blob: 5cf4f97fb886394d5754016d3fb99d6e095ccc12 [file] [log] [blame]
//! The arena, a fast but limited type of allocator.
//!
//! Arenas are a type of allocator that destroy the objects within, all at
//! once, once the arena itself is destroyed. They do not support deallocation
//! of individual objects while the arena itself is still alive. The benefit
//! of an arena is very fast allocation; just a pointer bump.
//!
//! This crate implements several kinds of arena.
#![doc(
html_root_url = "https://doc.rust-lang.org/nightly/",
test(no_crate_inject, attr(deny(warnings)))
)]
#![feature(core_intrinsics)]
#![feature(dropck_eyepatch)]
#![feature(raw_vec_internals)]
#![cfg_attr(test, feature(test))]
#![allow(deprecated)]
extern crate alloc;
use rustc_data_structures::cold_path;
use smallvec::SmallVec;
use std::alloc::Layout;
use std::cell::{Cell, RefCell};
use std::cmp;
use std::intrinsics;
use std::marker::{PhantomData, Send};
use std::mem;
use std::ptr;
use std::slice;
use alloc::raw_vec::RawVec;
/// An arena that can hold objects of only one type.
pub struct TypedArena<T> {
/// A pointer to the next object to be allocated.
ptr: Cell<*mut T>,
/// A pointer to the end of the allocated area. When this pointer is
/// reached, a new chunk is allocated.
end: Cell<*mut T>,
/// A vector of arena chunks.
chunks: RefCell<Vec<TypedArenaChunk<T>>>,
/// Marker indicating that dropping the arena causes its owned
/// instances of `T` to be dropped.
_own: PhantomData<T>,
}
struct TypedArenaChunk<T> {
/// The raw storage for the arena chunk.
storage: RawVec<T>,
/// The number of valid entries in the chunk.
entries: usize,
}
impl<T> TypedArenaChunk<T> {
#[inline]
unsafe fn new(capacity: usize) -> TypedArenaChunk<T> {
TypedArenaChunk { storage: RawVec::with_capacity(capacity), entries: 0 }
}
/// Destroys this arena chunk.
#[inline]
unsafe fn destroy(&mut self, len: usize) {
// The branch on needs_drop() is an -O1 performance optimization.
// Without the branch, dropping TypedArena<u8> takes linear time.
if mem::needs_drop::<T>() {
let mut start = self.start();
// Destroy all allocated objects.
for _ in 0..len {
ptr::drop_in_place(start);
start = start.offset(1);
}
}
}
// Returns a pointer to the first allocated object.
#[inline]
fn start(&self) -> *mut T {
self.storage.ptr()
}
// Returns a pointer to the end of the allocated space.
#[inline]
fn end(&self) -> *mut T {
unsafe {
if mem::size_of::<T>() == 0 {
// A pointer as large as possible for zero-sized elements.
!0 as *mut T
} else {
self.start().add(self.storage.capacity())
}
}
}
}
// The arenas start with PAGE-sized chunks, and then each new chunk is twice as
// big as its predecessor, up until we reach HUGE_PAGE-sized chunks, whereupon
// we stop growing. This scales well, from arenas that are barely used up to
// arenas that are used for 100s of MiBs. Note also that the chosen sizes match
// the usual sizes of pages and huge pages on Linux.
const PAGE: usize = 4096;
const HUGE_PAGE: usize = 2 * 1024 * 1024;
impl<T> Default for TypedArena<T> {
/// Creates a new `TypedArena`.
fn default() -> TypedArena<T> {
TypedArena {
// We set both `ptr` and `end` to 0 so that the first call to
// alloc() will trigger a grow().
ptr: Cell::new(ptr::null_mut()),
end: Cell::new(ptr::null_mut()),
chunks: RefCell::new(vec![]),
_own: PhantomData,
}
}
}
impl<T> TypedArena<T> {
/// Allocates an object in the `TypedArena`, returning a reference to it.
