blob: 54271d3dd04919e61a9fad93c31e8d1007ba2c59 [file] [log] [blame]
use crate::attributes;
use crate::back::lto::ThinBuffer;
use crate::back::profiling::{
selfprofile_after_pass_callback, selfprofile_before_pass_callback, LlvmSelfProfiler,
};
use crate::base;
use crate::common;
use crate::consts;
use crate::llvm::{self, DiagnosticInfo, PassManager, SMDiagnostic};
use crate::llvm_util;
use crate::type_::Type;
use crate::LlvmCodegenBackend;
use crate::ModuleLlvm;
use log::debug;
use rustc_codegen_ssa::back::write::{BitcodeSection, CodegenContext, EmitObj, ModuleConfig};
use rustc_codegen_ssa::traits::*;
use rustc_codegen_ssa::{CompiledModule, ModuleCodegen};
use rustc_data_structures::small_c_str::SmallCStr;
use rustc_errors::{FatalError, Handler, Level};
use rustc_fs_util::{link_or_copy, path_to_c_string};
use rustc_hir::def_id::LOCAL_CRATE;
use rustc_middle::bug;
use rustc_middle::ty::TyCtxt;
use rustc_session::config::{self, Lto, OutputType, Passes, SanitizerSet, SwitchWithOptPath};
use rustc_session::Session;
use rustc_span::symbol::sym;
use rustc_span::InnerSpan;
use rustc_target::spec::{CodeModel, RelocModel};
use libc::{c_char, c_int, c_uint, c_void, size_t};
use std::ffi::CString;
use std::fs;
use std::io::{self, Write};
use std::path::{Path, PathBuf};
use std::slice;
use std::str;
use std::sync::Arc;
pub fn llvm_err(handler: &rustc_errors::Handler, msg: &str) -> FatalError {
match llvm::last_error() {
Some(err) => handler.fatal(&format!("{}: {}", msg, err)),
None => handler.fatal(&msg),
}
}
pub fn write_output_file(
handler: &rustc_errors::Handler,
target: &'ll llvm::TargetMachine,
pm: &llvm::PassManager<'ll>,
m: &'ll llvm::Module,
output: &Path,
file_type: llvm::FileType,
) -> Result<(), FatalError> {
unsafe {
let output_c = path_to_c_string(output);
let result = llvm::LLVMRustWriteOutputFile(target, pm, m, output_c.as_ptr(), file_type);
result.into_result().map_err(|()| {
let msg = format!("could not write output to {}", output.display());
llvm_err(handler, &msg)
})
}
}
pub fn create_informational_target_machine(sess: &Session) -> &'static mut llvm::TargetMachine {
target_machine_factory(sess, config::OptLevel::No)()
.unwrap_or_else(|err| llvm_err(sess.diagnostic(), &err).raise())
}
pub fn create_target_machine(tcx: TyCtxt<'_>) -> &'static mut llvm::TargetMachine {
target_machine_factory(&tcx.sess, tcx.backend_optimization_level(LOCAL_CRATE))()
.unwrap_or_else(|err| llvm_err(tcx.sess.diagnostic(), &err).raise())
}
pub fn to_llvm_opt_settings(
cfg: config::OptLevel,
) -> (llvm::CodeGenOptLevel, llvm::CodeGenOptSize) {
use self::config::OptLevel::*;
match cfg {
No => (llvm::CodeGenOptLevel::None, llvm::CodeGenOptSizeNone),
Less => (llvm::CodeGenOptLevel::Less, llvm::CodeGenOptSizeNone),
Default => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeNone),
Aggressive => (llvm::CodeGenOptLevel::Aggressive, llvm::CodeGenOptSizeNone),
Size => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeDefault),
SizeMin => (llvm::CodeGenOptLevel::Default, llvm::CodeGenOptSizeAggressive),
}
}
fn to_pass_builder_opt_level(cfg: config::OptLevel) -> llvm::PassBuilderOptLevel {
use config::OptLevel::*;
match cfg {
No => llvm::PassBuilderOptLevel::O0,
Less => llvm::PassBuilderOptLevel::O1,
Default => llvm::PassBuilderOptLevel::O2,
Aggressive => llvm::PassBuilderOptLevel::O3,
Size => llvm::PassBuilderOptLevel::Os,
SizeMin => llvm::PassBuilderOptLevel::Oz,
}
}
fn to_llvm_relocation_model(relocation_model: RelocModel) -> llvm::RelocModel {
match relocation_model {
RelocModel::Static => llvm::RelocModel::Static,
RelocModel::Pic => llvm::RelocModel::PIC,
RelocModel::DynamicNoPic => llvm::RelocModel::DynamicNoPic,
RelocModel::Ropi => llvm::RelocModel::ROPI,
RelocModel::Rwpi => llvm::RelocModel::RWPI,
RelocModel::RopiRwpi => llvm::RelocModel::ROPI_RWPI,
}
}
fn to_llvm_code_model(code_model: Option<CodeModel>) -> llvm::CodeModel {
match code_model {
Some(CodeModel::Tiny) => llvm::CodeModel::Tiny,
Some(CodeModel::Small) => llvm::CodeModel::Small,
Some(CodeModel::Kernel) => llvm::CodeModel::Kernel,
Some(CodeModel::Medium) => llvm::CodeModel::Medium,
Some(CodeModel::Large) => llvm::CodeModel::Large,
None => llvm::CodeModel::None,
}
}
pub fn target_machine_factory(
sess: &Session,
optlvl: config::OptLevel,
) -> Arc<dyn Fn() -> Result<&'static mut llvm::TargetMachine, String> + Send + Sync> {
let reloc_model = to_llvm_relocation_model(sess.relocation_model());
let (opt_level, _) = to_llvm_opt_settings(optlvl);
let use_softfp = sess.opts.cg.soft_float;
let ffunction_sections = sess.target.target.options.function_sections;
let fdata_sections = ffunction_sections;
let code_model = to_llvm_code_model(sess.code_model());
let features = attributes::llvm_target_features(sess).collect::<Vec<_>>();
let mut singlethread = sess.target.target.options.singlethread;
// On the wasm target once the `atomics` feature is enabled that means that
// we're no longer single-threaded, or otherwise we don't want LLVM to
// lower atomic operations to single-threaded operations.
