| //! Defines the various compiler queries. |
| //! |
| //! For more information on the query system, see |
| //! ["Queries: demand-driven compilation"](https://rustc-dev-guide.rust-lang.org/query.html). |
| //! This chapter includes instructions for adding new queries. |
| |
| #![allow(unused_parens)] |
| |
| use std::mem; |
| use std::ops::Deref; |
| use std::path::PathBuf; |
| use std::sync::Arc; |
| |
| use rustc_arena::TypedArena; |
| use rustc_ast::expand::allocator::AllocatorKind; |
| use rustc_ast::expand::StrippedCfgItem; |
| use rustc_data_structures::fingerprint::Fingerprint; |
| use rustc_data_structures::fx::{FxIndexMap, FxIndexSet}; |
| use rustc_data_structures::steal::Steal; |
| use rustc_data_structures::svh::Svh; |
| use rustc_data_structures::sync::Lrc; |
| use rustc_data_structures::unord::{UnordMap, UnordSet}; |
| use rustc_errors::ErrorGuaranteed; |
| use rustc_hir::def::{DefKind, DocLinkResMap}; |
| use rustc_hir::def_id::{ |
| CrateNum, DefId, DefIdMap, DefIdSet, LocalDefId, LocalDefIdMap, LocalDefIdSet, LocalModDefId, |
| }; |
| use rustc_hir::lang_items::{LangItem, LanguageItems}; |
| use rustc_hir::{Crate, ItemLocalId, ItemLocalMap, TraitCandidate}; |
| use rustc_index::IndexVec; |
| use rustc_macros::rustc_queries; |
| use rustc_query_system::ich::StableHashingContext; |
| use rustc_query_system::query::{try_get_cached, QueryCache, QueryMode, QueryState}; |
| use rustc_session::config::{EntryFnType, OptLevel, OutputFilenames, SymbolManglingVersion}; |
| use rustc_session::cstore::{ |
| CrateDepKind, CrateSource, ExternCrate, ForeignModule, LinkagePreference, NativeLib, |
| }; |
| use rustc_session::lint::LintExpectationId; |
| use rustc_session::Limits; |
| use rustc_span::def_id::LOCAL_CRATE; |
| use rustc_span::symbol::Symbol; |
| use rustc_span::{Span, DUMMY_SP}; |
| use rustc_target::abi; |
| use rustc_target::spec::PanicStrategy; |
| use {rustc_ast as ast, rustc_attr as attr, rustc_hir as hir}; |
| |
| use crate::infer::canonical::{self, Canonical}; |
| use crate::lint::LintExpectation; |
| use crate::metadata::ModChild; |
| use crate::middle::codegen_fn_attrs::CodegenFnAttrs; |
| use crate::middle::debugger_visualizer::DebuggerVisualizerFile; |
| use crate::middle::exported_symbols::{ExportedSymbol, SymbolExportInfo}; |
| use crate::middle::lib_features::LibFeatures; |
| use crate::middle::privacy::EffectiveVisibilities; |
| use crate::middle::resolve_bound_vars::{ObjectLifetimeDefault, ResolveBoundVars, ResolvedArg}; |
| use crate::middle::stability::{self, DeprecationEntry}; |
| use crate::mir::interpret::{ |
| EvalStaticInitializerRawResult, EvalToAllocationRawResult, EvalToConstValueResult, |
| EvalToValTreeResult, GlobalId, LitToConstError, LitToConstInput, |
| }; |
| use crate::mir::mono::CodegenUnit; |
| use crate::query::erase::{erase, restore, Erase}; |
| use crate::query::plumbing::{ |
| query_ensure, query_ensure_error_guaranteed, query_get_at, CyclePlaceholder, DynamicQuery, |
| }; |
| use crate::traits::query::{ |
| CanonicalAliasGoal, CanonicalPredicateGoal, CanonicalTyGoal, |
| CanonicalTypeOpAscribeUserTypeGoal, CanonicalTypeOpEqGoal, CanonicalTypeOpNormalizeGoal, |
| CanonicalTypeOpProvePredicateGoal, CanonicalTypeOpSubtypeGoal, DropckConstraint, |
| DropckOutlivesResult, MethodAutoderefStepsResult, NoSolution, NormalizationResult, |
| OutlivesBound, |
| }; |
| use crate::traits::{ |
| specialization_graph, CodegenObligationError, EvaluationResult, ImplSource, |
| ObjectSafetyViolation, ObligationCause, OverflowError, WellFormedLoc, |
| }; |
| use crate::ty::fast_reject::SimplifiedType; |
| use crate::ty::layout::ValidityRequirement; |
| use crate::ty::print::{describe_as_module, PrintTraitRefExt}; |
| use crate::ty::util::AlwaysRequiresDrop; |
| use crate::ty::{ |
| self, CrateInherentImpls, GenericArg, GenericArgsRef, ParamEnvAnd, Ty, TyCtxt, TyCtxtFeed, |
| UnusedGenericParams, |
| }; |
| use crate::{dep_graph, mir, thir}; |
| |
| pub mod erase; |
| mod keys; |
| pub use keys::{AsLocalKey, Key, LocalCrate}; |
| pub mod on_disk_cache; |
