blob: c3cca149c2c57bc541b679e4ee01778db6aa460c [file] [log] [blame]
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Support code for rustdoc and external tools . You really don't
//! want to be using this unless you need to.
use super::*;
use std::collections::hash_map::Entry;
use std::collections::VecDeque;
use infer::region_constraints::{Constraint, RegionConstraintData};
use infer::InferCtxt;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use ty::fold::TypeFolder;
use ty::{Region, RegionVid};
// FIXME(twk): this is obviously not nice to duplicate like that
#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
pub enum RegionTarget<'tcx> {
Region(Region<'tcx>),
RegionVid(RegionVid),
}
#[derive(Default, Debug, Clone)]
pub struct RegionDeps<'tcx> {
larger: FxHashSet<RegionTarget<'tcx>>,
smaller: FxHashSet<RegionTarget<'tcx>>,
}
pub enum AutoTraitResult<A> {
ExplicitImpl,
PositiveImpl(A),
NegativeImpl,
}
impl<A> AutoTraitResult<A> {
fn is_auto(&self) -> bool {
match *self {
AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl => true,
_ => false,
}
}
}
pub struct AutoTraitInfo<'cx> {
pub full_user_env: ty::ParamEnv<'cx>,
pub region_data: RegionConstraintData<'cx>,
pub names_map: FxHashSet<String>,
pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
}
pub struct AutoTraitFinder<'a, 'tcx: 'a> {
tcx: &'a TyCtxt<'a, 'tcx, 'tcx>,
}
impl<'a, 'tcx> AutoTraitFinder<'a, 'tcx> {
pub fn new(tcx: &'a TyCtxt<'a, 'tcx, 'tcx>) -> Self {
AutoTraitFinder { tcx }
}
/// Make a best effort to determine whether and under which conditions an auto trait is
/// implemented for a type. For example, if you have
///
/// ```
/// struct Foo<T> { data: Box<T> }
/// ```
///
/// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
/// The analysis attempts to account for custom impls as well as other complex cases. This
/// result is intended for use by rustdoc and other such consumers.
///
/// (Note that due to the coinductive nature of Send, the full and correct result is actually
/// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
/// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
/// But this is often not the best way to present to the user.)
///
/// Warning: The API should be considered highly unstable, and it may be refactored or removed
/// in the future.
pub fn find_auto_trait_generics<A>(
&self,
did: DefId,
trait_did: DefId,
generics: &ty::Generics,
auto_trait_callback: impl for<'i> Fn(&InferCtxt<'_, 'tcx, 'i>, AutoTraitInfo<'i>) -> A,
) -> AutoTraitResult<A> {
let tcx = self.tcx;
let ty = self.tcx.type_of(did);
let orig_params = tcx.param_env(did);
let trait_ref = ty::TraitRef {
def_id: trait_did,
substs: tcx.mk_substs_trait(ty, &[]),
};
let trait_pred = ty::Binder::bind(trait_ref);
let bail_out = tcx.infer_ctxt().enter(|infcx| {
let mut selcx = SelectionContext::with_negative(&infcx, true);
let result = selcx.select(&Obligation::new(
ObligationCause::dummy(),
orig_params,
trait_pred.to_poly_trait_predicate(),
));
match result {
Ok(Some(Vtable::VtableImpl(_))) => {
debug!(
"find_auto_trait_generics(did={:?}, trait_did={:?}, generics={:?}): \
manual impl found, bailing out",
did, trait_did, generics
);
true
}
_ => false
}
});
// If an explicit impl exists, it always takes priority over an auto impl
if bail_out {
return AutoTraitResult::ExplicitImpl;
}
return tcx.infer_ctxt().enter(|mut infcx| {
let mut fresh_preds = FxHashSet::default();
// Due to the way projections are handled by SelectionContext, we need to run
// evaluate_predicates twice: once on the original param env, and once on the result of
// the first evaluate_predicates call.
//
// The problem is this: most of rustc, including SelectionContext and traits::project,
// are designed to work with a concrete usage of a type (e.g. Vec<u8>
// fn<T>() { Vec<T> }. This information will generally never change - given
// the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
// If we're unable to prove that 'T' implements a particular trait, we're done -
// there's nothing left to do but error out.
//
// However, synthesizing an auto trait impl works differently. Here, we start out with
// a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
// with - and progressively discover the conditions we need to fulfill for it to
// implement a certain auto trait. This ends up breaking two assumptions made by trait
// selection and projection:
//
// * We can always cache the result of a particular trait selection for the lifetime of
// an InfCtxt
// * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
// SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
//
// We fix the first assumption by manually clearing out all of the InferCtxt's caches
// in between calls to SelectionContext.select. This allows us to keep all of the
// intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
// them between calls.