if singlethread
&& sess.target.target.llvm_target.contains("wasm32")
&& sess.target_features.contains(&sym::atomics)
{
singlethread = false;
}
let triple = SmallCStr::new(&sess.target.target.llvm_target);
let cpu = SmallCStr::new(llvm_util::target_cpu(sess));
let features = features.join(",");
let features = CString::new(features).unwrap();
let abi = SmallCStr::new(&sess.target.target.options.llvm_abiname);
let trap_unreachable = sess.target.target.options.trap_unreachable;
let emit_stack_size_section = sess.opts.debugging_opts.emit_stack_sizes;
let asm_comments = sess.asm_comments();
let relax_elf_relocations = sess.target.target.options.relax_elf_relocations;
let use_init_array = !sess
.opts
.debugging_opts
.use_ctors_section
.unwrap_or(sess.target.target.options.use_ctors_section);
Arc::new(move || {
let tm = unsafe {
llvm::LLVMRustCreateTargetMachine(
triple.as_ptr(),
cpu.as_ptr(),
features.as_ptr(),
abi.as_ptr(),
code_model,
reloc_model,
opt_level,
use_softfp,
ffunction_sections,
fdata_sections,
trap_unreachable,
singlethread,
asm_comments,
emit_stack_size_section,
relax_elf_relocations,
use_init_array,
)
};
tm.ok_or_else(|| {
format!("Could not create LLVM TargetMachine for triple: {}", triple.to_str().unwrap())
})
})
}
pub(crate) fn save_temp_bitcode(
cgcx: &CodegenContext<LlvmCodegenBackend>,
module: &ModuleCodegen<ModuleLlvm>,
name: &str,
) {
if !cgcx.save_temps {
return;
}
unsafe {
let ext = format!("{}.bc", name);
let cgu = Some(&module.name[..]);
let path = cgcx.output_filenames.temp_path_ext(&ext, cgu);
let cstr = path_to_c_string(&path);
let llmod = module.module_llvm.llmod();
llvm::LLVMWriteBitcodeToFile(llmod, cstr.as_ptr());
}
}
pub struct DiagnosticHandlers<'a> {
data: *mut (&'a CodegenContext<LlvmCodegenBackend>, &'a Handler),
llcx: &'a llvm::Context,
}
impl<'a> DiagnosticHandlers<'a> {
pub fn new(
cgcx: &'a CodegenContext<LlvmCodegenBackend>,
handler: &'a Handler,
llcx: &'a llvm::Context,
) -> Self {
let data = Box::into_raw(Box::new((cgcx, handler)));
unsafe {
llvm::LLVMRustSetInlineAsmDiagnosticHandler(llcx, inline_asm_handler, data.cast());
llvm::LLVMContextSetDiagnosticHandler(llcx, diagnostic_handler, data.cast());
}
DiagnosticHandlers { data, llcx }
}
}
impl<'a> Drop for DiagnosticHandlers<'a> {
fn drop(&mut self) {
use std::ptr::null_mut;
unsafe {
llvm::LLVMRustSetInlineAsmDiagnosticHandler(self.llcx, inline_asm_handler, null_mut());
llvm::LLVMContextSetDiagnosticHandler(self.llcx, diagnostic_handler, null_mut());
drop(Box::from_raw(self.data));
}
}
}
fn report_inline_asm(
cgcx: &CodegenContext<LlvmCodegenBackend>,
msg: String,
level: llvm::DiagnosticLevel,
mut cookie: c_uint,
source: Option<(String, Vec<InnerSpan>)>,
) {
// In LTO build we may get srcloc values from other crates which are invalid
// since they use a different source map. To be safe we just suppress these
// in LTO builds.
