blob: 975881d9a0ac0c898895c5318320f3dd6f9660a0 [file] [log] [blame]
// Validate AST before lowering it to HIR.
//
// This pass is supposed to catch things that fit into AST data structures,
// but not permitted by the language. It runs after expansion when AST is frozen,
// so it can check for erroneous constructions produced by syntax extensions.
// This pass is supposed to perform only simple checks not requiring name resolution
// or type checking or some other kind of complex analysis.
use itertools::{Either, Itertools};
use rustc_ast::ast::*;
use rustc_ast::attr;
use rustc_ast::expand::is_proc_macro_attr;
use rustc_ast::ptr::P;
use rustc_ast::visit::{self, AssocCtxt, FnCtxt, FnKind, Visitor};
use rustc_ast::walk_list;
use rustc_ast_pretty::pprust;
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{error_code, pluralize, struct_span_err, Applicability};
use rustc_parse::validate_attr;
use rustc_session::lint::builtin::PATTERNS_IN_FNS_WITHOUT_BODY;
use rustc_session::lint::LintBuffer;
use rustc_session::Session;
use rustc_span::symbol::{kw, sym, Ident};
use rustc_span::Span;
use std::mem;
use std::ops::DerefMut;
const MORE_EXTERN: &str =
"for more information, visit https://doc.rust-lang.org/std/keyword.extern.html";
/// Is `self` allowed semantically as the first parameter in an `FnDecl`?
enum SelfSemantic {
Yes,
No,
}
/// A syntactic context that disallows certain kinds of bounds (e.g., `?Trait` or `?const Trait`).
#[derive(Clone, Copy)]
enum BoundContext {
ImplTrait,
TraitBounds,
TraitObject,
}
impl BoundContext {
fn description(&self) -> &'static str {
match self {
Self::ImplTrait => "`impl Trait`",
Self::TraitBounds => "supertraits",
Self::TraitObject => "trait objects",
}
}
}
struct AstValidator<'a> {
session: &'a Session,
/// The span of the `extern` in an `extern { ... }` block, if any.
extern_mod: Option<&'a Item>,
/// Are we inside a trait impl?
in_trait_impl: bool,
has_proc_macro_decls: bool,
/// Used to ban nested `impl Trait`, e.g., `impl Into<impl Debug>`.
/// Nested `impl Trait` _is_ allowed in associated type position,
/// e.g., `impl Iterator<Item = impl Debug>`.
outer_impl_trait: Option<Span>,
/// Keeps track of the `BoundContext` as we recurse.
///
/// This is used to forbid `?const Trait` bounds in, e.g.,
/// `impl Iterator<Item = Box<dyn ?const Trait>`.
bound_context: Option<BoundContext>,
/// Used to ban `impl Trait` in path projections like `<impl Iterator>::Item`
/// or `Foo::Bar<impl Trait>`
is_impl_trait_banned: bool,
/// Used to ban associated type bounds (i.e., `Type<AssocType: Bounds>`) in
/// certain positions.
is_assoc_ty_bound_banned: bool,
lint_buffer: &'a mut LintBuffer,
}
impl<'a> AstValidator<'a> {
fn with_in_trait_impl(&mut self, is_in: bool, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.in_trait_impl, is_in);
f(self);
self.in_trait_impl = old;
}
fn with_banned_impl_trait(&mut self, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.is_impl_trait_banned, true);
f(self);
self.is_impl_trait_banned = old;
}
fn with_banned_assoc_ty_bound(&mut self, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.is_assoc_ty_bound_banned, true);
f(self);
self.is_assoc_ty_bound_banned = old;
}
fn with_impl_trait(&mut self, outer: Option<Span>, f: impl FnOnce(&mut Self)) {
let old = mem::replace(&mut self.outer_impl_trait, outer);
if outer.is_some() {
self.with_bound_context(BoundContext::ImplTrait, |this| f(this));
} else {
f(self)
}
self.outer_impl_trait = old;
}
fn with_bound_context(&mut self, ctx: BoundContext, f: impl FnOnce(&mut Self)) {
let old = self.bound_context.replace(ctx);
f(self);
self.bound_context = old;
}
fn visit_assoc_ty_constraint_from_generic_args(&mut self, constraint: &'a AssocTyConstraint) {
match constraint.kind {
AssocTyConstraintKind::Equality { .. } => {}
AssocTyConstraintKind::Bound { .. } => {
if self.is_assoc_ty_bound_banned {
self.err_handler().span_err(
constraint.span,
"associated type bounds are not allowed within structs, enums, or unions",
);
}
}
}
self.visit_assoc_ty_constraint(constraint);
}
// Mirrors `visit::walk_ty`, but tracks relevant state.
fn walk_ty(&mut self, t: &'a Ty) {
match t.kind {
TyKind::ImplTrait(..) => {
self.with_impl_trait(Some(t.span), |this| visit::walk_ty(this, t))
}
TyKind::TraitObject(..) => {
self.with_bound_context(BoundContext::TraitObject, |this| visit::walk_ty(this, t));
}
TyKind::Path(ref qself, ref path) => {
// We allow these:
// - `Option<impl Trait>`
// - `option::Option<impl Trait>`
// - `option::Option<T>::Foo<impl Trait>
//
// But not these:
// - `<impl Trait>::Foo`
// - `option::Option<impl Trait>::Foo`.
