blob: 099c402703d09f44260df9feab87947654dadcf5 [file] [log] [blame]
use crate::builder::Builder;
use crate::context::CodegenCx;
use crate::llvm::{self, AttributePlace};
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::value::Value;
use rustc_codegen_ssa::mir::operand::OperandValue;
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::*;
use rustc_codegen_ssa::MemFlags;
use rustc_middle::bug;
pub use rustc_middle::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
use rustc_middle::ty::Ty;
use rustc_target::abi::call::ArgAbi;
pub use rustc_target::abi::call::*;
use rustc_target::abi::{self, HasDataLayout, Int, LayoutOf};
pub use rustc_target::spec::abi::Abi;
use libc::c_uint;
macro_rules! for_each_kind {
($flags: ident, $f: ident, $($kind: ident),+) => ({
$(if $flags.contains(ArgAttribute::$kind) { $f(llvm::Attribute::$kind) })+
})
}
trait ArgAttributeExt {
fn for_each_kind<F>(&self, f: F)
where
F: FnMut(llvm::Attribute);
}
impl ArgAttributeExt for ArgAttribute {
fn for_each_kind<F>(&self, mut f: F)
where
F: FnMut(llvm::Attribute),
{
for_each_kind!(self, f, NoAlias, NoCapture, NonNull, ReadOnly, SExt, StructRet, ZExt, InReg)
}
}
pub trait ArgAttributesExt {
fn apply_llfn(&self, idx: AttributePlace, llfn: &Value, ty: Option<&Type>);
fn apply_callsite(&self, idx: AttributePlace, callsite: &Value, ty: Option<&Type>);
}
impl ArgAttributesExt for ArgAttributes {
fn apply_llfn(&self, idx: AttributePlace, llfn: &Value, ty: Option<&Type>) {
let mut regular = self.regular;
unsafe {
let deref = self.pointee_size.bytes();
if deref != 0 {
if regular.contains(ArgAttribute::NonNull) {
llvm::LLVMRustAddDereferenceableAttr(llfn, idx.as_uint(), deref);
} else {
llvm::LLVMRustAddDereferenceableOrNullAttr(llfn, idx.as_uint(), deref);
}
regular -= ArgAttribute::NonNull;
}
if let Some(align) = self.pointee_align {
llvm::LLVMRustAddAlignmentAttr(llfn, idx.as_uint(), align.bytes() as u32);
}
if regular.contains(ArgAttribute::ByVal) {
llvm::LLVMRustAddByValAttr(llfn, idx.as_uint(), ty.unwrap());
}
regular.for_each_kind(|attr| attr.apply_llfn(idx, llfn));
}
}
fn apply_callsite(&self, idx: AttributePlace, callsite: &Value, ty: Option<&Type>) {
let mut regular = self.regular;
unsafe {
let deref = self.pointee_size.bytes();
if deref != 0 {
if regular.contains(ArgAttribute::NonNull) {
llvm::LLVMRustAddDereferenceableCallSiteAttr(callsite, idx.as_uint(), deref);
} else {
llvm::LLVMRustAddDereferenceableOrNullCallSiteAttr(
callsite,
idx.as_uint(),
deref,
);
}
regular -= ArgAttribute::NonNull;
}
if let Some(align) = self.pointee_align {
llvm::LLVMRustAddAlignmentCallSiteAttr(
callsite,
idx.as_uint(),
align.bytes() as u32,
);
}
if regular.contains(ArgAttribute::ByVal) {
llvm::LLVMRustAddByValCallSiteAttr(callsite, idx.as_uint(), ty.unwrap());
}
regular.for_each_kind(|attr| attr.apply_callsite(idx, callsite));
}
}
}
pub trait LlvmType {
fn llvm_type(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type;
}
impl LlvmType for Reg {
fn llvm_type(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type {
match self.kind {
RegKind::Integer => cx.type_ix(self.size.bits()),
RegKind::Float => match self.size.bits() {
32 => cx.type_f32(),
64 => cx.type_f64(),
_ => bug!("unsupported float: {:?}", self),
},
RegKind::Vector => cx.type_vector(cx.type_i8(), self.size.bytes()),
}
}
}
impl LlvmType for CastTarget {
fn llvm_type(&self, cx: &CodegenCx<'ll, '_>) -> &'ll Type {
let rest_ll_unit = self.rest.unit.llvm_type(cx);
let (rest_count, rem_bytes) = if self.rest.unit.size.bytes() == 0 {
(0, 0)
} else {
(
self.rest.total.bytes() / self.rest.unit.size.bytes(),
self.rest.total.bytes() % self.rest.unit.size.bytes(),
)
};
if self.prefix.iter().all(|x| x.is_none()) {
// Simplify to a single unit when there is no prefix and size <= unit size
if self.rest.total <= self.rest.unit.size {
return rest_ll_unit;
}
// Simplify to array when all chunks are the same size and type
if rem_bytes == 0 {
return cx.type_array(rest_ll_unit, rest_count);
}
}
// Create list of fields in the main structure
let mut args: Vec<_> = self
.prefix
.iter()
.flat_map(|option_kind| {
option_kind.map(|kind| Reg { kind, size: self.prefix_chunk }.llvm_type(cx))
})
.chain((0..rest_count).map(|_| rest_ll_unit))
.collect();
// Append final integer
if rem_bytes != 0 {
// Only integers can be really split further.