if matches!(cgcx.lto, Lto::Fat | Lto::Thin) {
cookie = 0;
}
let level = match level {
llvm::DiagnosticLevel::Error => Level::Error,
llvm::DiagnosticLevel::Warning => Level::Warning,
llvm::DiagnosticLevel::Note | llvm::DiagnosticLevel::Remark => Level::Note,
};
cgcx.diag_emitter.inline_asm_error(cookie as u32, msg, level, source);
}
unsafe extern "C" fn inline_asm_handler(diag: &SMDiagnostic, user: *const c_void, cookie: c_uint) {
if user.is_null() {
return;
}
let (cgcx, _) = *(user as *const (&CodegenContext<LlvmCodegenBackend>, &Handler));
// Recover the post-substitution assembly code from LLVM for better
// diagnostics.
let mut have_source = false;
let mut buffer = String::new();
let mut level = llvm::DiagnosticLevel::Error;
let mut loc = 0;
let mut ranges = [0; 8];
let mut num_ranges = ranges.len() / 2;
let msg = llvm::build_string(|msg| {
buffer = llvm::build_string(|buffer| {
have_source = llvm::LLVMRustUnpackSMDiagnostic(
diag,
msg,
buffer,
&mut level,
&mut loc,
ranges.as_mut_ptr(),
&mut num_ranges,
);
})
.expect("non-UTF8 inline asm");
})
.expect("non-UTF8 SMDiagnostic");
let source = have_source.then(|| {
let mut spans = vec![InnerSpan::new(loc as usize, loc as usize)];
for i in 0..num_ranges {
spans.push(InnerSpan::new(ranges[i * 2] as usize, ranges[i * 2 + 1] as usize));
}
(buffer, spans)
});
report_inline_asm(cgcx, msg, level, cookie, source);
}
unsafe extern "C" fn diagnostic_handler(info: &DiagnosticInfo, user: *mut c_void) {
if user.is_null() {
return;
}
let (cgcx, diag_handler) = *(user as *const (&CodegenContext<LlvmCodegenBackend>, &Handler));
match llvm::diagnostic::Diagnostic::unpack(info) {
llvm::diagnostic::InlineAsm(inline) => {
report_inline_asm(
cgcx,
llvm::twine_to_string(inline.message),
inline.level,
inline.cookie,
None,
);
}
llvm::diagnostic::Optimization(opt) => {
let enabled = match cgcx.remark {
Passes::All => true,
Passes::Some(ref v) => v.iter().any(|s| *s == opt.pass_name),
};
if enabled {
diag_handler.note_without_error(&format!(
"optimization {} for {} at {}:{}:{}: {}",
opt.kind.describe(),
opt.pass_name,
opt.filename,
opt.line,
opt.column,
opt.message
));
}
}
llvm::diagnostic::PGO(diagnostic_ref) | llvm::diagnostic::Linker(diagnostic_ref) => {
let msg = llvm::build_string(|s| {
llvm::LLVMRustWriteDiagnosticInfoToString(diagnostic_ref, s)
})
.expect("non-UTF8 diagnostic");
diag_handler.warn(&msg);
}
llvm::diagnostic::UnknownDiagnostic(..) => {}
}
}
fn get_pgo_gen_path(config: &ModuleConfig) -> Option<CString> {
match config.pgo_gen {
SwitchWithOptPath::Enabled(ref opt_dir_path) => {
let path = if let Some(dir_path) = opt_dir_path {
dir_path.join("default_%m.profraw")
} else {
PathBuf::from("default_%m.profraw")
};
Some(CString::new(format!("{}", path.display())).unwrap())
}
SwitchWithOptPath::Disabled => None,
}
}
fn get_pgo_use_path(config: &ModuleConfig) -> Option<CString> {
config
.pgo_use
.as_ref()
.map(|path_buf| CString::new(path_buf.to_string_lossy().as_bytes()).unwrap())
}
pub(crate) fn should_use_new_llvm_pass_manager(config: &ModuleConfig) -> bool {
// We only support the new pass manager starting with LLVM 9.
if llvm_util::get_major_version() < 9 {
return false;
}
// The new pass manager is disabled by default.
config.new_llvm_pass_manager
}
pub(crate) unsafe fn optimize_with_new_llvm_pass_manager(
cgcx: &CodegenContext<LlvmCodegenBackend>,
module: &ModuleCodegen<ModuleLlvm>,
config: &ModuleConfig,
opt_level: config::OptLevel,
opt_stage: llvm::OptStage,
) {
let unroll_loops =
opt_level != config::OptLevel::Size && opt_level != config::OptLevel::SizeMin;
let using_thin_buffers = opt_stage == llvm::OptStage::PreLinkThinLTO || config.bitcode_needed();
let pgo_gen_path = get_pgo_gen_path(config);
let pgo_use_path = get_pgo_use_path(config);
let is_lto = opt_stage == llvm::OptStage::ThinLTO || opt_stage == llvm::OptStage::FatLTO;
// Sanitizer instrumentation is only inserted during the pre-link optimization stage.
