blob: db935c2b3e2658a027ba7525da21a38e90146a44 [file] [log] [blame]
//! An analysis to determine which locals require allocas and
//! which do not.
use super::FunctionCx;
use crate::traits::*;
use rustc_data_structures::graph::dominators::Dominators;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::{Idx, IndexVec};
use rustc_middle::mir::traversal;
use rustc_middle::mir::visit::{
MutatingUseContext, NonMutatingUseContext, NonUseContext, PlaceContext, Visitor,
};
use rustc_middle::mir::{self, Location, TerminatorKind};
use rustc_middle::ty;
use rustc_middle::ty::layout::HasTyCtxt;
use rustc_target::abi::LayoutOf;
pub fn non_ssa_locals<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
fx: &FunctionCx<'a, 'tcx, Bx>,
) -> BitSet<mir::Local> {
let mir = fx.mir;
let mut analyzer = LocalAnalyzer::new(fx);
analyzer.visit_body(&mir);
for (local, decl) in mir.local_decls.iter_enumerated() {
let ty = fx.monomorphize(&decl.ty);
debug!("local {:?} has type `{}`", local, ty);
let layout = fx.cx.spanned_layout_of(ty, decl.source_info.span);
if fx.cx.is_backend_immediate(layout) {
// These sorts of types are immediates that we can store
// in an Value without an alloca.
} else if fx.cx.is_backend_scalar_pair(layout) {
// We allow pairs and uses of any of their 2 fields.
} else {
// These sorts of types require an alloca. Note that
// is_llvm_immediate() may *still* be true, particularly
// for newtypes, but we currently force some types
// (e.g., structs) into an alloca unconditionally, just so
// that we don't have to deal with having two pathways
// (gep vs extractvalue etc).
analyzer.not_ssa(local);
}
}
analyzer.non_ssa_locals
}
struct LocalAnalyzer<'mir, 'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> {
fx: &'mir FunctionCx<'a, 'tcx, Bx>,
dominators: Dominators<mir::BasicBlock>,
non_ssa_locals: BitSet<mir::Local>,
// The location of the first visited direct assignment to each
// local, or an invalid location (out of bounds `block` index).
first_assignment: IndexVec<mir::Local, Location>,
}
impl<Bx: BuilderMethods<'a, 'tcx>> LocalAnalyzer<'mir, 'a, 'tcx, Bx> {
fn new(fx: &'mir FunctionCx<'a, 'tcx, Bx>) -> Self {
let invalid_location = mir::BasicBlock::new(fx.mir.basic_blocks().len()).start_location();
let dominators = fx.mir.dominators();
let mut analyzer = LocalAnalyzer {
fx,
dominators,
non_ssa_locals: BitSet::new_empty(fx.mir.local_decls.len()),
first_assignment: IndexVec::from_elem(invalid_location, &fx.mir.local_decls),
};
// Arguments get assigned to by means of the function being called
for arg in fx.mir.args_iter() {
analyzer.first_assignment[arg] = mir::START_BLOCK.start_location();
}
analyzer
}
fn first_assignment(&self, local: mir::Local) -> Option<Location> {
let location = self.first_assignment[local];
if location.block.index() < self.fx.mir.basic_blocks().len() {
Some(location)
} else {
None
}
}
fn not_ssa(&mut self, local: mir::Local) {
debug!("marking {:?} as non-SSA", local);
self.non_ssa_locals.insert(local);
}
fn assign(&mut self, local: mir::Local, location: Location) {
if self.first_assignment(local).is_some() {
self.not_ssa(local);
} else {
self.first_assignment[local] = location;
}
}
fn process_place(
&mut self,
place_ref: &mir::PlaceRef<'tcx>,
context: PlaceContext,
location: Location,
) {
let cx = self.fx.cx;
if let &[ref proj_base @ .., elem] = place_ref.projection {
let mut base_context = if context.is_mutating_use() {
PlaceContext::MutatingUse(MutatingUseContext::Projection)
} else {
PlaceContext::NonMutatingUse(NonMutatingUseContext::Projection)
};
// Allow uses of projections that are ZSTs or from scalar fields.
let is_consume = match context {
PlaceContext::NonMutatingUse(
NonMutatingUseContext::Copy | NonMutatingUseContext::Move,
) => true,
_ => false,
};
if is_consume {
let base_ty =
mir::Place::ty_from(place_ref.local, proj_base, self.fx.mir, cx.tcx());
let base_ty = self.fx.monomorphize(&base_ty);
// ZSTs don't require any actual memory access.
let elem_ty = base_ty.projection_ty(cx.tcx(), elem).ty;
let elem_ty = self.fx.monomorphize(&elem_ty);
let span = self.fx.mir.local_decls[place_ref.local].source_info.span;
if cx.spanned_layout_of(elem_ty, span).is_zst() {
return;
}
if let mir::ProjectionElem::Field(..) = elem {
let layout = cx.spanned_layout_of(base_ty.ty, span);
if cx.is_backend_immediate(layout) || cx.is_backend_scalar_pair(layout) {
// Recurse with the same context, instead of `Projection`,
// potentially stopping at non-operand projections,
// which would trigger `not_ssa` on locals.
base_context = context;
}
}
}
if let mir::ProjectionElem::Deref = elem {
// Deref projections typically only read the pointer.
