blob: b14f17dee60603f4340116a64edd286038525ef7 [file] [log] [blame]
//! This module defines the `DepNode` type which the compiler uses to represent
//! nodes in the dependency graph. A `DepNode` consists of a `DepKind` (which
//! specifies the kind of thing it represents, like a piece of HIR, MIR, etc)
//! and a `Fingerprint`, a 128 bit hash value the exact meaning of which
//! depends on the node's `DepKind`. Together, the kind and the fingerprint
//! fully identify a dependency node, even across multiple compilation sessions.
//! In other words, the value of the fingerprint does not depend on anything
//! that is specific to a given compilation session, like an unpredictable
//! interning key (e.g., NodeId, DefId, Symbol) or the numeric value of a
//! pointer. The concept behind this could be compared to how git commit hashes
//! uniquely identify a given commit and has a few advantages:
//!
//! * A `DepNode` can simply be serialized to disk and loaded in another session
//! without the need to do any "rebasing (like we have to do for Spans and
//! NodeIds) or "retracing" like we had to do for `DefId` in earlier
//! implementations of the dependency graph.
//! * A `Fingerprint` is just a bunch of bits, which allows `DepNode` to
//! implement `Copy`, `Sync`, `Send`, `Freeze`, etc.
//! * Since we just have a bit pattern, `DepNode` can be mapped from disk into
//! memory without any post-processing (e.g., "abomination-style" pointer
//! reconstruction).
//! * Because a `DepNode` is self-contained, we can instantiate `DepNodes` that
//! refer to things that do not exist anymore. In previous implementations
//! `DepNode` contained a `DefId`. A `DepNode` referring to something that
//! had been removed between the previous and the current compilation session
//! could not be instantiated because the current compilation session
//! contained no `DefId` for thing that had been removed.
//!
//! `DepNode` definition happens in the `define_dep_nodes!()` macro. This macro
//! defines the `DepKind` enum and a corresponding `DepConstructor` enum. The
//! `DepConstructor` enum links a `DepKind` to the parameters that are needed at
//! runtime in order to construct a valid `DepNode` fingerprint.
//!
//! Because the macro sees what parameters a given `DepKind` requires, it can
//! "infer" some properties for each kind of `DepNode`:
//!
//! * Whether a `DepNode` of a given kind has any parameters at all. Some
//! `DepNode`s could represent global concepts with only one value.
//! * Whether it is possible, in principle, to reconstruct a query key from a
//! given `DepNode`. Many `DepKind`s only require a single `DefId` parameter,
//! in which case it is possible to map the node's fingerprint back to the
//! `DefId` it was computed from. In other cases, too much information gets
//! lost during fingerprint computation.
//!
//! The `DepConstructor` enum, together with `DepNode::new()` ensures that only
//! valid `DepNode` instances can be constructed. For example, the API does not
//! allow for constructing parameterless `DepNode`s with anything other
//! than a zeroed out fingerprint. More generally speaking, it relieves the
//! user of the `DepNode` API of having to know how to compute the expected
//! fingerprint for a given set of node parameters.
use crate::mir::interpret::{GlobalId, LitToConstInput};
use crate::traits;
use crate::traits::query::{
CanonicalPredicateGoal, CanonicalProjectionGoal, CanonicalTyGoal,
CanonicalTypeOpAscribeUserTypeGoal, CanonicalTypeOpEqGoal, CanonicalTypeOpNormalizeGoal,
CanonicalTypeOpProvePredicateGoal, CanonicalTypeOpSubtypeGoal,
};
use crate::ty::subst::{GenericArg, SubstsRef};
use crate::ty::{self, ParamEnvAnd, Ty, TyCtxt};
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, CRATE_DEF_INDEX};
use rustc_hir::definitions::DefPathHash;
use rustc_hir::HirId;
use rustc_span::symbol::Symbol;
use std::hash::Hash;
pub use rustc_query_system::dep_graph::{DepContext, DepNodeParams};
// erase!() just makes tokens go away. It's used to specify which macro argument
// is repeated (i.e., which sub-expression of the macro we are in) but don't need
// to actually use any of the arguments.