| #[macro_use] |
| pub mod plumbing; |
| pub use plumbing::{IntoQueryParam, TyCtxtAt, TyCtxtEnsure, TyCtxtEnsureWithValue}; |
| |
| // Each of these queries corresponds to a function pointer field in the |
| // `Providers` struct for requesting a value of that type, and a method |
| // on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way |
| // which memoizes and does dep-graph tracking, wrapping around the actual |
| // `Providers` that the driver creates (using several `rustc_*` crates). |
| // |
| // The result type of each query must implement `Clone`, and additionally |
| // `ty::query::values::Value`, which produces an appropriate placeholder |
| // (error) value if the query resulted in a query cycle. |
| // Queries marked with `fatal_cycle` do not need the latter implementation, |
| // as they will raise an fatal error on query cycles instead. |
| rustc_queries! { |
| /// This exists purely for testing the interactions between delayed bugs and incremental. |
| query trigger_delayed_bug(key: DefId) { |
| desc { "triggering a delayed bug for testing incremental" } |
| } |
| |
| /// Collects the list of all tools registered using `#![register_tool]`. |
| query registered_tools(_: ()) -> &'tcx ty::RegisteredTools { |
| arena_cache |
| desc { "compute registered tools for crate" } |
| } |
| |
| query early_lint_checks(_: ()) { |
| desc { "perform lints prior to macro expansion" } |
| } |
| |
| query resolutions(_: ()) -> &'tcx ty::ResolverGlobalCtxt { |
| no_hash |
| desc { "getting the resolver outputs" } |
| } |
| |
| query resolver_for_lowering_raw(_: ()) -> (&'tcx Steal<(ty::ResolverAstLowering, Lrc<ast::Crate>)>, &'tcx ty::ResolverGlobalCtxt) { |
| eval_always |
| no_hash |
| desc { "getting the resolver for lowering" } |
| } |
| |
| /// Return the span for a definition. |
| /// Contrary to `def_span` below, this query returns the full absolute span of the definition. |
| /// This span is meant for dep-tracking rather than diagnostics. It should not be used outside |
| /// of rustc_middle::hir::source_map. |
| query source_span(key: LocalDefId) -> Span { |
| // Accesses untracked data |
| eval_always |
| desc { "getting the source span" } |
| } |
| |
| /// Represents crate as a whole (as distinct from the top-level crate module). |
| /// If you call `hir_crate` (e.g., indirectly by calling `tcx.hir().krate()`), |
| /// we will have to assume that any change means that you need to be recompiled. |
| /// This is because the `hir_crate` query gives you access to all other items. |
| /// To avoid this fate, do not call `tcx.hir().krate()`; instead, |
| /// prefer wrappers like `tcx.visit_all_items_in_krate()`. |
| query hir_crate(key: ()) -> &'tcx Crate<'tcx> { |
| arena_cache |
| eval_always |
| desc { "getting the crate HIR" } |
| } |
| |
| /// All items in the crate. |
| query hir_crate_items(_: ()) -> &'tcx rustc_middle::hir::ModuleItems { |
| arena_cache |
| eval_always |
| desc { "getting HIR crate items" } |
| } |
| |
| /// The items in a module. |
| /// |
| /// This can be conveniently accessed by `tcx.hir().visit_item_likes_in_module`. |
| /// Avoid calling this query directly. |
| query hir_module_items(key: LocalModDefId) -> &'tcx rustc_middle::hir::ModuleItems { |
| arena_cache |
| desc { |tcx| "getting HIR module items in `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { true } |
| } |
| |
| /// Returns HIR ID for the given `LocalDefId`. |
| query local_def_id_to_hir_id(key: LocalDefId) -> hir::HirId { |
| desc { |tcx| "getting HIR ID of `{}`", tcx.def_path_str(key) } |
| feedable |
| } |
| |
| /// Gives access to the HIR node's parent for the HIR owner `key`. |
| /// |
| /// This can be conveniently accessed by methods on `tcx.hir()`. |
| /// Avoid calling this query directly. |
| query hir_owner_parent(key: hir::OwnerId) -> hir::HirId { |
| desc { |tcx| "getting HIR parent of `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Gives access to the HIR nodes and bodies inside `key` if it's a HIR owner. |
| /// |