let sanitizer_options = if !is_lto {
Some(llvm::SanitizerOptions {
sanitize_address: config.sanitizer.contains(SanitizerSet::ADDRESS),
sanitize_address_recover: config.sanitizer_recover.contains(SanitizerSet::ADDRESS),
sanitize_memory: config.sanitizer.contains(SanitizerSet::MEMORY),
sanitize_memory_recover: config.sanitizer_recover.contains(SanitizerSet::MEMORY),
sanitize_memory_track_origins: config.sanitizer_memory_track_origins as c_int,
sanitize_thread: config.sanitizer.contains(SanitizerSet::THREAD),
})
} else {
None
};
let llvm_selfprofiler = if cgcx.prof.llvm_recording_enabled() {
let mut llvm_profiler = LlvmSelfProfiler::new(cgcx.prof.get_self_profiler().unwrap());
&mut llvm_profiler as *mut _ as *mut c_void
} else {
std::ptr::null_mut()
};
// FIXME: NewPM doesn't provide a facility to pass custom InlineParams.
// We would have to add upstream support for this first, before we can support
// config.inline_threshold and our more aggressive default thresholds.
// FIXME: NewPM uses an different and more explicit way to textually represent
// pass pipelines. It would probably make sense to expose this, but it would
// require a different format than the current -C passes.
llvm::LLVMRustOptimizeWithNewPassManager(
module.module_llvm.llmod(),
&*module.module_llvm.tm,
to_pass_builder_opt_level(opt_level),
opt_stage,
config.no_prepopulate_passes,
config.verify_llvm_ir,
using_thin_buffers,
config.merge_functions,
unroll_loops,
config.vectorize_slp,
config.vectorize_loop,
config.no_builtins,
config.emit_lifetime_markers,
sanitizer_options.as_ref(),
pgo_gen_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
pgo_use_path.as_ref().map_or(std::ptr::null(), |s| s.as_ptr()),
llvm_selfprofiler,
selfprofile_before_pass_callback,
selfprofile_after_pass_callback,
);
}
// Unsafe due to LLVM calls.
pub(crate) unsafe fn optimize(
cgcx: &CodegenContext<LlvmCodegenBackend>,
diag_handler: &Handler,
module: &ModuleCodegen<ModuleLlvm>,
config: &ModuleConfig,
) -> Result<(), FatalError> {
let _timer = cgcx.prof.generic_activity_with_arg("LLVM_module_optimize", &module.name[..]);
let llmod = module.module_llvm.llmod();
let llcx = &*module.module_llvm.llcx;
let tm = &*module.module_llvm.tm;
let _handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);
let module_name = module.name.clone();
let module_name = Some(&module_name[..]);
if config.emit_no_opt_bc {
let out = cgcx.output_filenames.temp_path_ext("no-opt.bc", module_name);
let out = path_to_c_string(&out);
llvm::LLVMWriteBitcodeToFile(llmod, out.as_ptr());
}
if let Some(opt_level) = config.opt_level {
if should_use_new_llvm_pass_manager(config) {
let opt_stage = match cgcx.lto {
Lto::Fat => llvm::OptStage::PreLinkFatLTO,
Lto::Thin | Lto::ThinLocal => llvm::OptStage::PreLinkThinLTO,
_ if cgcx.opts.cg.linker_plugin_lto.enabled() => llvm::OptStage::PreLinkThinLTO,
_ => llvm::OptStage::PreLinkNoLTO,
};
optimize_with_new_llvm_pass_manager(cgcx, module, config, opt_level, opt_stage);
return Ok(());
}
if cgcx.prof.llvm_recording_enabled() {
diag_handler
.warn("`-Z self-profile-events = llvm` requires `-Z new-llvm-pass-manager`");
}
// Create the two optimizing pass managers. These mirror what clang
// does, and are by populated by LLVM's default PassManagerBuilder.
// Each manager has a different set of passes, but they also share
// some common passes.
let fpm = llvm::LLVMCreateFunctionPassManagerForModule(llmod);
let mpm = llvm::LLVMCreatePassManager();
{
let find_pass = |pass_name: &str| {
let pass_name = SmallCStr::new(pass_name);
llvm::LLVMRustFindAndCreatePass(pass_name.as_ptr())
};
if config.verify_llvm_ir {
// Verification should run as the very first pass.
llvm::LLVMRustAddPass(fpm, find_pass("verify").unwrap());
}
let mut extra_passes = Vec::new();
let mut have_name_anon_globals_pass = false;
for pass_name in &config.passes {
if pass_name == "lint" {
// Linting should also be performed early, directly on the generated IR.