//
// To implement this, we disallow `impl Trait` from `qself`
// (for cases like `<impl Trait>::Foo>`)
// but we allow `impl Trait` in `GenericArgs`
// iff there are no more PathSegments.
if let Some(ref qself) = *qself {
// `impl Trait` in `qself` is always illegal
self.with_banned_impl_trait(|this| this.visit_ty(&qself.ty));
}
// Note that there should be a call to visit_path here,
// so if any logic is added to process `Path`s a call to it should be
// added both in visit_path and here. This code mirrors visit::walk_path.
for (i, segment) in path.segments.iter().enumerate() {
// Allow `impl Trait` iff we're on the final path segment
if i == path.segments.len() - 1 {
self.visit_path_segment(path.span, segment);
} else {
self.with_banned_impl_trait(|this| {
this.visit_path_segment(path.span, segment)
});
}
}
}
_ => visit::walk_ty(self, t),
}
}
fn err_handler(&self) -> &rustc_errors::Handler {
&self.session.diagnostic()
}
fn check_lifetime(&self, ident: Ident) {
let valid_names = [kw::UnderscoreLifetime, kw::StaticLifetime, kw::Invalid];
if !valid_names.contains(&ident.name) && ident.without_first_quote().is_reserved() {
self.err_handler().span_err(ident.span, "lifetimes cannot use keyword names");
}
}
fn check_label(&self, ident: Ident) {
if ident.without_first_quote().is_reserved() {
self.err_handler()
.span_err(ident.span, &format!("invalid label name `{}`", ident.name));
}
}
fn invalid_visibility(&self, vis: &Visibility, note: Option<&str>) {
if let VisibilityKind::Inherited = vis.node {
return;
}
let mut err =
struct_span_err!(self.session, vis.span, E0449, "unnecessary visibility qualifier");
if vis.node.is_pub() {
err.span_label(vis.span, "`pub` not permitted here because it's implied");
}
if let Some(note) = note {
err.note(note);
}
err.emit();
}
fn check_decl_no_pat(decl: &FnDecl, mut report_err: impl FnMut(Span, bool)) {
for Param { pat, .. } in &decl.inputs {
match pat.kind {
PatKind::Ident(BindingMode::ByValue(Mutability::Not), _, None) | PatKind::Wild => {}
PatKind::Ident(BindingMode::ByValue(Mutability::Mut), _, None) => {
report_err(pat.span, true)
}
_ => report_err(pat.span, false),
}
}
}
fn check_trait_fn_not_async(&self, fn_span: Span, asyncness: Async) {
if let Async::Yes { span, .. } = asyncness {
struct_span_err!(
self.session,
fn_span,
E0706,
"functions in traits cannot be declared `async`"
)
.span_label(span, "`async` because of this")
.note("`async` trait functions are not currently supported")
.note("consider using the `async-trait` crate: https://crates.io/crates/async-trait")
.emit();
}
}
fn check_trait_fn_not_const(&self, constness: Const) {
if let Const::Yes(span) = constness {
struct_span_err!(
self.session,
span,
E0379,
"functions in traits cannot be declared const"
)
.span_label(span, "functions in traits cannot be const")
.emit();
}
}
// FIXME(ecstaticmorse): Instead, use `bound_context` to check this in `visit_param_bound`.
fn no_questions_in_bounds(&self, bounds: &GenericBounds, where_: &str, is_trait: bool) {
for bound in bounds {
if let GenericBound::Trait(ref poly, TraitBoundModifier::Maybe) = *bound {
let mut err = self.err_handler().struct_span_err(
poly.span,
&format!("`?Trait` is not permitted in {}", where_),
);
if is_trait {
let path_str = pprust::path_to_string(&poly.trait_ref.path);
err.note(&format!("traits are `?{}` by default", path_str));
}
err.emit();
}
}
}
/// Matches `'-' lit | lit (cf. parser::Parser::parse_literal_maybe_minus)`,
/// or paths for ranges.
//
// FIXME: do we want to allow `expr -> pattern` conversion to create path expressions?
// That means making this work:
//
// ```rust,ignore (FIXME)
// struct S;
// macro_rules! m {
// ($a:expr) => {
// let $a = S;
// }
// }
// m!(S);
// ```
fn check_expr_within_pat(&self, expr: &Expr, allow_paths: bool) {
match expr.kind {
ExprKind::Lit(..) | ExprKind::Err => {}
ExprKind::Path(..) if allow_paths => {}
ExprKind::Unary(UnOp::Neg, ref inner) if matches!(inner.kind, ExprKind::Lit(_)) => {}
_ => self.err_handler().span_err(
expr.span,
"arbitrary expressions aren't allowed \
in patterns",
),
}
}
fn check_late_bound_lifetime_defs(&self, params: &[GenericParam]) {
// Check only lifetime parameters are present and that the lifetime
// parameters that are present have no bounds.
