blob: 8f125098ee68483638ad83c7f2683a7cfc0c3952 [file] [log] [blame]
use crate::ich::{self, StableHashingContext};
use crate::traits::specialization_graph;
use crate::ty::fast_reject;
use crate::ty::fold::TypeFoldable;
use crate::ty::{Ty, TyCtxt};
use rustc_hir as hir;
use rustc_hir::def_id::{CrateNum, DefId};
use rustc_hir::definitions::DefPathHash;
use rustc_hir::HirId;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_errors::ErrorReported;
use rustc_macros::HashStable;
use std::collections::BTreeMap;
/// A trait's definition with type information.
#[derive(HashStable)]
pub struct TraitDef {
// We already have the def_path_hash below, no need to hash it twice
#[stable_hasher(ignore)]
pub def_id: DefId,
pub unsafety: hir::Unsafety,
/// If `true`, then this trait had the `#[rustc_paren_sugar]`
/// attribute, indicating that it should be used with `Foo()`
/// sugar. This is a temporary thing -- eventually any trait will
/// be usable with the sugar (or without it).
pub paren_sugar: bool,
pub has_auto_impl: bool,
/// If `true`, then this trait has the `#[marker]` attribute, indicating
/// that all its associated items have defaults that cannot be overridden,
/// and thus `impl`s of it are allowed to overlap.
pub is_marker: bool,
/// Used to determine whether the standard library is allowed to specialize
/// on this trait.
pub specialization_kind: TraitSpecializationKind,
/// The ICH of this trait's DefPath, cached here so it doesn't have to be
/// recomputed all the time.
pub def_path_hash: DefPathHash,
}
/// Whether this trait is treated specially by the standard library
/// specialization lint.
#[derive(HashStable, PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
pub enum TraitSpecializationKind {
/// The default. Specializing on this trait is not allowed.
None,
/// Specializing on this trait is allowed because it doesn't have any
/// methods. For example `Sized` or `FusedIterator`.
/// Applies to traits with the `rustc_unsafe_specialization_marker`
/// attribute.
Marker,
/// Specializing on this trait is allowed because all of the impls of this
/// trait are "always applicable". Always applicable means that if
/// `X<'x>: T<'y>` for any lifetimes, then `for<'a, 'b> X<'a>: T<'b>`.
/// Applies to traits with the `rustc_specialization_trait` attribute.
AlwaysApplicable,
}
#[derive(Default)]
pub struct TraitImpls {
blanket_impls: Vec<DefId>,
/// Impls indexed by their simplified self type, for fast lookup.
non_blanket_impls: FxHashMap<fast_reject::SimplifiedType, Vec<DefId>>,
}
impl<'tcx> TraitDef {
pub fn new(
def_id: DefId,
unsafety: hir::Unsafety,
paren_sugar: bool,
has_auto_impl: bool,
is_marker: bool,
specialization_kind: TraitSpecializationKind,
def_path_hash: DefPathHash,
) -> TraitDef {
TraitDef {
def_id,
unsafety,
paren_sugar,
has_auto_impl,
is_marker,
specialization_kind,
def_path_hash,
}
}
pub fn ancestors(
&self,
tcx: TyCtxt<'tcx>,
of_impl: DefId,
) -> Result<specialization_graph::Ancestors<'tcx>, ErrorReported> {
specialization_graph::ancestors(tcx, self.def_id, of_impl)
}
}
impl<'tcx> TyCtxt<'tcx> {
pub fn for_each_impl<F: FnMut(DefId)>(self, def_id: DefId, mut f: F) {
let impls = self.trait_impls_of(def_id);
for &impl_def_id in impls.blanket_impls.iter() {
f(impl_def_id);
}
for v in impls.non_blanket_impls.values() {
for &impl_def_id in v {
f(impl_def_id);
}
}
}
/// Iterate over every impl that could possibly match the
/// self type `self_ty`.
pub fn for_each_relevant_impl<F: FnMut(DefId)>(
self,
def_id: DefId,
self_ty: Ty<'tcx>,
mut f: F,
) {
let impls = self.trait_impls_of(def_id);
for &impl_def_id in impls.blanket_impls.iter() {
f(impl_def_id);
}
// simplify_type(.., false) basically replaces type parameters and
// projections with infer-variables. This is, of course, done on
// the impl trait-ref when it is instantiated, but not on the
// predicate trait-ref which is passed here.
//
// for example, if we match `S: Copy` against an impl like
// `impl<T:Copy> Copy for Option<T>`, we replace the type variable
// in `Option<T>` with an infer variable, to `Option<_>` (this
// doesn't actually change fast_reject output), but we don't
// replace `S` with anything - this impl of course can't be
// selected, and as there are hundreds of similar impls,
// considering them would significantly harm performance.
// This depends on the set of all impls for the trait. That is
// unfortunate. When we get red-green recompilation, we would like
// to have a way of knowing whether the set of relevant impls
// changed. The most naive
// way would be to compute the Vec of relevant impls and see whether
// it differs between compilations. That shouldn't be too slow by
// itself - we do quite a bit of work for each relevant impl anyway.
//
// If we want to be faster, we could have separate queries for
// blanket and non-blanket impls, and compare them separately.
//
// I think we'll cross that bridge when we get to it.
if let Some(simp) = fast_reject::simplify_type(self, self_ty, true) {
if let Some(impls) = impls.non_blanket_impls.get(&simp) {
for &impl_def_id in impls {
f(impl_def_id);
}
}
} else {
for &impl_def_id in impls.non_blanket_impls.values().flatten() {
f(impl_def_id);
}
}
}
/// Returns a vector containing all impls
pub fn all_impls(self, def_id: DefId) -> impl Iterator<Item = DefId> + 'tcx {
let TraitImpls { blanket_impls, non_blanket_impls } = self.trait_impls_of(def_id);
blanket_impls.iter().chain(non_blanket_impls.iter().map(|(_, v)| v).flatten()).cloned()
}
}
// Query provider for `all_local_trait_impls`.
pub(super) fn all_local_trait_impls<'tcx>(
tcx: TyCtxt<'tcx>,
krate: CrateNum,
) -> &'tcx BTreeMap<DefId, Vec<HirId>> {
&tcx.hir_crate(krate).trait_impls
}
// Query provider for `trait_impls_of`.
pub(super) fn trait_impls_of_provider(tcx: TyCtxt<'_>, trait_id: DefId) -> TraitImpls {
let mut impls = TraitImpls::default();
{
let mut add_impl = |impl_def_id: DefId| {
let impl_self_ty = tcx.type_of(impl_def_id);
if impl_def_id.is_local() && impl_self_ty.references_error() {
return;
}
if let Some(simplified_self_ty) = fast_reject::simplify_type(tcx, impl_self_ty, false) {
impls.non_blanket_impls.entry(simplified_self_ty).or_default().push(impl_def_id);
} else {
impls.blanket_impls.push(impl_def_id);
}
};
// Traits defined in the current crate can't have impls in upstream
// crates, so we don't bother querying the cstore.
if !trait_id.is_local() {
for &cnum in tcx.crates().iter() {
for &def_id in tcx.implementations_of_trait((cnum, trait_id)).iter() {
add_impl(def_id);
}
}
}
for &hir_id in tcx.hir().trait_impls(trait_id) {
add_impl(tcx.hir().local_def_id(hir_id).to_def_id());
}
}
impls
}
impl<'a> HashStable<StableHashingContext<'a>> for TraitImpls {
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
let TraitImpls { ref blanket_impls, ref non_blanket_impls } = *self;
ich::hash_stable_trait_impls(hcx, hasher, blanket_impls, non_blanket_impls);
}
}