#[inline]
pub fn alloc(&self, object: T) -> &mut T {
if self.ptr == self.end {
self.grow(1)
}
unsafe {
if mem::size_of::<T>() == 0 {
self.ptr.set(intrinsics::arith_offset(self.ptr.get() as *mut u8, 1) as *mut T);
let ptr = mem::align_of::<T>() as *mut T;
// Don't drop the object. This `write` is equivalent to `forget`.
ptr::write(ptr, object);
&mut *ptr
} else {
let ptr = self.ptr.get();
// Advance the pointer.
self.ptr.set(self.ptr.get().offset(1));
// Write into uninitialized memory.
ptr::write(ptr, object);
&mut *ptr
}
}
}
#[inline]
fn can_allocate(&self, additional: usize) -> bool {
let available_bytes = self.end.get() as usize - self.ptr.get() as usize;
let additional_bytes = additional.checked_mul(mem::size_of::<T>()).unwrap();
available_bytes >= additional_bytes
}
/// Ensures there's enough space in the current chunk to fit `len` objects.
#[inline]
fn ensure_capacity(&self, additional: usize) {
if !self.can_allocate(additional) {
self.grow(additional);
debug_assert!(self.can_allocate(additional));
}
}
#[inline]
unsafe fn alloc_raw_slice(&self, len: usize) -> *mut T {
assert!(mem::size_of::<T>() != 0);
assert!(len != 0);
self.ensure_capacity(len);
let start_ptr = self.ptr.get();
self.ptr.set(start_ptr.add(len));
start_ptr
}
/// Allocates a slice of objects that are copied into the `TypedArena`, returning a mutable
/// reference to it. Will panic if passed a zero-sized types.
///
/// Panics:
///
/// - Zero-sized types
/// - Zero-length slices
#[inline]
pub fn alloc_slice(&self, slice: &[T]) -> &mut [T]
where
T: Copy,
{
unsafe {
let len = slice.len();
let start_ptr = self.alloc_raw_slice(len);
slice.as_ptr().copy_to_nonoverlapping(start_ptr, len);
slice::from_raw_parts_mut(start_ptr, len)
}
}
#[inline]
pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
assert!(mem::size_of::<T>() != 0);
let mut vec: SmallVec<[_; 8]> = iter.into_iter().collect();
if vec.is_empty() {
return &mut [];
}
// Move the content to the arena by copying it and then forgetting
// the content of the SmallVec
unsafe {
let len = vec.len();
let start_ptr = self.alloc_raw_slice(len);
vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
vec.set_len(0);
slice::from_raw_parts_mut(start_ptr, len)
}
}
/// Grows the arena.
#[inline(never)]
#[cold]
fn grow(&self, additional: usize) {
unsafe {
// We need the element size to convert chunk sizes (ranging from
// PAGE to HUGE_PAGE bytes) to element counts.
let elem_size = cmp::max(1, mem::size_of::<T>());
let mut chunks = self.chunks.borrow_mut();
let mut new_cap;
if let Some(last_chunk) = chunks.last_mut() {
let used_bytes = self.ptr.get() as usize - last_chunk.start() as usize;
last_chunk.entries = used_bytes / mem::size_of::<T>();
// If the previous chunk's capacity is less than HUGE_PAGE
// bytes, then this chunk will be least double the previous
// chunk's size.
new_cap = last_chunk.storage.capacity();
if new_cap < HUGE_PAGE / elem_size {
new_cap = new_cap.checked_mul(2).unwrap();
}
} else {
new_cap = PAGE / elem_size;
}
// Also ensure that this chunk can fit `additional`.
new_cap = cmp::max(additional, new_cap);
let chunk = TypedArenaChunk::<T>::new(new_cap);
self.ptr.set(chunk.start());
self.end.set(chunk.end());
chunks.push(chunk);
}
}
/// Clears the arena. Deallocates all but the longest chunk which may be reused.
pub fn clear(&mut self) {
unsafe {
// Clear the last chunk, which is partially filled.
let mut chunks_borrow = self.chunks.borrow_mut();
if let Some(mut last_chunk) = chunks_borrow.last_mut() {
self.clear_last_chunk(&mut last_chunk);
let len = chunks_borrow.len();
// If `T` is ZST, code below has no effect.
for mut chunk in chunks_borrow.drain(..len - 1) {
chunk.destroy(chunk.entries);
}
}
}
}
// Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
// chunks.
fn clear_last_chunk(&self, last_chunk: &mut TypedArenaChunk<T>) {
// Determine how much was filled.
let start = last_chunk.start() as usize;
// We obtain the value of the pointer to the first uninitialized element.
let end = self.ptr.get() as usize;
// We then calculate the number of elements to be dropped in the last chunk,
// which is the filled area's length.
let diff = if mem::size_of::<T>() == 0 {
// `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
// the number of zero-sized values in the last and only chunk, just out of caution.