let non_lt_param_spans: Vec<_> = params
.iter()
.filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
if !param.bounds.is_empty() {
let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
self.err_handler()
.span_err(spans, "lifetime bounds cannot be used in this context");
}
None
}
_ => Some(param.ident.span),
})
.collect();
if !non_lt_param_spans.is_empty() {
self.err_handler().span_err(
non_lt_param_spans,
"only lifetime parameters can be used in this context",
);
}
}
fn check_fn_decl(&self, fn_decl: &FnDecl, self_semantic: SelfSemantic) {
self.check_decl_cvaradic_pos(fn_decl);
self.check_decl_attrs(fn_decl);
self.check_decl_self_param(fn_decl, self_semantic);
}
fn check_decl_cvaradic_pos(&self, fn_decl: &FnDecl) {
match &*fn_decl.inputs {
[Param { ty, span, .. }] => {
if let TyKind::CVarArgs = ty.kind {
self.err_handler().span_err(
*span,
"C-variadic function must be declared with at least one named argument",
);
}
}
[ps @ .., _] => {
for Param { ty, span, .. } in ps {
if let TyKind::CVarArgs = ty.kind {
self.err_handler().span_err(
*span,
"`...` must be the last argument of a C-variadic function",
);
}
}
}
_ => {}
}
}
fn check_decl_attrs(&self, fn_decl: &FnDecl) {
fn_decl
.inputs
.iter()
.flat_map(|i| i.attrs.as_ref())
.filter(|attr| {
let arr = [sym::allow, sym::cfg, sym::cfg_attr, sym::deny, sym::forbid, sym::warn];
!arr.contains(&attr.name_or_empty()) && rustc_attr::is_builtin_attr(attr)
})
.for_each(|attr| {
if attr.is_doc_comment() {
self.err_handler()
.struct_span_err(
attr.span,
"documentation comments cannot be applied to function parameters",
)
.span_label(attr.span, "doc comments are not allowed here")
.emit();
} else {
self.err_handler().span_err(
attr.span,
"allow, cfg, cfg_attr, deny, \
forbid, and warn are the only allowed built-in attributes in function parameters",
)
}
});
}
fn check_decl_self_param(&self, fn_decl: &FnDecl, self_semantic: SelfSemantic) {
if let (SelfSemantic::No, [param, ..]) = (self_semantic, &*fn_decl.inputs) {
if param.is_self() {
self.err_handler()
.struct_span_err(
param.span,
"`self` parameter is only allowed in associated functions",
)
.span_label(param.span, "not semantically valid as function parameter")
.note("associated functions are those in `impl` or `trait` definitions")
.emit();
}
}
}
fn check_defaultness(&self, span: Span, defaultness: Defaultness) {
if let Defaultness::Default(def_span) = defaultness {
let span = self.session.source_map().guess_head_span(span);
self.err_handler()
.struct_span_err(span, "`default` is only allowed on items in `impl` definitions")
.span_label(def_span, "`default` because of this")
.emit();
}
}
fn error_item_without_body(&self, sp: Span, ctx: &str, msg: &str, sugg: &str) {
self.err_handler()
.struct_span_err(sp, msg)
.span_suggestion(
self.session.source_map().end_point(sp),
&format!("provide a definition for the {}", ctx),
sugg.to_string(),
Applicability::HasPlaceholders,
)
.emit();
}
fn check_impl_item_provided<T>(&self, sp: Span, body: &Option<T>, ctx: &str, sugg: &str) {
if body.is_none() {
let msg = format!("associated {} in `impl` without body", ctx);
self.error_item_without_body(sp, ctx, &msg, sugg);
}
}
fn check_type_no_bounds(&self, bounds: &[GenericBound], ctx: &str) {
let span = match bounds {
[] => return,
[b0] => b0.span(),
[b0, .., bl] => b0.span().to(bl.span()),
};
self.err_handler()
.struct_span_err(span, &format!("bounds on `type`s in {} have no effect", ctx))
.emit();
}
fn check_foreign_ty_genericless(&self, generics: &Generics) {
let cannot_have = |span, descr, remove_descr| {
self.err_handler()
.struct_span_err(
span,
&format!("`type`s inside `extern` blocks cannot have {}", descr),
)
.span_suggestion(
span,
&format!("remove the {}", remove_descr),
String::new(),
Applicability::MaybeIncorrect,
)
.span_label(self.current_extern_span(), "`extern` block begins here")
.note(MORE_EXTERN)
.emit();
};
if !generics.params.is_empty() {
cannot_have(generics.span, "generic parameters", "generic parameters");
}
if !generics.where_clause.predicates.is_empty() {
cannot_have(generics.where_clause.span, "`where` clauses", "`where` clause");
}
}
fn check_foreign_kind_bodyless(&self, ident: Ident, kind: &str, body: Option<Span>) {
let body = match body {
None => return,
Some(body) => body,
};
self.err_handler()
.struct_span_err(ident.span, &format!("incorrect `{}` inside `extern` block", kind))
.span_label(ident.span, "cannot have a body")
.span_label(body, "the invalid body")
.span_label(
self.current_extern_span(),
format!(
"`extern` blocks define existing foreign {0}s and {0}s \
inside of them cannot have a body",
kind
),
)
.note(MORE_EXTERN)
.emit();
}
/// An `fn` in `extern { ... }` cannot have a body `{ ... }`.
fn check_foreign_fn_bodyless(&self, ident: Ident, body: Option<&Block>) {
let body = match body {
None => return,
Some(body) => body,
};
self.err_handler()
.struct_span_err(ident.span, "incorrect function inside `extern` block")
.span_label(ident.span, "cannot have a body")
.span_suggestion(
body.span,
"remove the invalid body",
";".to_string(),
Applicability::MaybeIncorrect,
)
.help(
"you might have meant to write a function accessible through FFI, \
which can be done by writing `extern fn` outside of the `extern` block",
)
.span_label(
self.current_extern_span(),
"`extern` blocks define existing foreign functions and functions \
inside of them cannot have a body",
)
.note(MORE_EXTERN)
.emit();
}
fn current_extern_span(&self) -> Span {
self.session.source_map().guess_head_span(self.extern_mod.unwrap().span)
}
/// An `fn` in `extern { ... }` cannot have qualfiers, e.g. `async fn`.