assert_eq!(self.rest.unit.kind, RegKind::Integer);
args.push(cx.type_ix(rem_bytes * 8));
}
cx.type_struct(&args, false)
}
}
pub trait ArgAbiExt<'ll, 'tcx> {
fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
fn store(
&self,
bx: &mut Builder<'_, 'll, 'tcx>,
val: &'ll Value,
dst: PlaceRef<'tcx, &'ll Value>,
);
fn store_fn_arg(
&self,
bx: &mut Builder<'_, 'll, 'tcx>,
idx: &mut usize,
dst: PlaceRef<'tcx, &'ll Value>,
);
}
impl ArgAbiExt<'ll, 'tcx> for ArgAbi<'tcx, Ty<'tcx>> {
/// Gets the LLVM type for a place of the original Rust type of
/// this argument/return, i.e., the result of `type_of::type_of`.
fn memory_ty(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
self.layout.llvm_type(cx)
}
/// Stores a direct/indirect value described by this ArgAbi into a
/// place for the original Rust type of this argument/return.
/// Can be used for both storing formal arguments into Rust variables
/// or results of call/invoke instructions into their destinations.
fn store(
&self,
bx: &mut Builder<'_, 'll, 'tcx>,
val: &'ll Value,
dst: PlaceRef<'tcx, &'ll Value>,
) {
if self.is_ignore() {
return;
}
if self.is_sized_indirect() {
OperandValue::Ref(val, None, self.layout.align.abi).store(bx, dst)
} else if self.is_unsized_indirect() {
bug!("unsized `ArgAbi` must be handled through `store_fn_arg`");
} else if let PassMode::Cast(cast) = self.mode {
// FIXME(eddyb): Figure out when the simpler Store is safe, clang
// uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
let can_store_through_cast_ptr = false;
if can_store_through_cast_ptr {
let cast_ptr_llty = bx.type_ptr_to(cast.llvm_type(bx));
let cast_dst = bx.pointercast(dst.llval, cast_ptr_llty);
bx.store(val, cast_dst, self.layout.align.abi);
} else {
// The actual return type is a struct, but the ABI
// adaptation code has cast it into some scalar type. The
// code that follows is the only reliable way I have
// found to do a transform like i64 -> {i32,i32}.
// Basically we dump the data onto the stack then memcpy it.
//
// Other approaches I tried:
// - Casting rust ret pointer to the foreign type and using Store
// is (a) unsafe if size of foreign type > size of rust type and
// (b) runs afoul of strict aliasing rules, yielding invalid
// assembly under -O (specifically, the store gets removed).
// - Truncating foreign type to correct integral type and then
// bitcasting to the struct type yields invalid cast errors.
// We instead thus allocate some scratch space...
let scratch_size = cast.size(bx);
let scratch_align = cast.align(bx);
let llscratch = bx.alloca(cast.llvm_type(bx), scratch_align);
bx.lifetime_start(llscratch, scratch_size);
// ... where we first store the value...
bx.store(val, llscratch, scratch_align);
// ... and then memcpy it to the intended destination.