//
// We fix the second assumption by reprocessing the result of our first call to
// evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
// pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
// traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
// SelectionContext to return it back to us.
let (new_env, user_env) = match self.evaluate_predicates(
&mut infcx,
did,
trait_did,
ty,
orig_params.clone(),
orig_params,
&mut fresh_preds,
false,
) {
Some(e) => e,
None => return AutoTraitResult::NegativeImpl,
};
let (full_env, full_user_env) = self.evaluate_predicates(
&mut infcx,
did,
trait_did,
ty,
new_env.clone(),
user_env,
&mut fresh_preds,
true,
).unwrap_or_else(|| {
panic!(
"Failed to fully process: {:?} {:?} {:?}",
ty, trait_did, orig_params
)
});
debug!(
"find_auto_trait_generics(did={:?}, trait_did={:?}, generics={:?}): fulfilling \
with {:?}",
did, trait_did, generics, full_env
);
infcx.clear_caches();
// At this point, we already have all of the bounds we need. FulfillmentContext is used
// to store all of the necessary region/lifetime bounds in the InferContext, as well as
// an additional sanity check.
let mut fulfill = FulfillmentContext::new();
fulfill.register_bound(
&infcx,
full_env,
ty,
trait_did,
ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID),
);
fulfill.select_all_or_error(&infcx).unwrap_or_else(|e| {
panic!(
"Unable to fulfill trait {:?} for '{:?}': {:?}",
trait_did, ty, e
)
});
let names_map: FxHashSet<String> = generics
.params
.iter()
.filter_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime => Some(param.name.to_string()),
_ => None,
})
.collect();
let body_id_map: FxHashMap<_, _> = infcx
.region_obligations
.borrow()
.iter()
.map(|&(id, _)| (id, vec![]))
.collect();
infcx.process_registered_region_obligations(&body_id_map, None, full_env.clone());
let region_data = infcx
.borrow_region_constraints()
.region_constraint_data()
.clone();
let vid_to_region = self.map_vid_to_region(&region_data);
let info = AutoTraitInfo {
full_user_env,
region_data,
names_map,
vid_to_region,
};
return AutoTraitResult::PositiveImpl(auto_trait_callback(&infcx, info));
});
}
}
impl<'a, 'tcx> AutoTraitFinder<'a, 'tcx> {
// The core logic responsible for computing the bounds for our synthesized impl.
//
// To calculate the bounds, we call SelectionContext.select in a loop. Like FulfillmentContext,
// we recursively select the nested obligations of predicates we encounter. However, whenever we
// encounter an UnimplementedError involving a type parameter, we add it to our ParamEnv. Since
// our goal is to determine when a particular type implements an auto trait, Unimplemented
// errors tell us what conditions need to be met.
//
// This method ends up working somewhat similarly to FulfillmentContext, but with a few key
// differences. FulfillmentContext works under the assumption that it's dealing with concrete
// user code. According, it considers all possible ways that a Predicate could be met - which
// isn't always what we want for a synthesized impl. For example, given the predicate 'T:
// Iterator', FulfillmentContext can end up reporting an Unimplemented error for T:
// IntoIterator - since there's an implementation of Iteratpr where T: IntoIterator,
// FulfillmentContext will drive SelectionContext to consider that impl before giving up. If we
// were to rely on FulfillmentContext's decision, we might end up synthesizing an impl like
// this:
// 'impl<T> Send for Foo<T> where T: IntoIterator'
//
// While it might be technically true that Foo implements Send where T: IntoIterator,
// the bound is overly restrictive - it's really only necessary that T: Iterator.
//
// For this reason, evaluate_predicates handles predicates with type variables specially. When
// we encounter an Unimplemented error for a bound such as 'T: Iterator', we immediately add it
// to our ParamEnv, and add it to our stack for recursive evaluation. When we later select it,
// we'll pick up any nested bounds, without ever inferring that 'T: IntoIterator' needs to
// hold.