macro_rules! erase {
($x:tt) => {{}};
}
macro_rules! is_anon_attr {
(anon) => {
true
};
($attr:ident) => {
false
};
}
macro_rules! is_eval_always_attr {
(eval_always) => {
true
};
($attr:ident) => {
false
};
}
macro_rules! contains_anon_attr {
($($attr:ident $(($($attr_args:tt)*))* ),*) => ({$(is_anon_attr!($attr) | )* false});
}
macro_rules! contains_eval_always_attr {
($($attr:ident $(($($attr_args:tt)*))* ),*) => ({$(is_eval_always_attr!($attr) | )* false});
}
macro_rules! define_dep_nodes {
(<$tcx:tt>
$(
[$($attrs:tt)*]
$variant:ident $(( $tuple_arg_ty:ty $(,)? ))*
,)*
) => (
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash,
RustcEncodable, RustcDecodable)]
#[allow(non_camel_case_types)]
pub enum DepKind {
$($variant),*
}
impl DepKind {
#[allow(unreachable_code)]
pub fn can_reconstruct_query_key<$tcx>(&self) -> bool {
match *self {
$(
DepKind :: $variant => {
if contains_anon_attr!($($attrs)*) {
return false;
}
// tuple args
$({
return <$tuple_arg_ty as DepNodeParams<TyCtxt<'_>>>
::can_reconstruct_query_key();
})*
true
}
)*
}
}
pub fn is_anon(&self) -> bool {
match *self {
$(
DepKind :: $variant => { contains_anon_attr!($($attrs)*) }
)*
}
}
pub fn is_eval_always(&self) -> bool {
match *self {
$(
DepKind :: $variant => { contains_eval_always_attr!($($attrs)*) }
)*
}
}
#[allow(unreachable_code)]
pub fn has_params(&self) -> bool {
match *self {
$(
DepKind :: $variant => {
// tuple args
$({
erase!($tuple_arg_ty);
return true;
})*
false
}
)*
}
}
}
pub struct DepConstructor;
#[allow(non_camel_case_types)]
impl DepConstructor {
$(
#[inline(always)]
#[allow(unreachable_code, non_snake_case)]
pub fn $variant(_tcx: TyCtxt<'_>, $(arg: $tuple_arg_ty)*) -> DepNode {
// tuple args
$({
erase!($tuple_arg_ty);
return DepNode::construct(_tcx, DepKind::$variant, &arg)
})*
return DepNode::construct(_tcx, DepKind::$variant, &())
}
)*
}
pub type DepNode = rustc_query_system::dep_graph::DepNode<DepKind>;
pub trait DepNodeExt: Sized {
/// Construct a DepNode from the given DepKind and DefPathHash. This
/// method will assert that the given DepKind actually requires a
/// single DefId/DefPathHash parameter.
fn from_def_path_hash(def_path_hash: DefPathHash, kind: DepKind) -> Self;
/// Extracts the DefId corresponding to this DepNode. This will work
/// if two conditions are met:
///
/// 1. The Fingerprint of the DepNode actually is a DefPathHash, and
/// 2. the item that the DefPath refers to exists in the current tcx.
///
/// Condition (1) is determined by the DepKind variant of the
/// DepNode. Condition (2) might not be fulfilled if a DepNode
/// refers to something from the previous compilation session that
/// has been removed.
fn extract_def_id(&self, tcx: TyCtxt<'_>) -> Option<DefId>;
/// Used in testing
fn from_label_string(label: &str, def_path_hash: DefPathHash)
-> Result<Self, ()>;
/// Used in testing
fn has_label_string(label: &str) -> bool;
}
impl DepNodeExt for DepNode {
/// Construct a DepNode from the given DepKind and DefPathHash. This
/// method will assert that the given DepKind actually requires a
/// single DefId/DefPathHash parameter.
fn from_def_path_hash(def_path_hash: DefPathHash, kind: DepKind) -> DepNode {
debug_assert!(kind.can_reconstruct_query_key() && kind.has_params());
DepNode {
kind,
hash: def_path_hash.0,
}
}
/// Extracts the DefId corresponding to this DepNode. This will work
/// if two conditions are met:
///
/// 1. The Fingerprint of the DepNode actually is a DefPathHash, and
/// 2. the item that the DefPath refers to exists in the current tcx.