// Recall that `end` was incremented for each allocated value.
end - start
} else {
(end - start) / mem::size_of::<T>()
};
// Pass that to the `destroy` method.
unsafe {
last_chunk.destroy(diff);
}
// Reset the chunk.
self.ptr.set(last_chunk.start());
}
}
unsafe impl<#[may_dangle] T> Drop for TypedArena<T> {
fn drop(&mut self) {
unsafe {
// Determine how much was filled.
let mut chunks_borrow = self.chunks.borrow_mut();
if let Some(mut last_chunk) = chunks_borrow.pop() {
// Drop the contents of the last chunk.
self.clear_last_chunk(&mut last_chunk);
// The last chunk will be dropped. Destroy all other chunks.
for chunk in chunks_borrow.iter_mut() {
chunk.destroy(chunk.entries);
}
}
// RawVec handles deallocation of `last_chunk` and `self.chunks`.
}
}
}
unsafe impl<T: Send> Send for TypedArena<T> {}
pub struct DroplessArena {
/// A pointer to the next object to be allocated.
ptr: Cell<*mut u8>,
/// A pointer to the end of the allocated area. When this pointer is
/// reached, a new chunk is allocated.
end: Cell<*mut u8>,
/// A vector of arena chunks.
chunks: RefCell<Vec<TypedArenaChunk<u8>>>,
}
unsafe impl Send for DroplessArena {}
impl Default for DroplessArena {
#[inline]
fn default() -> DroplessArena {
DroplessArena {
ptr: Cell::new(ptr::null_mut()),
end: Cell::new(ptr::null_mut()),
chunks: Default::default(),
}
}
}
impl DroplessArena {
#[inline(never)]
#[cold]
fn grow(&self, additional: usize) {
unsafe {
let mut chunks = self.chunks.borrow_mut();
let mut new_cap;
if let Some(last_chunk) = chunks.last_mut() {
// There is no need to update `last_chunk.entries` because that
// field isn't used by `DroplessArena`.
// If the previous chunk's capacity is less than HUGE_PAGE
// bytes, then this chunk will be least double the previous
// chunk's size.
new_cap = last_chunk.storage.capacity();
if new_cap < HUGE_PAGE {
new_cap = new_cap.checked_mul(2).unwrap();
}
} else {
new_cap = PAGE;
}
// Also ensure that this chunk can fit `additional`.
new_cap = cmp::max(additional, new_cap);
let chunk = TypedArenaChunk::<u8>::new(new_cap);
self.ptr.set(chunk.start());
self.end.set(chunk.end());
chunks.push(chunk);
}
}
/// Allocates a byte slice with specified layout from the current memory
/// chunk. Returns `None` if there is no free space left to satisfy the
/// request.
#[inline]
fn alloc_raw_without_grow(&self, layout: Layout) -> Option<*mut u8> {
let ptr = self.ptr.get() as usize;
let end = self.end.get() as usize;
let align = layout.align();
let bytes = layout.size();
// The allocation request fits into the current chunk iff:
//
// let aligned = align_to(ptr, align);
// ptr <= aligned && aligned + bytes <= end
//
// Except that we work with fixed width integers and need to be careful
// about potential overflow in the calcuation. If the overflow does
// happen, then we definitely don't have enough free and need to grow
// the arena.
let aligned = ptr.checked_add(align - 1)? & !(align - 1);
let new_ptr = aligned.checked_add(bytes)?;
if new_ptr <= end {
self.ptr.set(new_ptr as *mut u8);
Some(aligned as *mut u8)
} else {
None
}
}
#[inline]
pub fn alloc_raw(&self, layout: Layout) -> *mut u8 {
assert!(layout.size() != 0);
loop {
if let Some(a) = self.alloc_raw_without_grow(layout) {
break a;
}
// No free space left. Allocate a new chunk to satisfy the request.