// (the exception being `VarDebugInfo` contexts, handled below)
base_context = PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy);
// Indirect debuginfo requires going through memory, that only
// the debugger accesses, following our emitted DWARF pointer ops.
//
// FIXME(eddyb) Investigate the possibility of relaxing this, but
// note that `llvm.dbg.declare` *must* be used for indirect places,
// even if we start using `llvm.dbg.value` for all other cases,
// as we don't necessarily know when the value changes, but only
// where it lives in memory.
//
// It's possible `llvm.dbg.declare` could support starting from
// a pointer that doesn't point to an `alloca`, but this would
// only be useful if we know the pointer being `Deref`'d comes
// from an immutable place, and if `llvm.dbg.declare` calls
// must be at the very start of the function, then only function
// arguments could contain such pointers.
if context == PlaceContext::NonUse(NonUseContext::VarDebugInfo) {
// We use `NonUseContext::VarDebugInfo` for the base,
// which might not force the base local to memory,
// so we have to do it manually.
self.visit_local(&place_ref.local, context, location);
}
}
// `NonUseContext::VarDebugInfo` needs to flow all the
// way down to the base local (see `visit_local`).
if context == PlaceContext::NonUse(NonUseContext::VarDebugInfo) {
base_context = context;
}
self.process_place(
&mir::PlaceRef { local: place_ref.local, projection: proj_base },
base_context,
location,
);
// HACK(eddyb) this emulates the old `visit_projection_elem`, this
// entire `visit_place`-like `process_place` method should be rewritten,
// now that we have moved to the "slice of projections" representation.
if let mir::ProjectionElem::Index(local) = elem {
self.visit_local(
&local,
PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy),
location,
);
}
} else {
// FIXME this is super_place code, is repeated here to avoid cloning place or changing
// visit_place API
let mut context = context;
if !place_ref.projection.is_empty() {
context = if context.is_mutating_use() {
PlaceContext::MutatingUse(MutatingUseContext::Projection)
} else {
PlaceContext::NonMutatingUse(NonMutatingUseContext::Projection)
};
}
self.visit_local(&place_ref.local, context, location);
self.visit_projection(place_ref.local, place_ref.projection, context, location);
}
}
}
impl<'mir, 'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> Visitor<'tcx>
for LocalAnalyzer<'mir, 'a, 'tcx, Bx>
{
fn visit_assign(
&mut self,
place: &mir::Place<'tcx>,
rvalue: &mir::Rvalue<'tcx>,
location: Location,
) {
debug!("visit_assign(place={:?}, rvalue={:?})", place, rvalue);
if let Some(index) = place.as_local() {
self.assign(index, location);
let decl_span = self.fx.mir.local_decls[index].source_info.span;
if !self.fx.rvalue_creates_operand(rvalue, decl_span) {
self.not_ssa(index);
}
} else {
self.visit_place(place, PlaceContext::MutatingUse(MutatingUseContext::Store), location);
}
self.visit_rvalue(rvalue, location);
}
fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
let check = match terminator.kind {
mir::TerminatorKind::Call { func: mir::Operand::Constant(ref c), ref args, .. } => {
match c.literal.ty.kind {
ty::FnDef(did, _) => Some((did, args)),
_ => None,
}
}
_ => None,
};
if let Some((def_id, args)) = check {
if Some(def_id) == self.fx.cx.tcx().lang_items().box_free_fn() {
// box_free(x) shares with `drop x` the property that it
// is not guaranteed to be statically dominated by the
// definition of x, so x must always be in an alloca.
if let mir::Operand::Move(ref place) = args[0] {
self.visit_place(
place,
PlaceContext::MutatingUse(MutatingUseContext::Drop),
location,
);
}
}
}
self.super_terminator(terminator, location);
}
fn visit_place(&mut self, place: &mir::Place<'tcx>, context: PlaceContext, location: Location) {
debug!("visit_place(place={:?}, context={:?})", place, context);
self.process_place(&place.as_ref(), context, location);
}
fn visit_local(&mut self, &local: &mir::Local, context: PlaceContext, location: Location) {
match context {
PlaceContext::MutatingUse(MutatingUseContext::Call)
| PlaceContext::MutatingUse(MutatingUseContext::Yield) => {
self.assign(local, location);
}
PlaceContext::NonUse(_) | PlaceContext::MutatingUse(MutatingUseContext::Retag) => {}
PlaceContext::NonMutatingUse(
NonMutatingUseContext::Copy | NonMutatingUseContext::Move,
) => {
// Reads from uninitialized variables (e.g., in dead code, after
// optimizations) require locals to be in (uninitialized) memory.