fn check_foreign_fn_headerless(&self, ident: Ident, span: Span, header: FnHeader) {
if header.has_qualifiers() {
self.err_handler()
.struct_span_err(ident.span, "functions in `extern` blocks cannot have qualifiers")
.span_label(self.current_extern_span(), "in this `extern` block")
.span_suggestion(
span.until(ident.span.shrink_to_lo()),
"remove the qualifiers",
"fn ".to_string(),
Applicability::MaybeIncorrect,
)
.emit();
}
}
/// Reject C-varadic type unless the function is foreign,
/// or free and `unsafe extern "C"` semantically.
fn check_c_varadic_type(&self, fk: FnKind<'a>) {
match (fk.ctxt(), fk.header()) {
(Some(FnCtxt::Foreign), _) => return,
(Some(FnCtxt::Free), Some(header)) => match header.ext {
Extern::Explicit(StrLit { symbol_unescaped: sym::C, .. }) | Extern::Implicit
if matches!(header.unsafety, Unsafe::Yes(_)) =>
{
return;
}
_ => {}
},
_ => {}
};
for Param { ty, span, .. } in &fk.decl().inputs {
if let TyKind::CVarArgs = ty.kind {
self.err_handler()
.struct_span_err(
*span,
"only foreign or `unsafe extern \"C\" functions may be C-variadic",
)
.emit();
}
}
}
fn check_item_named(&self, ident: Ident, kind: &str) {
if ident.name != kw::Underscore {
return;
}
self.err_handler()
.struct_span_err(ident.span, &format!("`{}` items in this context need a name", kind))
.span_label(ident.span, format!("`_` is not a valid name for this `{}` item", kind))
.emit();
}
fn check_nomangle_item_asciionly(&self, ident: Ident, item_span: Span) {
if ident.name.as_str().is_ascii() {
return;
}
let head_span = self.session.source_map().guess_head_span(item_span);
struct_span_err!(
self.session,
head_span,
E0754,
"`#[no_mangle]` requires ASCII identifier"
)
.emit();
}
fn check_mod_file_item_asciionly(&self, ident: Ident) {
if ident.name.as_str().is_ascii() {
return;
}
struct_span_err!(
self.session,
ident.span,
E0754,
"trying to load file for module `{}` with non ascii identifer name",
ident.name
)
.help("consider using `#[path]` attribute to specify filesystem path")
.emit();
}
fn deny_generic_params(&self, generics: &Generics, ident_span: Span) {
if !generics.params.is_empty() {
struct_span_err!(
self.session,
generics.span,
E0567,
"auto traits cannot have generic parameters"
)
.span_label(ident_span, "auto trait cannot have generic parameters")
.span_suggestion(
generics.span,
"remove the parameters",
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
}
fn deny_super_traits(&self, bounds: &GenericBounds, ident_span: Span) {
if let [first @ last] | [first, .., last] = &bounds[..] {
let span = first.span().to(last.span());
struct_span_err!(self.session, span, E0568, "auto traits cannot have super traits")
.span_label(ident_span, "auto trait cannot have super traits")
.span_suggestion(
span,
"remove the super traits",
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
}
fn deny_items(&self, trait_items: &[P<AssocItem>], ident_span: Span) {
if !trait_items.is_empty() {
let spans: Vec<_> = trait_items.iter().map(|i| i.ident.span).collect();
struct_span_err!(
self.session,
spans,
E0380,
"auto traits cannot have methods or associated items"
)
.span_label(ident_span, "auto trait cannot have items")
.emit();
}
}
fn correct_generic_order_suggestion(&self, data: &AngleBracketedArgs) -> String {
// Lifetimes always come first.
let lt_sugg = data.args.iter().filter_map(|arg| match arg {
AngleBracketedArg::Arg(lt @ GenericArg::Lifetime(_)) => {
Some(pprust::to_string(|s| s.print_generic_arg(lt)))
}
_ => None,
});
let args_sugg = data.args.iter().filter_map(|a| match a {
AngleBracketedArg::Arg(GenericArg::Lifetime(_)) | AngleBracketedArg::Constraint(_) => {
None
}
AngleBracketedArg::Arg(arg) => Some(pprust::to_string(|s| s.print_generic_arg(arg))),
});
// Constraints always come last.
let constraint_sugg = data.args.iter().filter_map(|a| match a {
AngleBracketedArg::Arg(_) => None,
AngleBracketedArg::Constraint(c) => {
Some(pprust::to_string(|s| s.print_assoc_constraint(c)))
}
});
format!(
"<{}>",
lt_sugg.chain(args_sugg).chain(constraint_sugg).collect::<Vec<String>>().join(", ")
)
}
/// Enforce generic args coming before constraints in `<...>` of a path segment.
fn check_generic_args_before_constraints(&self, data: &AngleBracketedArgs) {
// Early exit in case it's partitioned as it should be.
if data.args.iter().is_partitioned(|arg| matches!(arg, AngleBracketedArg::Arg(_))) {
return;
}
// Find all generic argument coming after the first constraint...