llvm::LLVMRustAddPass(fpm, find_pass("lint").unwrap());
continue;
}
if let Some(pass) = find_pass(pass_name) {
extra_passes.push(pass);
} else {
diag_handler.warn(&format!("unknown pass `{}`, ignoring", pass_name));
}
if pass_name == "name-anon-globals" {
have_name_anon_globals_pass = true;
}
}
add_sanitizer_passes(config, &mut extra_passes);
// Some options cause LLVM bitcode to be emitted, which uses ThinLTOBuffers, so we need
// to make sure we run LLVM's NameAnonGlobals pass when emitting bitcode; otherwise
// we'll get errors in LLVM.
let using_thin_buffers = config.bitcode_needed();
if !config.no_prepopulate_passes {
llvm::LLVMAddAnalysisPasses(tm, fpm);
llvm::LLVMAddAnalysisPasses(tm, mpm);
let opt_level = to_llvm_opt_settings(opt_level).0;
let prepare_for_thin_lto = cgcx.lto == Lto::Thin
|| cgcx.lto == Lto::ThinLocal
|| (cgcx.lto != Lto::Fat && cgcx.opts.cg.linker_plugin_lto.enabled());
with_llvm_pmb(llmod, &config, opt_level, prepare_for_thin_lto, &mut |b| {
llvm::LLVMRustAddLastExtensionPasses(
b,
extra_passes.as_ptr(),
extra_passes.len() as size_t,
);
llvm::LLVMPassManagerBuilderPopulateFunctionPassManager(b, fpm);
llvm::LLVMPassManagerBuilderPopulateModulePassManager(b, mpm);
});
have_name_anon_globals_pass = have_name_anon_globals_pass || prepare_for_thin_lto;
if using_thin_buffers && !prepare_for_thin_lto {
llvm::LLVMRustAddPass(mpm, find_pass("name-anon-globals").unwrap());
have_name_anon_globals_pass = true;
}
} else {
// If we don't use the standard pipeline, directly populate the MPM
// with the extra passes.
for pass in extra_passes {
llvm::LLVMRustAddPass(mpm, pass);
}
}
if using_thin_buffers && !have_name_anon_globals_pass {
// As described above, this will probably cause an error in LLVM
if config.no_prepopulate_passes {
diag_handler.err(
"The current compilation is going to use thin LTO buffers \
without running LLVM's NameAnonGlobals pass. \
This will likely cause errors in LLVM. Consider adding \
-C passes=name-anon-globals to the compiler command line.",
);
} else {
bug!(
"We are using thin LTO buffers without running the NameAnonGlobals pass. \
This will likely cause errors in LLVM and should never happen."
);
}
}
}
diag_handler.abort_if_errors();
// Finally, run the actual optimization passes
{
let _timer = cgcx.prof.extra_verbose_generic_activity(
"LLVM_module_optimize_function_passes",
&module.name[..],
);
llvm::LLVMRustRunFunctionPassManager(fpm, llmod);
}
{
let _timer = cgcx.prof.extra_verbose_generic_activity(
"LLVM_module_optimize_module_passes",
&module.name[..],
);
llvm::LLVMRunPassManager(mpm, llmod);
}
// Deallocate managers that we're now done with
llvm::LLVMDisposePassManager(fpm);
llvm::LLVMDisposePassManager(mpm);
}
Ok(())
}
unsafe fn add_sanitizer_passes(config: &ModuleConfig, passes: &mut Vec<&'static mut llvm::Pass>) {
if config.sanitizer.contains(SanitizerSet::ADDRESS) {
let recover = config.sanitizer_recover.contains(SanitizerSet::ADDRESS);
passes.push(llvm::LLVMRustCreateAddressSanitizerFunctionPass(recover));
passes.push(llvm::LLVMRustCreateModuleAddressSanitizerPass(recover));
}
if config.sanitizer.contains(SanitizerSet::MEMORY) {
let track_origins = config.sanitizer_memory_track_origins as c_int;
let recover = config.sanitizer_recover.contains(SanitizerSet::MEMORY);
passes.push(llvm::LLVMRustCreateMemorySanitizerPass(track_origins, recover));
}
if config.sanitizer.contains(SanitizerSet::THREAD) {
passes.push(llvm::LLVMRustCreateThreadSanitizerPass());
}
}
pub(crate) unsafe fn codegen(
cgcx: &CodegenContext<LlvmCodegenBackend>,
diag_handler: &Handler,
module: ModuleCodegen<ModuleLlvm>,
config: &ModuleConfig,
) -> Result<CompiledModule, FatalError> {
let _timer = cgcx.prof.generic_activity_with_arg("LLVM_module_codegen", &module.name[..]);
{
let llmod = module.module_llvm.llmod();
let llcx = &*module.module_llvm.llcx;
let tm = &*module.module_llvm.tm;
let module_name = module.name.clone();
let module_name = Some(&module_name[..]);
let handlers = DiagnosticHandlers::new(cgcx, diag_handler, llcx);
if cgcx.msvc_imps_needed {
create_msvc_imps(cgcx, llcx, llmod);
}
// A codegen-specific pass manager is used to generate object
// files for an LLVM module.