///
/// Condition (1) is determined by the DepKind variant of the
/// DepNode. Condition (2) might not be fulfilled if a DepNode
/// refers to something from the previous compilation session that
/// has been removed.
fn extract_def_id(&self, tcx: TyCtxt<'tcx>) -> Option<DefId> {
if self.kind.can_reconstruct_query_key() {
let def_path_hash = DefPathHash(self.hash);
tcx.def_path_hash_to_def_id.as_ref()?.get(&def_path_hash).cloned()
} else {
None
}
}
/// Used in testing
fn from_label_string(label: &str, def_path_hash: DefPathHash) -> Result<DepNode, ()> {
let kind = match label {
$(
stringify!($variant) => DepKind::$variant,
)*
_ => return Err(()),
};
if !kind.can_reconstruct_query_key() {
return Err(());
}
if kind.has_params() {
Ok(DepNode::from_def_path_hash(def_path_hash, kind))
} else {
Ok(DepNode::new_no_params(kind))
}
}
/// Used in testing
fn has_label_string(label: &str) -> bool {
match label {
$(
stringify!($variant) => true,
)*
_ => false,
}
}
}
/// Contains variant => str representations for constructing
/// DepNode groups for tests.
#[allow(dead_code, non_upper_case_globals)]
pub mod label_strs {
$(
pub const $variant: &str = stringify!($variant);
)*
}
);
}
rustc_dep_node_append!([define_dep_nodes!][ <'tcx>
// We use this for most things when incr. comp. is turned off.
[] Null,
// Represents metadata from an extern crate.
[eval_always] CrateMetadata(CrateNum),
[anon] TraitSelect,
[] CompileCodegenUnit(Symbol),
]);
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for DefId {
#[inline]
fn can_reconstruct_query_key() -> bool {
true
}
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
tcx.def_path_hash(*self).0
}
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
tcx.def_path_str(*self)
}
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
dep_node.extract_def_id(tcx)
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for LocalDefId {
#[inline]
fn can_reconstruct_query_key() -> bool {
true
}
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
self.to_def_id().to_fingerprint(tcx)
}
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
self.to_def_id().to_debug_str(tcx)
}
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
dep_node.extract_def_id(tcx).map(|id| id.expect_local())
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for CrateNum {
#[inline]
fn can_reconstruct_query_key() -> bool {
true
}
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
let def_id = DefId { krate: *self, index: CRATE_DEF_INDEX };
tcx.def_path_hash(def_id).0
}
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
tcx.crate_name(*self).to_string()
}
fn recover(tcx: TyCtxt<'tcx>, dep_node: &DepNode) -> Option<Self> {
dep_node.extract_def_id(tcx).map(|id| id.krate)
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for (DefId, DefId) {
#[inline]
fn can_reconstruct_query_key() -> bool {
false
}
// We actually would not need to specialize the implementation of this
// method but it's faster to combine the hashes than to instantiate a full
// hashing context and stable-hashing state.
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
let (def_id_0, def_id_1) = *self;
let def_path_hash_0 = tcx.def_path_hash(def_id_0);
let def_path_hash_1 = tcx.def_path_hash(def_id_1);
def_path_hash_0.0.combine(def_path_hash_1.0)
}
fn to_debug_str(&self, tcx: TyCtxt<'tcx>) -> String {
let (def_id_0, def_id_1) = *self;
format!("({}, {})", tcx.def_path_debug_str(def_id_0), tcx.def_path_debug_str(def_id_1))
}
}
impl<'tcx> DepNodeParams<TyCtxt<'tcx>> for HirId {
#[inline]
fn can_reconstruct_query_key() -> bool {
false
}
// We actually would not need to specialize the implementation of this
// method but it's faster to combine the hashes than to instantiate a full
// hashing context and stable-hashing state.
fn to_fingerprint(&self, tcx: TyCtxt<'tcx>) -> Fingerprint {
let HirId { owner, local_id } = *self;
let def_path_hash = tcx.def_path_hash(owner.to_def_id());
let local_id = Fingerprint::from_smaller_hash(local_id.as_u32().into());
def_path_hash.0.combine(local_id)
}
}