let (constraint_spans, arg_spans): (Vec<Span>, Vec<Span>) =
data.args.iter().partition_map(|arg| match arg {
AngleBracketedArg::Constraint(c) => Either::Left(c.span),
AngleBracketedArg::Arg(a) => Either::Right(a.span()),
});
let args_len = arg_spans.len();
let constraint_len = constraint_spans.len();
// ...and then error:
self.err_handler()
.struct_span_err(
arg_spans.clone(),
"generic arguments must come before the first constraint",
)
.span_label(constraint_spans[0], &format!("constraint{}", pluralize!(constraint_len)))
.span_label(
*arg_spans.iter().last().unwrap(),
&format!("generic argument{}", pluralize!(args_len)),
)
.span_labels(constraint_spans, "")
.span_labels(arg_spans, "")
.span_suggestion_verbose(
data.span,
&format!(
"move the constraint{} after the generic argument{}",
pluralize!(constraint_len),
pluralize!(args_len)
),
self.correct_generic_order_suggestion(&data),
Applicability::MachineApplicable,
)
.emit();
}
}
/// Checks that generic parameters are in the correct order,
/// which is lifetimes, then types and then consts. (`<'a, T, const N: usize>`)
fn validate_generic_param_order<'a>(
sess: &Session,
handler: &rustc_errors::Handler,
generics: impl Iterator<Item = (ParamKindOrd, Option<&'a [GenericBound]>, Span, Option<String>)>,
span: Span,
) {
let mut max_param: Option<ParamKindOrd> = None;
let mut out_of_order = FxHashMap::default();
let mut param_idents = vec![];
for (kind, bounds, span, ident) in generics {
if let Some(ident) = ident {
param_idents.push((kind, bounds, param_idents.len(), ident));
}
let max_param = &mut max_param;
match max_param {
Some(max_param) if *max_param > kind => {
let entry = out_of_order.entry(kind).or_insert((*max_param, vec![]));
entry.1.push(span);
}
Some(_) | None => *max_param = Some(kind),
};
}
let mut ordered_params = "<".to_string();
if !out_of_order.is_empty() {
param_idents.sort_by_key(|&(po, _, i, _)| (po, i));
let mut first = true;
for (_, bounds, _, ident) in param_idents {
if !first {
ordered_params += ", ";
}
ordered_params += &ident;
if let Some(bounds) = bounds {
if !bounds.is_empty() {
ordered_params += ": ";
ordered_params += &pprust::bounds_to_string(&bounds);
}
}
first = false;
}
}
ordered_params += ">";
for (param_ord, (max_param, spans)) in &out_of_order {
let mut err =
handler.struct_span_err(
spans.clone(),
&format!(
"{} parameters must be declared prior to {} parameters",
param_ord, max_param,
),
);
err.span_suggestion(
span,
&format!(
"reorder the parameters: lifetimes, then types{}",
if sess.features_untracked().const_generics { ", then consts" } else { "" },
),
ordered_params.clone(),
Applicability::MachineApplicable,
);
err.emit();
}
}
impl<'a> Visitor<'a> for AstValidator<'a> {
fn visit_attribute(&mut self, attr: &Attribute) {
validate_attr::check_meta(&self.session.parse_sess, attr);
}
fn visit_expr(&mut self, expr: &'a Expr) {
match &expr.kind {
ExprKind::LlvmInlineAsm(..) if !self.session.target.target.options.allow_asm => {
struct_span_err!(
self.session,
expr.span,
E0472,
"llvm_asm! is unsupported on this target"
)
.emit();
}
_ => {}
}
visit::walk_expr(self, expr);
}
fn visit_ty(&mut self, ty: &'a Ty) {
match ty.kind {
TyKind::BareFn(ref bfty) => {
self.check_fn_decl(&bfty.decl, SelfSemantic::No);
Self::check_decl_no_pat(&bfty.decl, |span, _| {
struct_span_err!(
self.session,
span,
E0561,
"patterns aren't allowed in function pointer types"
)
.emit();
});
self.check_late_bound_lifetime_defs(&bfty.generic_params);
}
TyKind::TraitObject(ref bounds, ..) => {
let mut any_lifetime_bounds = false;
for bound in bounds {
if let GenericBound::Outlives(ref lifetime) = *bound {
if any_lifetime_bounds {
struct_span_err!(
self.session,
lifetime.ident.span,
E0226,
"only a single explicit lifetime bound is permitted"
)
.emit();
break;
}
any_lifetime_bounds = true;
}
}
self.no_questions_in_bounds(bounds, "trait object types", false);
}
TyKind::ImplTrait(_, ref bounds) => {
if self.is_impl_trait_banned {
struct_span_err!(
self.session,
ty.span,
E0667,
"`impl Trait` is not allowed in path parameters"
)
.emit();
}
if let Some(outer_impl_trait_sp) = self.outer_impl_trait {
struct_span_err!(
self.session,
ty.span,
E0666,
"nested `impl Trait` is not allowed"
)
.span_label(outer_impl_trait_sp, "outer `impl Trait`")
.span_label(ty.span, "nested `impl Trait` here")
.emit();
}
if !bounds
.iter()
.any(|b| if let GenericBound::Trait(..) = *b { true } else { false })
{
self.err_handler().span_err(ty.span, "at least one trait must be specified");
}
self.walk_ty(ty);
return;
}
_ => {}
}
self.walk_ty(ty)
}
fn visit_label(&mut self, label: &'a Label) {
self.check_label(label.ident);
visit::walk_label(self, label);
}
fn visit_lifetime(&mut self, lifetime: &'a Lifetime) {
self.check_lifetime(lifetime.ident);
visit::walk_lifetime(self, lifetime);
}
fn visit_item(&mut self, item: &'a Item) {
if item.attrs.iter().any(|attr| is_proc_macro_attr(attr)) {
self.has_proc_macro_decls = true;
}
if attr::contains_name(&item.attrs, sym::no_mangle) {
self.check_nomangle_item_asciionly(item.ident, item.span);
}
match item.kind {
ItemKind::Impl {
unsafety,
polarity,
defaultness: _,
constness: _,
generics: _,
of_trait: Some(ref t),
ref self_ty,
items: _,
} => {
self.with_in_trait_impl(true, |this| {
this.invalid_visibility(&item.vis, None);
if let TyKind::Err = self_ty.kind {
this.err_handler()
.struct_span_err(
item.span,
"`impl Trait for .. {}` is an obsolete syntax",
)
.help("use `auto trait Trait {}` instead")
.emit();
}
if let (Unsafe::Yes(span), ImplPolarity::Negative(sp)) = (unsafety, polarity) {
struct_span_err!(
this.session,
sp.to(t.path.span),
E0198,
"negative impls cannot be unsafe"
)
.span_label(sp, "negative because of this")
.span_label(span, "unsafe because of this")
.emit();
}
visit::walk_item(this, item);
});
return; // Avoid visiting again.