//
// Apparently each of these pass managers is a one-shot kind of
// thing, so we create a new one for each type of output. The
// pass manager passed to the closure should be ensured to not
// escape the closure itself, and the manager should only be
// used once.
unsafe fn with_codegen<'ll, F, R>(
tm: &'ll llvm::TargetMachine,
llmod: &'ll llvm::Module,
no_builtins: bool,
f: F,
) -> R
where
F: FnOnce(&'ll mut PassManager<'ll>) -> R,
{
let cpm = llvm::LLVMCreatePassManager();
llvm::LLVMAddAnalysisPasses(tm, cpm);
llvm::LLVMRustAddLibraryInfo(cpm, llmod, no_builtins);
f(cpm)
}
// Two things to note:
// - If object files are just LLVM bitcode we write bitcode, copy it to
// the .o file, and delete the bitcode if it wasn't otherwise
// requested.
// - If we don't have the integrated assembler then we need to emit
// asm from LLVM and use `gcc` to create the object file.
let bc_out = cgcx.output_filenames.temp_path(OutputType::Bitcode, module_name);
let obj_out = cgcx.output_filenames.temp_path(OutputType::Object, module_name);
if config.bitcode_needed() {
let _timer = cgcx
.prof
.generic_activity_with_arg("LLVM_module_codegen_make_bitcode", &module.name[..]);
let thin = ThinBuffer::new(llmod);
let data = thin.data();
if config.emit_bc || config.emit_obj == EmitObj::Bitcode {
let _timer = cgcx.prof.generic_activity_with_arg(
"LLVM_module_codegen_emit_bitcode",
&module.name[..],
);
if let Err(e) = fs::write(&bc_out, data) {
let msg = format!("failed to write bytecode to {}: {}", bc_out.display(), e);
diag_handler.err(&msg);
}
}
if config.emit_obj == EmitObj::ObjectCode(BitcodeSection::Full) {
let _timer = cgcx.prof.generic_activity_with_arg(
"LLVM_module_codegen_embed_bitcode",
&module.name[..],
);
embed_bitcode(cgcx, llcx, llmod, &config.bc_cmdline, data);
}
}
if config.emit_ir {
let _timer = cgcx
.prof
.generic_activity_with_arg("LLVM_module_codegen_emit_ir", &module.name[..]);
let out = cgcx.output_filenames.temp_path(OutputType::LlvmAssembly, module_name);
let out_c = path_to_c_string(&out);
extern "C" fn demangle_callback(
input_ptr: *const c_char,
input_len: size_t,
output_ptr: *mut c_char,
output_len: size_t,
) -> size_t {
let input =
unsafe { slice::from_raw_parts(input_ptr as *const u8, input_len as usize) };
let input = match str::from_utf8(input) {
Ok(s) => s,
Err(_) => return 0,
};
let output = unsafe {
slice::from_raw_parts_mut(output_ptr as *mut u8, output_len as usize)
};
let mut cursor = io::Cursor::new(output);
let demangled = match rustc_demangle::try_demangle(input) {
Ok(d) => d,
Err(_) => return 0,
};
if write!(cursor, "{:#}", demangled).is_err() {
// Possible only if provided buffer is not big enough
return 0;
}
cursor.position() as size_t
}
let result = llvm::LLVMRustPrintModule(llmod, out_c.as_ptr(), demangle_callback);
result.into_result().map_err(|()| {
let msg = format!("failed to write LLVM IR to {}", out.display());
llvm_err(diag_handler, &msg)
})?;
}
if config.emit_asm {
let _timer = cgcx
.prof
.generic_activity_with_arg("LLVM_module_codegen_emit_asm", &module.name[..]);
let path = cgcx.output_filenames.temp_path(OutputType::Assembly, module_name);
// We can't use the same module for asm and object code output,
// because that triggers various errors like invalid IR or broken
// binaries. So we must clone the module to produce the asm output
// if we are also producing object code.
let llmod = if let EmitObj::ObjectCode(_) = config.emit_obj {
llvm::LLVMCloneModule(llmod)
} else {
llmod
};
with_codegen(tm, llmod, config.no_builtins, |cpm| {
write_output_file(diag_handler, tm, cpm, llmod, &path, llvm::FileType::AssemblyFile)
})?;
}
match config.emit_obj {
EmitObj::ObjectCode(_) => {
let _timer = cgcx
.prof
.generic_activity_with_arg("LLVM_module_codegen_emit_obj", &module.name[..]);
with_codegen(tm, llmod, config.no_builtins, |cpm| {
write_output_file(
diag_handler,
tm,
cpm,
llmod,
&obj_out,
llvm::FileType::ObjectFile,
)
})?;
}
EmitObj::Bitcode => {
debug!("copying bitcode {:?} to obj {:?}", bc_out, obj_out);
if let Err(e) = link_or_copy(&bc_out, &obj_out) {
diag_handler.err(&format!("failed to copy bitcode to object file: {}", e));
}
if !config.emit_bc {
debug!("removing_bitcode {:?}", bc_out);
if let Err(e) = fs::remove_file(&bc_out) {
diag_handler.err(&format!("failed to remove bitcode: {}", e));
}
}
}
EmitObj::None => {}
}
drop(handlers);
}
Ok(module.into_compiled_module(
config.emit_obj != EmitObj::None,
config.emit_bc,
&cgcx.output_filenames,
))
}
/// Embed the bitcode of an LLVM module in the LLVM module itself.