//
// One additional consideration is supertrait bounds. Normally, a ParamEnv is only ever
// constructed once for a given type. As part of the construction process, the ParamEnv will
// have any supertrait bounds normalized - e.g. if we have a type 'struct Foo<T: Copy>', the
// ParamEnv will contain 'T: Copy' and 'T: Clone', since 'Copy: Clone'. When we construct our
// own ParamEnv, we need to do this ourselves, through traits::elaborate_predicates, or else
// SelectionContext will choke on the missing predicates. However, this should never show up in
// the final synthesized generics: we don't want our generated docs page to contain something
// like 'T: Copy + Clone', as that's redundant. Therefore, we keep track of a separate
// 'user_env', which only holds the predicates that will actually be displayed to the user.
pub fn evaluate_predicates<'b, 'gcx, 'c>(
&self,
infcx: &InferCtxt<'b, 'tcx, 'c>,
ty_did: DefId,
trait_did: DefId,
ty: ty::Ty<'c>,
param_env: ty::ParamEnv<'c>,
user_env: ty::ParamEnv<'c>,
fresh_preds: &mut FxHashSet<ty::Predicate<'c>>,
only_projections: bool,
) -> Option<(ty::ParamEnv<'c>, ty::ParamEnv<'c>)> {
let tcx = infcx.tcx;
let mut select = SelectionContext::with_negative(&infcx, true);
let mut already_visited = FxHashSet::default();
let mut predicates = VecDeque::new();
predicates.push_back(ty::Binder::bind(ty::TraitPredicate {
trait_ref: ty::TraitRef {
def_id: trait_did,
substs: infcx.tcx.mk_substs_trait(ty, &[]),
},
}));
let mut computed_preds: FxHashSet<_> = param_env.caller_bounds.iter().cloned().collect();
let mut user_computed_preds: FxHashSet<_> =
user_env.caller_bounds.iter().cloned().collect();
let mut new_env = param_env.clone();
let dummy_cause = ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID);
while let Some(pred) = predicates.pop_front() {
infcx.clear_caches();
if !already_visited.insert(pred.clone()) {
continue;
}
let result = select.select(&Obligation::new(dummy_cause.clone(), new_env, pred));
match &result {
&Ok(Some(ref vtable)) => {
// If we see an explicit negative impl (e.g. 'impl !Send for MyStruct'),
// we immediately bail out, since it's impossible for us to continue.
match vtable {
Vtable::VtableImpl(VtableImplData { impl_def_id, .. }) => {
// Blame tidy for the weird bracket placement
if infcx.tcx.impl_polarity(*impl_def_id) == hir::ImplPolarity::Negative
{
debug!("evaluate_nested_obligations: Found explicit negative impl\
{:?}, bailing out", impl_def_id);
return None;
}
},
_ => {}
}
let obligations = vtable.clone().nested_obligations().into_iter();
if !self.evaluate_nested_obligations(
ty,
obligations,
&mut user_computed_preds,
fresh_preds,
&mut predicates,
&mut select,
only_projections,
) {
return None;
}
}
&Ok(None) => {}
&Err(SelectionError::Unimplemented) => {
if self.is_of_param(pred.skip_binder().trait_ref.substs) {
already_visited.remove(&pred);
self.add_user_pred(
&mut user_computed_preds,
ty::Predicate::Trait(pred.clone()),
);
predicates.push_back(pred);
} else {
debug!(
"evaluate_nested_obligations: Unimplemented found, bailing: \
{:?} {:?} {:?}",
ty,
pred,
pred.skip_binder().trait_ref.substs
);
return None;
}
}
_ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
};
computed_preds.extend(user_computed_preds.iter().cloned());
let normalized_preds =
elaborate_predicates(tcx, computed_preds.clone().into_iter().collect());
new_env = ty::ParamEnv::new(tcx.mk_predicates(normalized_preds), param_env.reveal);
}
let final_user_env = ty::ParamEnv::new(
tcx.mk_predicates(user_computed_preds.into_iter()),
user_env.reveal,
);
debug!(
"evaluate_nested_obligations(ty_did={:?}, trait_did={:?}): succeeded with '{:?}' \
'{:?}'",
ty_did, trait_did, new_env, final_user_env
);
return Some((new_env, final_user_env));
}
// This method is designed to work around the following issue:
// When we compute auto trait bounds, we repeatedly call SelectionContext.select,
// progressively building a ParamEnv based on the results we get.
// However, our usage of SelectionContext differs from its normal use within the compiler,
// in that we capture and re-reprocess predicates from Unimplemented errors.
//
// This can lead to a corner case when dealing with region parameters.
// During our selection loop in evaluate_predicates, we might end up with
// two trait predicates that differ only in their region parameters:
// one containing a HRTB lifetime parameter, and one containing a 'normal'
// lifetime parameter. For example:
//
// T as MyTrait<'a>
// T as MyTrait<'static>
//
// If we put both of these predicates in our computed ParamEnv, we'll
// confuse SelectionContext, since it will (correctly) view both as being applicable.