| /// This can be conveniently accessed by methods on `tcx.hir()`. |
| /// Avoid calling this query directly. |
| query opt_hir_owner_nodes(key: LocalDefId) -> Option<&'tcx hir::OwnerNodes<'tcx>> { |
| desc { |tcx| "getting HIR owner items in `{}`", tcx.def_path_str(key) } |
| feedable |
| } |
| |
| /// Gives access to the HIR attributes inside the HIR owner `key`. |
| /// |
| /// This can be conveniently accessed by methods on `tcx.hir()`. |
| /// Avoid calling this query directly. |
| query hir_attrs(key: hir::OwnerId) -> &'tcx hir::AttributeMap<'tcx> { |
| desc { |tcx| "getting HIR owner attributes in `{}`", tcx.def_path_str(key) } |
| feedable |
| } |
| |
| /// Given the def_id of a const-generic parameter, computes the associated default const |
| /// parameter. e.g. `fn example<const N: usize=3>` called on `N` would return `3`. |
| query const_param_default(param: DefId) -> ty::EarlyBinder<'tcx, ty::Const<'tcx>> { |
| desc { |tcx| "computing const default for a given parameter `{}`", tcx.def_path_str(param) } |
| cache_on_disk_if { param.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Returns the [`Ty`][rustc_middle::ty::Ty] of the given [`DefId`]. If the [`DefId`] points |
| /// to an alias, it will "skip" this alias to return the aliased type. |
| /// |
| /// [`DefId`]: rustc_hir::def_id::DefId |
| query type_of(key: DefId) -> ty::EarlyBinder<'tcx, Ty<'tcx>> { |
| desc { |tcx| |
| "{action} `{path}`", |
| action = { |
| use rustc_hir::def::DefKind; |
| match tcx.def_kind(key) { |
| DefKind::TyAlias => "expanding type alias", |
| DefKind::TraitAlias => "expanding trait alias", |
| _ => "computing type of", |
| } |
| }, |
| path = tcx.def_path_str(key), |
| } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Specialized instance of `type_of` that detects cycles that are due to |
| /// revealing opaque because of an auto trait bound. Unless `CyclePlaceholder` needs |
| /// to be handled separately, call `type_of` instead. |
| query type_of_opaque(key: DefId) -> Result<ty::EarlyBinder<'tcx, Ty<'tcx>>, CyclePlaceholder> { |
| desc { |tcx| |
| "computing type of opaque `{path}`", |
| path = tcx.def_path_str(key), |
| } |
| cycle_stash |
| } |
| |
| query type_alias_is_lazy(key: DefId) -> bool { |
| desc { |tcx| |
| "computing whether `{path}` is a lazy type alias", |
| path = tcx.def_path_str(key), |
| } |
| separate_provide_extern |
| } |
| |
| query collect_return_position_impl_trait_in_trait_tys(key: DefId) |
| -> Result<&'tcx DefIdMap<ty::EarlyBinder<'tcx, Ty<'tcx>>>, ErrorGuaranteed> |
| { |
| desc { "comparing an impl and trait method signature, inferring any hidden `impl Trait` types in the process" } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query is_type_alias_impl_trait(key: DefId) -> bool |
| { |
| desc { "determine whether the opaque is a type-alias impl trait" } |
| separate_provide_extern |
| feedable |
| } |
| |
| query unsizing_params_for_adt(key: DefId) -> &'tcx rustc_index::bit_set::BitSet<u32> |
| { |
| arena_cache |
| desc { |tcx| |
| "determining what parameters of `{}` can participate in unsizing", |
| tcx.def_path_str(key), |
| } |
| } |
| |
| /// The root query triggering all analysis passes like typeck or borrowck. |
| query analysis(key: ()) -> Result<(), ErrorGuaranteed> { |
| eval_always |
| desc { "running analysis passes on this crate" } |
| } |
| |
| /// This query checks the fulfillment of collected lint expectations. |
| /// All lint emitting queries have to be done before this is executed |
| /// to ensure that all expectations can be fulfilled. |
| /// |
| /// This is an extra query to enable other drivers (like rustdoc) to |
| /// only execute a small subset of the `analysis` query, while allowing |
| /// lints to be expected. In rustc, this query will be executed as part of |
| /// the `analysis` query and doesn't have to be called a second time. |
| /// |
| /// Tools can additionally pass in a tool filter. That will restrict the |
| /// expectations to only trigger for lints starting with the listed tool |
| /// name. This is useful for cases were not all linting code from rustc |