}
ItemKind::Impl {
unsafety,
polarity,
defaultness,
constness,
generics: _,
of_trait: None,
ref self_ty,
items: _,
} => {
let error = |annotation_span, annotation| {
let mut err = self.err_handler().struct_span_err(
self_ty.span,
&format!("inherent impls cannot be {}", annotation),
);
err.span_label(annotation_span, &format!("{} because of this", annotation));
err.span_label(self_ty.span, "inherent impl for this type");
err
};
self.invalid_visibility(
&item.vis,
Some("place qualifiers on individual impl items instead"),
);
if let Unsafe::Yes(span) = unsafety {
error(span, "unsafe").code(error_code!(E0197)).emit();
}
if let ImplPolarity::Negative(span) = polarity {
error(span, "negative").emit();
}
if let Defaultness::Default(def_span) = defaultness {
error(def_span, "`default`")
.note("only trait implementations may be annotated with `default`")
.emit();
}
if let Const::Yes(span) = constness {
error(span, "`const`")
.note("only trait implementations may be annotated with `const`")
.emit();
}
}
ItemKind::Fn(def, _, _, ref body) => {
self.check_defaultness(item.span, def);
if body.is_none() {
let msg = "free function without a body";
self.error_item_without_body(item.span, "function", msg, " { <body> }");
}
}
ItemKind::ForeignMod(_) => {
let old_item = mem::replace(&mut self.extern_mod, Some(item));
self.invalid_visibility(
&item.vis,
Some("place qualifiers on individual foreign items instead"),
);
visit::walk_item(self, item);
self.extern_mod = old_item;
return; // Avoid visiting again.
}
ItemKind::Enum(ref def, _) => {
for variant in &def.variants {
self.invalid_visibility(&variant.vis, None);
for field in variant.data.fields() {
self.invalid_visibility(&field.vis, None);
}
}
}
ItemKind::Trait(is_auto, _, ref generics, ref bounds, ref trait_items) => {
if is_auto == IsAuto::Yes {
// Auto traits cannot have generics, super traits nor contain items.
self.deny_generic_params(generics, item.ident.span);
self.deny_super_traits(bounds, item.ident.span);
self.deny_items(trait_items, item.ident.span);
}
self.no_questions_in_bounds(bounds, "supertraits", true);
// Equivalent of `visit::walk_item` for `ItemKind::Trait` that inserts a bound
// context for the supertraits.
self.visit_vis(&item.vis);
self.visit_ident(item.ident);
self.visit_generics(generics);
self.with_bound_context(BoundContext::TraitBounds, |this| {
walk_list!(this, visit_param_bound, bounds);
});
walk_list!(self, visit_assoc_item, trait_items, AssocCtxt::Trait);
walk_list!(self, visit_attribute, &item.attrs);
return;
}
ItemKind::Mod(Mod { inline, .. }) => {
// Ensure that `path` attributes on modules are recorded as used (cf. issue #35584).
if !inline && !attr::contains_name(&item.attrs, sym::path) {
self.check_mod_file_item_asciionly(item.ident);
}
}
ItemKind::Union(ref vdata, _) => {
if let VariantData::Tuple(..) | VariantData::Unit(..) = vdata {
self.err_handler()
.span_err(item.span, "tuple and unit unions are not permitted");
}
if vdata.fields().is_empty() {
self.err_handler().span_err(item.span, "unions cannot have zero fields");
}
}
ItemKind::Const(def, .., None) => {
self.check_defaultness(item.span, def);
let msg = "free constant item without body";
self.error_item_without_body(item.span, "constant", msg, " = <expr>;");
}
ItemKind::Static(.., None) => {
let msg = "free static item without body";
self.error_item_without_body(item.span, "static", msg, " = <expr>;");
}
ItemKind::TyAlias(def, _, ref bounds, ref body) => {
self.check_defaultness(item.span, def);
if body.is_none() {
let msg = "free type alias without body";
self.error_item_without_body(item.span, "type", msg, " = <type>;");
}
self.check_type_no_bounds(bounds, "this context");
}
_ => {}
}
visit::walk_item(self, item)
}
fn visit_foreign_item(&mut self, fi: &'a ForeignItem) {
match &fi.kind {
ForeignItemKind::Fn(def, sig, _, body) => {
self.check_defaultness(fi.span, *def);
self.check_foreign_fn_bodyless(fi.ident, body.as_deref());
self.check_foreign_fn_headerless(fi.ident, fi.span, sig.header);
}
ForeignItemKind::TyAlias(def, generics, bounds, body) => {
self.check_defaultness(fi.span, *def);
self.check_foreign_kind_bodyless(fi.ident, "type", body.as_ref().map(|b| b.span));
self.check_type_no_bounds(bounds, "`extern` blocks");
self.check_foreign_ty_genericless(generics);
}
ForeignItemKind::Static(_, _, body) => {
self.check_foreign_kind_bodyless(fi.ident, "static", body.as_ref().map(|b| b.span));
}
ForeignItemKind::MacCall(..) => {}
}
visit::walk_foreign_item(self, fi)
}
// Mirrors `visit::walk_generic_args`, but tracks relevant state.
fn visit_generic_args(&mut self, _: Span, generic_args: &'a GenericArgs) {
match *generic_args {
GenericArgs::AngleBracketed(ref data) => {
self.check_generic_args_before_constraints(data);
for arg in &data.args {
match arg {
AngleBracketedArg::Arg(arg) => self.visit_generic_arg(arg),
// Type bindings such as `Item = impl Debug` in `Iterator<Item = Debug>`
// are allowed to contain nested `impl Trait`.