//
// To solve this, we pick the 'more strict' lifetime bound - i.e. the HRTB
// Our end goal is to generate a user-visible description of the conditions
// under which a type implements an auto trait. A trait predicate involving
// a HRTB means that the type needs to work with any choice of lifetime,
// not just one specific lifetime (e.g. 'static).
fn add_user_pred<'c>(
&self,
user_computed_preds: &mut FxHashSet<ty::Predicate<'c>>,
new_pred: ty::Predicate<'c>,
) {
let mut should_add_new = true;
user_computed_preds.retain(|&old_pred| {
match (&new_pred, old_pred) {
(&ty::Predicate::Trait(new_trait), ty::Predicate::Trait(old_trait)) => {
if new_trait.def_id() == old_trait.def_id() {
let new_substs = new_trait.skip_binder().trait_ref.substs;
let old_substs = old_trait.skip_binder().trait_ref.substs;
if !new_substs.types().eq(old_substs.types()) {
// We can't compare lifetimes if the types are different,
// so skip checking old_pred
return true;
}
for (new_region, old_region) in
new_substs.regions().zip(old_substs.regions())
{
match (new_region, old_region) {
// If both predicates have an 'ReLateBound' (a HRTB) in the
// same spot, we do nothing
(
ty::RegionKind::ReLateBound(_, _),
ty::RegionKind::ReLateBound(_, _),
) => {}
(ty::RegionKind::ReLateBound(_, _), _) |
(_, ty::RegionKind::ReVar(_)) => {
// One of these is true:
// The new predicate has a HRTB in a spot where the old
// predicate does not (if they both had a HRTB, the previous
// match arm would have executed). A HRBT is a 'stricter'
// bound than anything else, so we want to keep the newer
// predicate (with the HRBT) in place of the old predicate.
//
// OR
//
// The old predicate has a region variable where the new
// predicate has some other kind of region. An region
// variable isn't something we can actually display to a user,
// so we choose ther new predicate (which doesn't have a region
// varaible).
//
// In both cases, we want to remove the old predicate,
// from user_computed_preds, and replace it with the new
// one. Having both the old and the new
// predicate in a ParamEnv would confuse SelectionContext
//
// We're currently in the predicate passed to 'retain',
// so we return 'false' to remove the old predicate from
// user_computed_preds
return false;
}
(_, ty::RegionKind::ReLateBound(_, _)) |
(ty::RegionKind::ReVar(_), _) => {
// This is the opposite situation as the previous arm.
// One of these is true:
//
// The old predicate has a HRTB lifetime in a place where the
// new predicate does not.
//
// OR
//
// The new predicate has a region variable where the old
// predicate has some other type of region.
//
// We want to leave the old
// predicate in user_computed_preds, and skip adding
// new_pred to user_computed_params.
should_add_new = false
},
_ => {}
}
}
}
}
_ => {}
}
return true;
});
if should_add_new {
user_computed_preds.insert(new_pred);
}
}
pub fn region_name(&self, region: Region<'_>) -> Option<String> {
match region {
&ty::ReEarlyBound(r) => Some(r.name.to_string()),
_ => None,
}
}
pub fn get_lifetime(&self, region: Region<'_>,
names_map: &FxHashMap<String, String>) -> String {
self.region_name(region)
.map(|name|
names_map.get(&name).unwrap_or_else(||
panic!("Missing lifetime with name {:?} for {:?}", name, region)
)
)
.cloned()
.unwrap_or_else(|| "'static".to_owned())
}
// This is very similar to handle_lifetimes. However, instead of matching ty::Region's
// to each other, we match ty::RegionVid's to ty::Region's
pub fn map_vid_to_region<'cx>(
&self,
regions: &RegionConstraintData<'cx>,
) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
let mut finished_map = FxHashMap::default();
for constraint in regions.constraints.keys() {
match constraint {
&Constraint::VarSubVar(r1, r2) => {
{
let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
deps1.larger.insert(RegionTarget::RegionVid(r2));
}
let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
deps2.smaller.insert(RegionTarget::RegionVid(r1));
}
&Constraint::RegSubVar(region, vid) => {
{
let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
deps1.larger.insert(RegionTarget::RegionVid(vid));
}
let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
deps2.smaller.insert(RegionTarget::Region(region));
}
&Constraint::VarSubReg(vid, region) => {
finished_map.insert(vid, region);
}