| /// was called. With the default `None` all registered lints will also |
| /// be checked for expectation fulfillment. |
| query check_expectations(key: Option<Symbol>) { |
| eval_always |
| desc { "checking lint expectations (RFC 2383)" } |
| } |
| |
| /// Maps from the `DefId` of an item (trait/struct/enum/fn) to its |
| /// associated generics. |
| query generics_of(key: DefId) -> &'tcx ty::Generics { |
| desc { |tcx| "computing generics of `{}`", tcx.def_path_str(key) } |
| arena_cache |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the |
| /// predicates (where-clauses) that must be proven true in order |
| /// to reference it. This is almost always the "predicates query" |
| /// that you want. |
| /// |
| /// `predicates_of` builds on `predicates_defined_on` -- in fact, |
| /// it is almost always the same as that query, except for the |
| /// case of traits. For traits, `predicates_of` contains |
| /// an additional `Self: Trait<...>` predicate that users don't |
| /// actually write. This reflects the fact that to invoke the |
| /// trait (e.g., via `Default::default`) you must supply types |
| /// that actually implement the trait. (However, this extra |
| /// predicate gets in the way of some checks, which are intended |
| /// to operate over only the actual where-clauses written by the |
| /// user.) |
| query predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| } |
| |
| query opaque_types_defined_by( |
| key: LocalDefId |
| ) -> &'tcx ty::List<LocalDefId> { |
| desc { |
| |tcx| "computing the opaque types defined by `{}`", |
| tcx.def_path_str(key.to_def_id()) |
| } |
| } |
| |
| /// Returns the list of bounds that are required to be satsified |
| /// by a implementation or definition. For associated types, these |
| /// must be satisfied for an implementation to be well-formed, |
| /// and for opaque types, these are required to be satisfied by |
| /// the hidden-type of the opaque. |
| /// |
| /// Syntactially, these are the bounds written on the trait's type |
| /// definition, or those after the `impl` keyword for an opaque: |
| /// |
| /// ```ignore (incomplete) |
| /// type X: Bound + 'lt |
| /// // ^^^^^^^^^^^ |
| /// impl Debug + Display |
| /// // ^^^^^^^^^^^^^^^ |
| /// ``` |
| /// |
| /// `key` is the `DefId` of the associated type or opaque type. |
| /// |
| /// Bounds from the parent (e.g. with nested impl trait) are not included. |
| query explicit_item_bounds(key: DefId) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { |
| desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// The set of item bounds (see [`TyCtxt::explicit_item_bounds`]) that |
| /// share the `Self` type of the item. These are a subset of the bounds |
| /// that may explicitly be used for things like closure signature |
| /// deduction. |
| query explicit_item_super_predicates(key: DefId) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]> { |
| desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Elaborated version of the predicates from `explicit_item_bounds`. |
| /// |
| /// For example: |
| /// |
| /// ``` |
| /// trait MyTrait { |
| /// type MyAType: Eq + ?Sized; |
| /// } |
| /// ``` |
| /// |
| /// `explicit_item_bounds` returns `[<Self as MyTrait>::MyAType: Eq]`, |
| /// and `item_bounds` returns |
| /// ```text |
| /// [ |
| /// <Self as Trait>::MyAType: Eq, |
| /// <Self as Trait>::MyAType: PartialEq<<Self as Trait>::MyAType> |
| /// ] |
| /// ``` |
| /// |
| /// Bounds from the parent (e.g. with nested impl trait) are not included. |
| query item_bounds(key: DefId) -> ty::EarlyBinder<'tcx, ty::Clauses<'tcx>> { |
| desc { |tcx| "elaborating item bounds for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query item_super_predicates(key: DefId) -> ty::EarlyBinder<'tcx, ty::Clauses<'tcx>> { |
| desc { |tcx| "elaborating item assumptions for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query item_non_self_assumptions(key: DefId) -> ty::EarlyBinder<'tcx, ty::Clauses<'tcx>> { |