///
/// This is done primarily for iOS where it appears to be standard to compile C
/// code at least with `-fembed-bitcode` which creates two sections in the
/// executable:
///
/// * __LLVM,__bitcode
/// * __LLVM,__cmdline
///
/// It appears *both* of these sections are necessary to get the linker to
/// recognize what's going on. A suitable cmdline value is taken from the
/// target spec.
///
/// Furthermore debug/O1 builds don't actually embed bitcode but rather just
/// embed an empty section.
///
/// Basically all of this is us attempting to follow in the footsteps of clang
/// on iOS. See #35968 for lots more info.
unsafe fn embed_bitcode(
cgcx: &CodegenContext<LlvmCodegenBackend>,
llcx: &llvm::Context,
llmod: &llvm::Module,
cmdline: &str,
bitcode: &[u8],
) {
let llconst = common::bytes_in_context(llcx, bitcode);
let llglobal = llvm::LLVMAddGlobal(
llmod,
common::val_ty(llconst),
"rustc.embedded.module\0".as_ptr().cast(),
);
llvm::LLVMSetInitializer(llglobal, llconst);
let is_apple = cgcx.opts.target_triple.triple().contains("-ios")
|| cgcx.opts.target_triple.triple().contains("-darwin")
|| cgcx.opts.target_triple.triple().contains("-tvos");
let section = if is_apple { "__LLVM,__bitcode\0" } else { ".llvmbc\0" };
llvm::LLVMSetSection(llglobal, section.as_ptr().cast());
llvm::LLVMRustSetLinkage(llglobal, llvm::Linkage::PrivateLinkage);
llvm::LLVMSetGlobalConstant(llglobal, llvm::True);
let llconst = common::bytes_in_context(llcx, cmdline.as_bytes());
let llglobal = llvm::LLVMAddGlobal(
llmod,
common::val_ty(llconst),
"rustc.embedded.cmdline\0".as_ptr().cast(),
);
llvm::LLVMSetInitializer(llglobal, llconst);
let section = if is_apple { "__LLVM,__cmdline\0" } else { ".llvmcmd\0" };
llvm::LLVMSetSection(llglobal, section.as_ptr().cast());
llvm::LLVMRustSetLinkage(llglobal, llvm::Linkage::PrivateLinkage);
// We're adding custom sections to the output object file, but we definitely
// do not want these custom sections to make their way into the final linked
// executable. The purpose of these custom sections is for tooling
// surrounding object files to work with the LLVM IR, if necessary. For
// example rustc's own LTO will look for LLVM IR inside of the object file
// in these sections by default.
//
// To handle this is a bit different depending on the object file format
// used by the backend, broken down into a few different categories:
//
// * Mach-O - this is for macOS. Inspecting the source code for the native
// linker here shows that the `.llvmbc` and `.llvmcmd` sections are
// automatically skipped by the linker. In that case there's nothing extra
// that we need to do here.
//
// * Wasm - the native LLD linker is hard-coded to skip `.llvmbc` and
// `.llvmcmd` sections, so there's nothing extra we need to do.
//
// * COFF - if we don't do anything the linker will by default copy all
// these sections to the output artifact, not what we want! To subvert
// this we want to flag the sections we inserted here as
// `IMAGE_SCN_LNK_REMOVE`. Unfortunately though LLVM has no native way to
// do this. Thankfully though we can do this with some inline assembly,
// which is easy enough to add via module-level global inline asm.
//
// * ELF - this is very similar to COFF above. One difference is that these
// sections are removed from the output linked artifact when
// `--gc-sections` is passed, which we pass by default. If that flag isn't
// passed though then these sections will show up in the final output.
// Additionally the flag that we need to set here is `SHF_EXCLUDE`.
if is_apple
|| cgcx.opts.target_triple.triple().starts_with("wasm")
|| cgcx.opts.target_triple.triple().starts_with("asmjs")
{
// nothing to do here
} else if cgcx.opts.target_triple.triple().contains("windows")
|| cgcx.opts.target_triple.triple().contains("uefi")
{
let asm = "
.section .llvmbc,\"n\"
.section .llvmcmd,\"n\"
";
llvm::LLVMRustAppendModuleInlineAsm(llmod, asm.as_ptr().cast(), asm.len());
} else {
let asm = "
.section .llvmbc,\"e\"
.section .llvmcmd,\"e\"
";
llvm::LLVMRustAppendModuleInlineAsm(llmod, asm.as_ptr().cast(), asm.len());
}
}
pub unsafe fn with_llvm_pmb(
llmod: &llvm::Module,
config: &ModuleConfig,
opt_level: llvm::CodeGenOptLevel,
prepare_for_thin_lto: bool,
f: &mut dyn FnMut(&llvm::PassManagerBuilder),
) {
use std::ptr;
// Create the PassManagerBuilder for LLVM. We configure it with
// reasonable defaults and prepare it to actually populate the pass
// manager.
