamic(..) => {
// immediate trait objects are not a thing
let dest = v.to_op(self.ecx())?.assert_mem_place(self.ecx());
let inner = self.ecx().unpack_dyn_trait(dest)?.1;
trace!("walk_value: dyn object layout: {:#?}", inner.layout);
// recurse with the inner type
return self.visit_field(v, 0, Value::from_mem_place(inner));
},
// Slices do not need special handling here: they have `Array` field
// placement with length 0, so we enter the `Array` case below which
// indirectly uses the metadata to determine the actual length.
_ => {},
};
// Visit the fields of this value.
match v.layout().fields {
FieldsShape::Primitive => {},
FieldsShape::Union(fields) => {
self.visit_union(v, fields)?;
},
FieldsShape::Arbitrary { ref offsets, .. } => {
// FIXME: We collect in a vec because otherwise there are lifetime
// errors: Projecting to a field needs access to `ecx`.
let fields: Vec<InterpResult<'tcx, Self::V>> =
(0..offsets.len()).map(|i| {
v.project_field(self.ecx(), i)
})
.collect();
self.visit_aggregate(v, fields.into_iter())?;
},
FieldsShape::Array { .. } => {
// Let's get an mplace first.
let mplace = v.to_op(self.ecx())?.assert_mem_place(self.ecx());
// Now we can go over all the fields.
// This uses the *run-time length*, i.e., if we are a slice,
// the dynamic info from the metadata is used.
let iter = self.ecx().mplace_array_fields(mplace)?
.map(|f| f.and_then(|f| {
Ok(Value::from_mem_place(f))
}));
self.visit_aggregate(v, iter)?;
}
}
match v.layout().variants {
// If this is a multi-variant layout, find the right variant and proceed
// with *its* fields.
Variants::Multiple { .. } => {
let op = v.to_op(self.ecx())?;
let idx = self.read_discriminant(op)?;
let inner = v.project_downcast(self.ecx(), idx)?;
trace!("walk_value: variant layout: {:#?}", inner.layout());
// recurse with the inner type
self.visit_variant(v, idx, inner)
}
// For single-variant layouts, we already did anything there is to do.
Variants::Single { .. } => Ok(())
}
}
}
}
}
make_value_visitor!(ValueVisitor,);
make_value_visitor!(MutValueVisitor, mut);