AngleBracketedArg::Constraint(constraint) => {
self.with_impl_trait(None, |this| {
this.visit_assoc_ty_constraint_from_generic_args(constraint);
});
}
}
}
}
GenericArgs::Parenthesized(ref data) => {
walk_list!(self, visit_ty, &data.inputs);
if let FnRetTy::Ty(ty) = &data.output {
// `-> Foo` syntax is essentially an associated type binding,
// so it is also allowed to contain nested `impl Trait`.
self.with_impl_trait(None, |this| this.visit_ty(ty));
}
}
}
}
fn visit_generics(&mut self, generics: &'a Generics) {
let mut prev_ty_default = None;
for param in &generics.params {
if let GenericParamKind::Type { ref default, .. } = param.kind {
if default.is_some() {
prev_ty_default = Some(param.ident.span);
} else if let Some(span) = prev_ty_default {
self.err_handler()
.span_err(span, "type parameters with a default must be trailing");
break;
}
}
}
validate_generic_param_order(
self.session,
self.err_handler(),
generics.params.iter().map(|param| {
let ident = Some(param.ident.to_string());
let (kind, ident) = match &param.kind {
GenericParamKind::Lifetime => (ParamKindOrd::Lifetime, ident),
GenericParamKind::Type { default: _ } => (ParamKindOrd::Type, ident),
GenericParamKind::Const { ref ty, kw_span: _ } => {
let ty = pprust::ty_to_string(ty);
(ParamKindOrd::Const, Some(format!("const {}: {}", param.ident, ty)))
}
};
(kind, Some(&*param.bounds), param.ident.span, ident)
}),
generics.span,
);
for predicate in &generics.where_clause.predicates {
if let WherePredicate::EqPredicate(ref predicate) = *predicate {
deny_equality_constraints(self, predicate, generics);
}
}
visit::walk_generics(self, generics)
}
fn visit_generic_param(&mut self, param: &'a GenericParam) {
if let GenericParamKind::Lifetime { .. } = param.kind {
self.check_lifetime(param.ident);
}
visit::walk_generic_param(self, param);
}
fn visit_param_bound(&mut self, bound: &'a GenericBound) {
match bound {
GenericBound::Trait(_, TraitBoundModifier::MaybeConst) => {
if let Some(ctx) = self.bound_context {
let msg = format!("`?const` is not permitted in {}", ctx.description());
self.err_handler().span_err(bound.span(), &msg);
}
}
GenericBound::Trait(_, TraitBoundModifier::MaybeConstMaybe) => {
self.err_handler()
.span_err(bound.span(), "`?const` and `?` are mutually exclusive");
}
_ => {}
}
visit::walk_param_bound(self, bound)
}
fn visit_pat(&mut self, pat: &'a Pat) {
match pat.kind {
PatKind::Lit(ref expr) => {
self.check_expr_within_pat(expr, false);
}
PatKind::Range(ref start, ref end, _) => {
if let Some(expr) = start {
self.check_expr_within_pat(expr, true);
}
if let Some(expr) = end {
self.check_expr_within_pat(expr, true);
}
}
_ => {}
}
visit::walk_pat(self, pat)
}
fn visit_where_predicate(&mut self, p: &'a WherePredicate) {
if let &WherePredicate::BoundPredicate(ref bound_predicate) = p {
// A type binding, eg `for<'c> Foo: Send+Clone+'c`
self.check_late_bound_lifetime_defs(&bound_predicate.bound_generic_params);
}
visit::walk_where_predicate(self, p);
}
fn visit_poly_trait_ref(&mut self, t: &'a PolyTraitRef, m: &'a TraitBoundModifier) {
self.check_late_bound_lifetime_defs(&t.bound_generic_params);
visit::walk_poly_trait_ref(self, t, m);
}
fn visit_variant_data(&mut self, s: &'a VariantData) {
self.with_banned_assoc_ty_bound(|this| visit::walk_struct_def(this, s))
}
fn visit_enum_def(
&mut self,
enum_definition: &'a EnumDef,
generics: &'a Generics,
item_id: NodeId,
_: Span,
) {
self.with_banned_assoc_ty_bound(|this| {
visit::walk_enum_def(this, enum_definition, generics, item_id)
})
}
fn visit_fn(&mut self, fk: FnKind<'a>, span: Span, id: NodeId) {
// Only associated `fn`s can have `self` parameters.
let self_semantic = match fk.ctxt() {
Some(FnCtxt::Assoc(_)) => SelfSemantic::Yes,
_ => SelfSemantic::No,
};
self.check_fn_decl(fk.decl(), self_semantic);
self.check_c_varadic_type(fk);
// Functions cannot both be `const async`
if let Some(FnHeader {
constness: Const::Yes(cspan),
asyncness: Async::Yes { span: aspan, .. },
..