bx.memcpy(
dst.llval,
self.layout.align.abi,
llscratch,
scratch_align,
bx.const_usize(self.layout.size.bytes()),
MemFlags::empty(),
);
bx.lifetime_end(llscratch, scratch_size);
}
} else {
OperandValue::Immediate(val).store(bx, dst);
}
}
fn store_fn_arg(
&self,
bx: &mut Builder<'a, 'll, 'tcx>,
idx: &mut usize,
dst: PlaceRef<'tcx, &'ll Value>,
) {
let mut next = || {
let val = llvm::get_param(bx.llfn(), *idx as c_uint);
*idx += 1;
val
};
match self.mode {
PassMode::Ignore => {}
PassMode::Pair(..) => {
OperandValue::Pair(next(), next()).store(bx, dst);
}
PassMode::Indirect(_, Some(_)) => {
OperandValue::Ref(next(), Some(next()), self.layout.align.abi).store(bx, dst);
}
PassMode::Direct(_) | PassMode::Indirect(_, None) | PassMode::Cast(_) => {
let next_arg = next();
self.store(bx, next_arg, dst);
}
}
}
}
impl ArgAbiMethods<'tcx> for Builder<'a, 'll, 'tcx> {
fn store_fn_arg(
&mut self,
arg_abi: &ArgAbi<'tcx, Ty<'tcx>>,
idx: &mut usize,
dst: PlaceRef<'tcx, Self::Value>,
) {
arg_abi.store_fn_arg(self, idx, dst)
}
fn store_arg(
&mut self,
arg_abi: &ArgAbi<'tcx, Ty<'tcx>>,
val: &'ll Value,
dst: PlaceRef<'tcx, &'ll Value>,
) {
arg_abi.store(self, val, dst)
}
fn arg_memory_ty(&self, arg_abi: &ArgAbi<'tcx, Ty<'tcx>>) -> &'ll Type {
arg_abi.memory_ty(self)
}
}
pub trait FnAbiLlvmExt<'tcx> {
fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
fn ptr_to_llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type;
fn llvm_cconv(&self) -> llvm::CallConv;
fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value);
fn apply_attrs_callsite(&self, bx: &mut Builder<'a, 'll, 'tcx>, callsite: &'ll Value);
}
impl<'tcx> FnAbiLlvmExt<'tcx> for FnAbi<'tcx, Ty<'tcx>> {
fn llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
let args_capacity: usize = self.args.iter().map(|arg|
if arg.pad.is_some() { 1 } else { 0 } +
if let PassMode::Pair(_, _) = arg.mode { 2 } else { 1 }
).sum();
let mut llargument_tys = Vec::with_capacity(
if let PassMode::Indirect(..) = self.ret.mode { 1 } else { 0 } + args_capacity,
);
let llreturn_ty = match self.ret.mode {
PassMode::Ignore => cx.type_void(),
PassMode::Direct(_) | PassMode::Pair(..) => self.ret.layout.immediate_llvm_type(cx),
PassMode::Cast(cast) => cast.llvm_type(cx),
PassMode::Indirect(..) => {
llargument_tys.push(cx.type_ptr_to(self.ret.memory_ty(cx)));
cx.type_void()
}
};
for arg in &self.args {
// add padding
if let Some(ty) = arg.pad {
llargument_tys.push(ty.llvm_type(cx));
}
let llarg_ty = match arg.mode {
PassMode::Ignore => continue,
PassMode::Direct(_) => arg.layout.immediate_llvm_type(cx),
PassMode::Pair(..) => {
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 0, true));
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 1, true));
continue;
}
PassMode::Indirect(_, Some(_)) => {
let ptr_ty = cx.tcx.mk_mut_ptr(arg.layout.ty);
let ptr_layout = cx.layout_of(ptr_ty);
llargument_tys.push(ptr_layout.scalar_pair_element_llvm_type(cx, 0, true));
llargument_tys.push(ptr_layout.scalar_pair_element_llvm_type(cx, 1, true));
continue;
}
PassMode::Cast(cast) => cast.llvm_type(cx),
PassMode::Indirect(_, None) => cx.type_ptr_to(arg.memory_ty(cx)),
};
llargument_tys.push(llarg_ty);
}
if self.c_variadic {
cx.type_variadic_func(&llargument_tys, llreturn_ty)
} else {
cx.type_func(&llargument_tys, llreturn_ty)
}
}
fn ptr_to_llvm_type(&self, cx: &CodegenCx<'ll, 'tcx>) -> &'ll Type {
unsafe {
llvm::LLVMPointerType(
self.llvm_type(cx),
cx.data_layout().instruction_address_space as c_uint,
)
}
}
fn llvm_cconv(&self) -> llvm::CallConv {
match self.conv {
Conv::C | Conv::Rust => llvm::CCallConv,
Conv::AmdGpuKernel => llvm::AmdGpuKernel,
Conv::AvrInterrupt => llvm::AvrInterrupt,
Conv::AvrNonBlockingInterrupt => llvm::AvrNonBlockingInterrupt,
Conv::ArmAapcs => llvm::ArmAapcsCallConv,
Conv::Msp430Intr => llvm::Msp430Intr,
Conv::PtxKernel => llvm::PtxKernel,
Conv::X86Fastcall => llvm::X86FastcallCallConv,
Conv::X86Intr => llvm::X86_Intr,
Conv::X86Stdcall => llvm::X86StdcallCallConv,
Conv::X86ThisCall => llvm::X86_ThisCall,
Conv::X86VectorCall => llvm::X86_VectorCall,
Conv::X86_64SysV => llvm::X86_64_SysV,
Conv::X86_64Win64 => llvm::X86_64_Win64,
}
}
fn apply_attrs_llfn(&self, cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value) {
// FIXME(eddyb) can this also be applied to callsites?