&Constraint::RegSubReg(r1, r2) => {
{
let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
deps1.larger.insert(RegionTarget::Region(r2));
}
let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
deps2.smaller.insert(RegionTarget::Region(r1));
}
}
}
while !vid_map.is_empty() {
let target = vid_map.keys().next().expect("Keys somehow empty").clone();
let deps = vid_map.remove(&target).expect("Entry somehow missing");
for smaller in deps.smaller.iter() {
for larger in deps.larger.iter() {
match (smaller, larger) {
(&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
(&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
finished_map.insert(v1, r1);
}
(&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
// Do nothing - we don't care about regions that are smaller than vids
}
(&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
if let Entry::Occupied(v) = vid_map.entry(*smaller) {
let smaller_deps = v.into_mut();
smaller_deps.larger.insert(*larger);
smaller_deps.larger.remove(&target);
}
if let Entry::Occupied(v) = vid_map.entry(*larger) {
let larger_deps = v.into_mut();
larger_deps.smaller.insert(*smaller);
larger_deps.smaller.remove(&target);
}
}
}
}
}
}
finished_map
}
pub fn is_of_param(&self, substs: &Substs<'_>) -> bool {
if substs.is_noop() {
return false;
}
return match substs.type_at(0).sty {
ty::Param(_) => true,
ty::Projection(p) => self.is_of_param(p.substs),
_ => false,
};
}
pub fn evaluate_nested_obligations<
'b,
'c,
'd,
'cx,
T: Iterator<Item = Obligation<'cx, ty::Predicate<'cx>>>,
>(
&self,
ty: ty::Ty<'_>,
nested: T,
computed_preds: &'b mut FxHashSet<ty::Predicate<'cx>>,
fresh_preds: &'b mut FxHashSet<ty::Predicate<'cx>>,
predicates: &'b mut VecDeque<ty::PolyTraitPredicate<'cx>>,
select: &mut SelectionContext<'c, 'd, 'cx>,
only_projections: bool,
) -> bool {
let dummy_cause = ObligationCause::misc(DUMMY_SP, ast::DUMMY_NODE_ID);
for (obligation, predicate) in nested
.filter(|o| o.recursion_depth == 1)
.map(|o| (o.clone(), o.predicate.clone()))
{
let is_new_pred =
fresh_preds.insert(self.clean_pred(select.infcx(), predicate.clone()));
match &predicate {
&ty::Predicate::Trait(ref p) => {
let substs = &p.skip_binder().trait_ref.substs;
if self.is_of_param(substs) && !only_projections && is_new_pred {
self.add_user_pred(computed_preds, predicate);
}
predicates.push_back(p.clone());
}
&ty::Predicate::Projection(p) => {
// If the projection isn't all type vars, then
// we don't want to add it as a bound
if self.is_of_param(p.skip_binder().projection_ty.substs) && is_new_pred {
self.add_user_pred(computed_preds, predicate);
} else {
match poly_project_and_unify_type(select, &obligation.with(p.clone())) {
Err(e) => {
debug!(
"evaluate_nested_obligations: Unable to unify predicate \
'{:?}' '{:?}', bailing out",
ty, e
);
return false;
}
Ok(Some(v)) => {
if !self.evaluate_nested_obligations(
ty,
v.clone().iter().cloned(),
computed_preds,
fresh_preds,
predicates,
select,
only_projections,
) {
return false;
}
}
Ok(None) => {
panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
}
}
}
}
&ty::Predicate::RegionOutlives(ref binder) => {
if select
.infcx()
.region_outlives_predicate(&dummy_cause, binder)
.is_err()
{
return false;
}
}
&ty::Predicate::TypeOutlives(ref binder) => {
match (
binder.no_bound_vars(),
binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
) {
(None, Some(t_a)) => {
select.infcx().register_region_obligation_with_cause(
t_a,
select.infcx().tcx.types.re_static,
&dummy_cause,
);
}
(Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
select.infcx().register_region_obligation_with_cause(
t_a,
r_b,
&dummy_cause,
);
}
_ => {}
};
}
_ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
};
}
return true;
}
pub fn clean_pred<'c, 'd, 'cx>(
&self,
infcx: &InferCtxt<'c, 'd, 'cx>,
p: ty::Predicate<'cx>,
) -> ty::Predicate<'cx> {
infcx.freshen(p)
}
}
// Replaces all ReVars in a type with ty::Region's, using the provided map
pub struct RegionReplacer<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
}
impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for RegionReplacer<'a, 'gcx, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> {
self.tcx
}
fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
(match r {
&ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
_ => None,
}).unwrap_or_else(|| r.super_fold_with(self))
}
}