// On failure the grow will panic or abort.
self.grow(layout.size());
}
}
#[inline]
pub fn alloc<T>(&self, object: T) -> &mut T {
assert!(!mem::needs_drop::<T>());
let mem = self.alloc_raw(Layout::for_value::<T>(&object)) as *mut T;
unsafe {
// Write into uninitialized memory.
ptr::write(mem, object);
&mut *mem
}
}
/// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable
/// reference to it. Will panic if passed a zero-sized type.
///
/// Panics:
///
/// - Zero-sized types
/// - Zero-length slices
#[inline]
pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
where
T: Copy,
{
assert!(!mem::needs_drop::<T>());
assert!(mem::size_of::<T>() != 0);
assert!(!slice.is_empty());
let mem = self.alloc_raw(Layout::for_value::<[T]>(slice)) as *mut T;
unsafe {
mem.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
slice::from_raw_parts_mut(mem, slice.len())
}
}
#[inline]
unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
&self,
mut iter: I,
len: usize,
mem: *mut T,
) -> &mut [T] {
let mut i = 0;
// Use a manual loop since LLVM manages to optimize it better for
// slice iterators
loop {
let value = iter.next();
if i >= len || value.is_none() {
// We only return as many items as the iterator gave us, even
// though it was supposed to give us `len`
return slice::from_raw_parts_mut(mem, i);
}
ptr::write(mem.add(i), value.unwrap());
i += 1;
}
}
#[inline]
pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
let iter = iter.into_iter();
assert!(mem::size_of::<T>() != 0);
assert!(!mem::needs_drop::<T>());
let size_hint = iter.size_hint();
match size_hint {
(min, Some(max)) if min == max => {
// We know the exact number of elements the iterator will produce here
let len = min;
if len == 0 {
return &mut [];
}
let mem = self.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
unsafe { self.write_from_iter(iter, len, mem) }
}
(_, _) => {
cold_path(move || -> &mut [T] {
let mut vec: SmallVec<[_; 8]> = iter.collect();
if vec.is_empty() {
return &mut [];
}
// Move the content to the arena by copying it and then forgetting
// the content of the SmallVec
unsafe {
let len = vec.len();
let start_ptr =
self.alloc_raw(Layout::for_value::<[T]>(vec.as_slice())) as *mut T;
vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
vec.set_len(0);
slice::from_raw_parts_mut(start_ptr, len)
}
})
}
}
}
}
/// Calls the destructor for an object when dropped.
struct DropType {
drop_fn: unsafe fn(*mut u8),
obj: *mut u8,
}
unsafe fn drop_for_type<T>(to_drop: *mut u8) {
std::ptr::drop_in_place(to_drop as *mut T)
}
impl Drop for DropType {
fn drop(&mut self) {
unsafe { (self.drop_fn)(self.obj) }
}
}
/// An arena which can be used to allocate any type.
/// Allocating in this arena is unsafe since the type system
/// doesn't know which types it contains. In order to
/// allocate safely, you must store a PhantomData<T>
/// alongside this arena for each type T you allocate.
#[derive(Default)]
pub struct DropArena {
/// A list of destructors to run when the arena drops.
/// Ordered so `destructors` gets dropped before the arena
/// since its destructor can reference memory in the arena.
destructors: RefCell<Vec<DropType>>,
arena: DroplessArena,
}
impl DropArena {
#[inline]
pub unsafe fn alloc<T>(&self, object: T) -> &mut T {
let mem = self.arena.alloc_raw(Layout::new::<T>()) as *mut T;
// Write into uninitialized memory.