if self.ret.layout.abi.is_uninhabited() {
llvm::Attribute::NoReturn.apply_llfn(llvm::AttributePlace::Function, llfn);
}
// FIXME(eddyb, wesleywiser): apply this to callsites as well?
if !self.can_unwind {
llvm::Attribute::NoUnwind.apply_llfn(llvm::AttributePlace::Function, llfn);
}
let mut i = 0;
let mut apply = |attrs: &ArgAttributes, ty: Option<&Type>| {
attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn, ty);
i += 1;
};
match self.ret.mode {
PassMode::Direct(ref attrs) => {
attrs.apply_llfn(llvm::AttributePlace::ReturnValue, llfn, None);
}
PassMode::Indirect(ref attrs, _) => apply(attrs, Some(self.ret.layout.llvm_type(cx))),
_ => {}
}
for arg in &self.args {
if arg.pad.is_some() {
apply(&ArgAttributes::new(), None);
}
match arg.mode {
PassMode::Ignore => {}
PassMode::Direct(ref attrs) | PassMode::Indirect(ref attrs, None) => {
apply(attrs, Some(arg.layout.llvm_type(cx)))
}
PassMode::Indirect(ref attrs, Some(ref extra_attrs)) => {
apply(attrs, None);
apply(extra_attrs, None);
}
PassMode::Pair(ref a, ref b) => {
apply(a, None);
apply(b, None);
}
PassMode::Cast(_) => apply(&ArgAttributes::new(), None),
}
}
}
fn apply_attrs_callsite(&self, bx: &mut Builder<'a, 'll, 'tcx>, callsite: &'ll Value) {
// FIXME(wesleywiser, eddyb): We should apply `nounwind` and `noreturn` as appropriate to this callsite.
let mut i = 0;
let mut apply = |attrs: &ArgAttributes, ty: Option<&Type>| {
attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite, ty);
i += 1;
};
match self.ret.mode {
PassMode::Direct(ref attrs) => {
attrs.apply_callsite(llvm::AttributePlace::ReturnValue, callsite, None);
}
PassMode::Indirect(ref attrs, _) => apply(attrs, Some(self.ret.layout.llvm_type(bx))),
_ => {}
}
if let abi::Abi::Scalar(ref scalar) = self.ret.layout.abi {
// If the value is a boolean, the range is 0..2 and that ultimately
// become 0..0 when the type becomes i1, which would be rejected
// by the LLVM verifier.
if let Int(..) = scalar.value {
if !scalar.is_bool() {
let range = scalar.valid_range_exclusive(bx);
if range.start != range.end {
bx.range_metadata(callsite, range);
}
}
}
}
for arg in &self.args {
if arg.pad.is_some() {
apply(&ArgAttributes::new(), None);
}
match arg.mode {
PassMode::Ignore => {}
PassMode::Direct(ref attrs) | PassMode::Indirect(ref attrs, None) => {
apply(attrs, Some(arg.layout.llvm_type(bx)))
}
PassMode::Indirect(ref attrs, Some(ref extra_attrs)) => {
apply(attrs, None);
apply(extra_attrs, None);
}
PassMode::Pair(ref a, ref b) => {
apply(a, None);
apply(b, None);
}
PassMode::Cast(_) => apply(&ArgAttributes::new(), None),
}
}
let cconv = self.llvm_cconv();
if cconv != llvm::CCallConv {
llvm::SetInstructionCallConv(callsite, cconv);
}
}
}
impl AbiBuilderMethods<'tcx> for Builder<'a, 'll, 'tcx> {
fn apply_attrs_callsite(&mut self, fn_abi: &FnAbi<'tcx, Ty<'tcx>>, callsite: Self::Value) {
fn_abi.apply_attrs_callsite(self, callsite)
}
fn get_param(&self, index: usize) -> Self::Value {
llvm::get_param(self.llfn(), index as c_uint)
}
}