// N.B., there can be uninitialized reads of a local visited after
// an assignment to that local, if they happen on disjoint paths.
let ssa_read = match self.first_assignment(local) {
Some(assignment_location) => {
assignment_location.dominates(location, &self.dominators)
}
None => false,
};
if !ssa_read {
self.not_ssa(local);
}
}
PlaceContext::MutatingUse(
MutatingUseContext::Store
| MutatingUseContext::AsmOutput
| MutatingUseContext::Borrow
| MutatingUseContext::AddressOf
| MutatingUseContext::Projection,
)
| PlaceContext::NonMutatingUse(
NonMutatingUseContext::Inspect
| NonMutatingUseContext::SharedBorrow
| NonMutatingUseContext::UniqueBorrow
| NonMutatingUseContext::ShallowBorrow
| NonMutatingUseContext::AddressOf
| NonMutatingUseContext::Projection,
) => {
self.not_ssa(local);
}
PlaceContext::MutatingUse(MutatingUseContext::Drop) => {
let ty = self.fx.mir.local_decls[local].ty;
let ty = self.fx.monomorphize(&ty);
// Only need the place if we're actually dropping it.
if self.fx.cx.type_needs_drop(ty) {
self.not_ssa(local);
}
}
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum CleanupKind {
NotCleanup,
Funclet,
Internal { funclet: mir::BasicBlock },
}
impl CleanupKind {
pub fn funclet_bb(self, for_bb: mir::BasicBlock) -> Option<mir::BasicBlock> {
match self {
CleanupKind::NotCleanup => None,
CleanupKind::Funclet => Some(for_bb),
CleanupKind::Internal { funclet } => Some(funclet),
}
}
}
pub fn cleanup_kinds(mir: &mir::Body<'_>) -> IndexVec<mir::BasicBlock, CleanupKind> {
fn discover_masters<'tcx>(
result: &mut IndexVec<mir::BasicBlock, CleanupKind>,
mir: &mir::Body<'tcx>,
) {
for (bb, data) in mir.basic_blocks().iter_enumerated() {
match data.terminator().kind {
TerminatorKind::Goto { .. }
| TerminatorKind::Resume
| TerminatorKind::Abort
| TerminatorKind::Return
| TerminatorKind::GeneratorDrop
| TerminatorKind::Unreachable
| TerminatorKind::SwitchInt { .. }
| TerminatorKind::Yield { .. }
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. }
| TerminatorKind::InlineAsm { .. } => { /* nothing to do */ }
TerminatorKind::Call { cleanup: unwind, .. }
| TerminatorKind::Assert { cleanup: unwind, .. }
| TerminatorKind::DropAndReplace { unwind, .. }
| TerminatorKind::Drop { unwind, .. } => {
if let Some(unwind) = unwind {
debug!(
"cleanup_kinds: {:?}/{:?} registering {:?} as funclet",
bb, data, unwind
);
result[unwind] = CleanupKind::Funclet;
}
}
}
}
}
fn propagate<'tcx>(result: &mut IndexVec<mir::BasicBlock, CleanupKind>, mir: &mir::Body<'tcx>) {
let mut funclet_succs = IndexVec::from_elem(None, mir.basic_blocks());
let mut set_successor = |funclet: mir::BasicBlock, succ| match funclet_succs[funclet] {
ref mut s @ None => {
debug!("set_successor: updating successor of {:?} to {:?}", funclet, succ);
*s = Some(succ);
}
Some(s) => {
if s != succ {
span_bug!(
mir.span,
"funclet {:?} has 2 parents - {:?} and {:?}",
funclet,
s,
succ
);
}
}
};
for (bb, data) in traversal::reverse_postorder(mir) {
let funclet = match result[bb] {
CleanupKind::NotCleanup => continue,
CleanupKind::Funclet => bb,
CleanupKind::Internal { funclet } => funclet,
};
debug!(
"cleanup_kinds: {:?}/{:?}/{:?} propagating funclet {:?}",
bb, data, result[bb], funclet
);
for &succ in data.terminator().successors() {
let kind = result[succ];
debug!("cleanup_kinds: propagating {:?} to {:?}/{:?}", funclet, succ, kind);
match kind {
CleanupKind::NotCleanup => {
result[succ] = CleanupKind::Internal { funclet };
}
CleanupKind::Funclet => {
if funclet != succ {
set_successor(funclet, succ);
}
}
CleanupKind::Internal { funclet: succ_funclet } => {
if funclet != succ_funclet {
// `succ` has 2 different funclet going into it, so it must
// be a funclet by itself.
debug!(
"promoting {:?} to a funclet and updating {:?}",
succ, succ_funclet
);
result[succ] = CleanupKind::Funclet;
set_successor(succ_funclet, succ);
set_successor(funclet, succ);
}
}
}
}
}
}
let mut result = IndexVec::from_elem(CleanupKind::NotCleanup, mir.basic_blocks());
discover_masters(&mut result, mir);
propagate(&mut result, mir);
debug!("cleanup_kinds: result={:?}", result);
result
}