ptr::write(mem, object);
let result = &mut *mem;
// Record the destructor after doing the allocation as that may panic
// and would cause `object`'s destuctor to run twice if it was recorded before
self.destructors
.borrow_mut()
.push(DropType { drop_fn: drop_for_type::<T>, obj: result as *mut T as *mut u8 });
result
}
#[inline]
pub unsafe fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
let mut vec: SmallVec<[_; 8]> = iter.into_iter().collect();
if vec.is_empty() {
return &mut [];
}
let len = vec.len();
let start_ptr = self.arena.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
let mut destructors = self.destructors.borrow_mut();
// Reserve space for the destructors so we can't panic while adding them
destructors.reserve(len);
// Move the content to the arena by copying it and then forgetting
// the content of the SmallVec
vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
mem::forget(vec.drain(..));
// Record the destructors after doing the allocation as that may panic
// and would cause `object`'s destuctor to run twice if it was recorded before
for i in 0..len {
destructors.push(DropType {
drop_fn: drop_for_type::<T>,
obj: start_ptr.offset(i as isize) as *mut u8,
});
}
slice::from_raw_parts_mut(start_ptr, len)
}
}
#[macro_export]
macro_rules! arena_for_type {
([][$ty:ty]) => {
$crate::TypedArena<$ty>
};
([few $(, $attrs:ident)*][$ty:ty]) => {
::std::marker::PhantomData<$ty>
};
([$ignore:ident $(, $attrs:ident)*]$args:tt) => {
$crate::arena_for_type!([$($attrs),*]$args)
};
}
#[macro_export]
macro_rules! which_arena_for_type {
([][$arena:expr]) => {
::std::option::Option::Some($arena)
};
([few$(, $attrs:ident)*][$arena:expr]) => {
::std::option::Option::None
};
([$ignore:ident$(, $attrs:ident)*]$args:tt) => {
$crate::which_arena_for_type!([$($attrs),*]$args)
};
}
#[macro_export]
macro_rules! declare_arena {
// This macro has to take the same input as
// `impl_arena_allocatable_decoders` which requires a second version of
// each type. We ignore that type until we can fix
// `impl_arena_allocatable_decoders`.
([], [$($a:tt $name:ident: $ty:ty, $_gen_ty:ty;)*], $tcx:lifetime) => {
#[derive(Default)]
pub struct Arena<$tcx> {
pub dropless: $crate::DroplessArena,
drop: $crate::DropArena,
$($name: $crate::arena_for_type!($a[$ty]),)*
}
pub trait ArenaAllocatable<'tcx, T = Self>: Sized {
fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self;
fn allocate_from_iter<'a>(
arena: &'a Arena<'tcx>,
iter: impl ::std::iter::IntoIterator<Item = Self>,
) -> &'a mut [Self];
}
impl<'tcx, T: Copy> ArenaAllocatable<'tcx, ()> for T {
#[inline]
fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut Self {
arena.dropless.alloc(self)
}
#[inline]
fn allocate_from_iter<'a>(
arena: &'a Arena<'tcx>,
iter: impl ::std::iter::IntoIterator<Item = Self>,
) -> &'a mut [Self] {
arena.dropless.alloc_from_iter(iter)
}
}
$(
impl<$tcx> ArenaAllocatable<$tcx, $ty> for $ty {
#[inline]
fn allocate_on<'a>(self, arena: &'a Arena<$tcx>) -> &'a mut Self {
if !::std::mem::needs_drop::<Self>() {
return arena.dropless.alloc(self);
}
match $crate::which_arena_for_type!($a[&arena.$name]) {
::std::option::Option::<&$crate::TypedArena<Self>>::Some(ty_arena) => {
ty_arena.alloc(self)
}
::std::option::Option::None => unsafe { arena.drop.alloc(self) },
}
}
#[inline]
fn allocate_from_iter<'a>(
arena: &'a Arena<$tcx>,
iter: impl ::std::iter::IntoIterator<Item = Self>,
) -> &'a mut [Self] {
if !::std::mem::needs_drop::<Self>() {
return arena.dropless.alloc_from_iter(iter);
}
match $crate::which_arena_for_type!($a[&arena.$name]) {
::std::option::Option::<&$crate::TypedArena<Self>>::Some(ty_arena) => {
ty_arena.alloc_from_iter(iter)
}
::std::option::Option::None => unsafe { arena.drop.alloc_from_iter(iter) },
}
}
}
)*
impl<'tcx> Arena<'tcx> {
#[inline]
pub fn alloc<T: ArenaAllocatable<'tcx, U>, U>(&self, value: T) -> &mut T {
value.allocate_on(self)
}
#[inline]
pub fn alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T] {
if value.is_empty() {
return &mut [];
}
self.dropless.alloc_slice(value)
}
pub fn alloc_from_iter<'a, T: ArenaAllocatable<'tcx, U>, U>(
&'a self,
iter: impl ::std::iter::IntoIterator<Item = T>,
) -> &'a mut [T] {
T::allocate_from_iter(self, iter)
}
}
}
}
#[cfg(test)]
mod tests;