}) = fk.header()
{
self.err_handler()
.struct_span_err(
vec![*cspan, *aspan],
"functions cannot be both `const` and `async`",
)
.span_label(*cspan, "`const` because of this")
.span_label(*aspan, "`async` because of this")
.span_label(span, "") // Point at the fn header.
.emit();
}
// Functions without bodies cannot have patterns.
if let FnKind::Fn(ctxt, _, sig, _, None) = fk {
Self::check_decl_no_pat(&sig.decl, |span, mut_ident| {
let (code, msg, label) = match ctxt {
FnCtxt::Foreign => (
error_code!(E0130),
"patterns aren't allowed in foreign function declarations",
"pattern not allowed in foreign function",
),
_ => (
error_code!(E0642),
"patterns aren't allowed in functions without bodies",
"pattern not allowed in function without body",
),
};
if mut_ident && matches!(ctxt, FnCtxt::Assoc(_)) {
self.lint_buffer.buffer_lint(PATTERNS_IN_FNS_WITHOUT_BODY, id, span, msg);
} else {
self.err_handler()
.struct_span_err(span, msg)
.span_label(span, label)
.code(code)
.emit();
}
});
}
visit::walk_fn(self, fk, span);
}
fn visit_assoc_item(&mut self, item: &'a AssocItem, ctxt: AssocCtxt) {
if ctxt == AssocCtxt::Trait || !self.in_trait_impl {
self.check_defaultness(item.span, item.kind.defaultness());
}
if ctxt == AssocCtxt::Impl {
match &item.kind {
AssocItemKind::Const(_, _, body) => {
self.check_impl_item_provided(item.span, body, "constant", " = <expr>;");
}
AssocItemKind::Fn(_, _, _, body) => {
self.check_impl_item_provided(item.span, body, "function", " { <body> }");
}
AssocItemKind::TyAlias(_, _, bounds, body) => {
self.check_impl_item_provided(item.span, body, "type", " = <type>;");
self.check_type_no_bounds(bounds, "`impl`s");
}
_ => {}
}
}
if ctxt == AssocCtxt::Trait || self.in_trait_impl {
self.invalid_visibility(&item.vis, None);
if let AssocItemKind::Fn(_, sig, _, _) = &item.kind {
self.check_trait_fn_not_const(sig.header.constness);
self.check_trait_fn_not_async(item.span, sig.header.asyncness);
}
}
if let AssocItemKind::Const(..) = item.kind {
self.check_item_named(item.ident, "const");
}
self.with_in_trait_impl(false, |this| visit::walk_assoc_item(this, item, ctxt));
}
}
/// When encountering an equality constraint in a `where` clause, emit an error. If the code seems
/// like it's setting an associated type, provide an appropriate suggestion.
fn deny_equality_constraints(
this: &mut AstValidator<'_>,
predicate: &WhereEqPredicate,
generics: &Generics,
) {
let mut err = this.err_handler().struct_span_err(
predicate.span,
"equality constraints are not yet supported in `where` clauses",
);
err.span_label(predicate.span, "not supported");
// Given `<A as Foo>::Bar = RhsTy`, suggest `A: Foo<Bar = RhsTy>`.
if let TyKind::Path(Some(qself), full_path) = &predicate.lhs_ty.kind {
if let TyKind::Path(None, path) = &qself.ty.kind {
match &path.segments[..] {
[PathSegment { ident, args: None, .. }] => {
for param in &generics.params {
if param.ident == *ident {
let param = ident;
match &full_path.segments[qself.position..] {
[PathSegment { ident, .. }] => {
// Make a new `Path` from `foo::Bar` to `Foo<Bar = RhsTy>`.
let mut assoc_path = full_path.clone();
// Remove `Bar` from `Foo::Bar`.
assoc_path.segments.pop();
let len = assoc_path.segments.len() - 1;
// Build `<Bar = RhsTy>`.
let arg = AngleBracketedArg::Constraint(AssocTyConstraint {
id: rustc_ast::node_id::DUMMY_NODE_ID,
ident: *ident,
kind: AssocTyConstraintKind::Equality {
ty: predicate.rhs_ty.clone(),
},
span: ident.span,
});
// Add `<Bar = RhsTy>` to `Foo`.
match &mut assoc_path.segments[len].args {
Some(args) => match args.deref_mut() {
GenericArgs::Parenthesized(_) => continue,
GenericArgs::AngleBracketed(args) => {
args.args.push(arg);
}
},
empty_args => {
*empty_args = AngleBracketedArgs {
span: ident.span,
args: vec![arg],
}
.into();
}
}
err.span_suggestion_verbose(
predicate.span,
&format!(
"if `{}` is an associated type you're trying to set, \
use the associated type binding syntax",
ident
),
format!(
"{}: {}",
param,
pprust::path_to_string(&assoc_path)
),
Applicability::MaybeIncorrect,
);
}
_ => {}
};
}
}
}
_ => {}
}
}
}
err.note(
"see issue #20041 <https://github.com/rust-lang/rust/issues/20041> for more information",
);
err.emit();
}
pub fn check_crate(session: &Session, krate: &Crate, lints: &mut LintBuffer) -> bool {
let mut validator = AstValidator {
session,
extern_mod: None,
in_trait_impl: false,
has_proc_macro_decls: false,
outer_impl_trait: None,
bound_context: None,
is_impl_trait_banned: false,
is_assoc_ty_bound_banned: false,
lint_buffer: lints,
};
visit::walk_crate(&mut validator, krate);
validator.has_proc_macro_decls
}