let builder = llvm::LLVMPassManagerBuilderCreate();
let opt_size =
config.opt_size.map(|x| to_llvm_opt_settings(x).1).unwrap_or(llvm::CodeGenOptSizeNone);
let inline_threshold = config.inline_threshold;
let pgo_gen_path = get_pgo_gen_path(config);
let pgo_use_path = get_pgo_use_path(config);
llvm::LLVMRustConfigurePassManagerBuilder(
builder,
opt_level,
config.merge_functions,
config.vectorize_slp,
config.vectorize_loop,
prepare_for_thin_lto,
pgo_gen_path.as_ref().map_or(ptr::null(), |s| s.as_ptr()),
pgo_use_path.as_ref().map_or(ptr::null(), |s| s.as_ptr()),
);
llvm::LLVMPassManagerBuilderSetSizeLevel(builder, opt_size as u32);
if opt_size != llvm::CodeGenOptSizeNone {
llvm::LLVMPassManagerBuilderSetDisableUnrollLoops(builder, 1);
}
llvm::LLVMRustAddBuilderLibraryInfo(builder, llmod, config.no_builtins);
// Here we match what clang does (kinda). For O0 we only inline
// always-inline functions (but don't add lifetime intrinsics), at O1 we
// inline with lifetime intrinsics, and O2+ we add an inliner with a
// thresholds copied from clang.
match (opt_level, opt_size, inline_threshold) {
(.., Some(t)) => {
llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, t as u32);
}
(llvm::CodeGenOptLevel::Aggressive, ..) => {
llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 275);
}
(_, llvm::CodeGenOptSizeDefault, _) => {
llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 75);
}
(_, llvm::CodeGenOptSizeAggressive, _) => {
llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 25);
}
(llvm::CodeGenOptLevel::None, ..) => {
llvm::LLVMRustAddAlwaysInlinePass(builder, config.emit_lifetime_markers);
}
(llvm::CodeGenOptLevel::Less, ..) => {
llvm::LLVMRustAddAlwaysInlinePass(builder, config.emit_lifetime_markers);
}
(llvm::CodeGenOptLevel::Default, ..) => {
llvm::LLVMPassManagerBuilderUseInlinerWithThreshold(builder, 225);
}
(llvm::CodeGenOptLevel::Other, ..) => bug!("CodeGenOptLevel::Other selected"),
}
f(builder);
llvm::LLVMPassManagerBuilderDispose(builder);
}
// Create a `__imp_<symbol> = &symbol` global for every public static `symbol`.
// This is required to satisfy `dllimport` references to static data in .rlibs
// when using MSVC linker. We do this only for data, as linker can fix up
// code references on its own.
// See #26591, #27438
fn create_msvc_imps(
cgcx: &CodegenContext<LlvmCodegenBackend>,
llcx: &llvm::Context,
llmod: &llvm::Module,
) {
if !cgcx.msvc_imps_needed {
return;
}
// The x86 ABI seems to require that leading underscores are added to symbol
// names, so we need an extra underscore on x86. There's also a leading
// '\x01' here which disables LLVM's symbol mangling (e.g., no extra
// underscores added in front).
let prefix = if cgcx.target_arch == "x86" { "\x01__imp__" } else { "\x01__imp_" };
unsafe {
let i8p_ty = Type::i8p_llcx(llcx);
let globals = base::iter_globals(llmod)
.filter(|&val| {
llvm::LLVMRustGetLinkage(val) == llvm::Linkage::ExternalLinkage
&& llvm::LLVMIsDeclaration(val) == 0
})
.filter_map(|val| {
// Exclude some symbols that we know are not Rust symbols.
let name = llvm::get_value_name(val);
if ignored(name) { None } else { Some((val, name)) }
})
.map(move |(val, name)| {
let mut imp_name = prefix.as_bytes().to_vec();
imp_name.extend(name);
let imp_name = CString::new(imp_name).unwrap();
(imp_name, val)
})
.collect::<Vec<_>>();
for (imp_name, val) in globals {
let imp = llvm::LLVMAddGlobal(llmod, i8p_ty, imp_name.as_ptr().cast());
llvm::LLVMSetInitializer(imp, consts::ptrcast(val, i8p_ty));
llvm::LLVMRustSetLinkage(imp, llvm::Linkage::ExternalLinkage);
}
}
// Use this function to exclude certain symbols from `__imp` generation.
fn ignored(symbol_name: &[u8]) -> bool {
// These are symbols generated by LLVM's profiling instrumentation
symbol_name.starts_with(b"__llvm_profile_")
}
}