| desc { |tcx| "elaborating item assumptions for `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Look up all native libraries this crate depends on. |
| /// These are assembled from the following places: |
| /// - `extern` blocks (depending on their `link` attributes) |
| /// - the `libs` (`-l`) option |
| query native_libraries(_: CrateNum) -> &'tcx Vec<NativeLib> { |
| arena_cache |
| desc { "looking up the native libraries of a linked crate" } |
| separate_provide_extern |
| } |
| |
| query shallow_lint_levels_on(key: hir::OwnerId) -> &'tcx rustc_middle::lint::ShallowLintLevelMap { |
| arena_cache |
| desc { |tcx| "looking up lint levels for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query lint_expectations(_: ()) -> &'tcx Vec<(LintExpectationId, LintExpectation)> { |
| arena_cache |
| desc { "computing `#[expect]`ed lints in this crate" } |
| } |
| |
| query expn_that_defined(key: DefId) -> rustc_span::ExpnId { |
| desc { |tcx| "getting the expansion that defined `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| } |
| |
| query is_panic_runtime(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if the crate is_panic_runtime" } |
| separate_provide_extern |
| } |
| |
| /// Checks whether a type is representable or infinitely sized |
| query representability(_: LocalDefId) -> rustc_middle::ty::Representability { |
| desc { "checking if `{}` is representable", tcx.def_path_str(key) } |
| // infinitely sized types will cause a cycle |
| cycle_delay_bug |
| // we don't want recursive representability calls to be forced with |
| // incremental compilation because, if a cycle occurs, we need the |
| // entire cycle to be in memory for diagnostics |
| anon |
| } |
| |
| /// An implementation detail for the `representability` query |
| query representability_adt_ty(_: Ty<'tcx>) -> rustc_middle::ty::Representability { |
| desc { "checking if `{}` is representable", key } |
| cycle_delay_bug |
| anon |
| } |
| |
| /// Set of param indexes for type params that are in the type's representation |
| query params_in_repr(key: DefId) -> &'tcx rustc_index::bit_set::BitSet<u32> { |
| desc { "finding type parameters in the representation" } |
| arena_cache |
| no_hash |
| separate_provide_extern |
| } |
| |
| /// Fetch the THIR for a given body. If typeck for that body failed, returns an empty `Thir`. |
| query thir_body(key: LocalDefId) -> Result<(&'tcx Steal<thir::Thir<'tcx>>, thir::ExprId), ErrorGuaranteed> { |
| // Perf tests revealed that hashing THIR is inefficient (see #85729). |
| no_hash |
| desc { |tcx| "building THIR for `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Set of all the `DefId`s in this crate that have MIR associated with |
| /// them. This includes all the body owners, but also things like struct |
| /// constructors. |
| query mir_keys(_: ()) -> &'tcx rustc_data_structures::fx::FxIndexSet<LocalDefId> { |
| arena_cache |
| desc { "getting a list of all mir_keys" } |
| } |
| |
| /// Maps DefId's that have an associated `mir::Body` to the result |
| /// of the MIR const-checking pass. This is the set of qualifs in |
| /// the final value of a `const`. |
| query mir_const_qualif(key: DefId) -> mir::ConstQualifs { |
| desc { |tcx| "const checking `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Build the MIR for a given `DefId` and prepare it for const qualification. |
| /// |
| /// See the [rustc dev guide] for more info. |
| /// |
| /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/construction.html |
| query mir_built(key: LocalDefId) -> &'tcx Steal<mir::Body<'tcx>> { |
| desc { |tcx| "building MIR for `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Try to build an abstract representation of the given constant. |
| query thir_abstract_const( |
| key: DefId |
| ) -> Result<Option<ty::EarlyBinder<'tcx, ty::Const<'tcx>>>, ErrorGuaranteed> { |
| desc { |
| |tcx| "building an abstract representation for `{}`", tcx.def_path_str(key), |
| } |
| separate_provide_extern |
| } |
| |
| query mir_drops_elaborated_and_const_checked(key: LocalDefId) -> &'tcx Steal<mir::Body<'tcx>> { |
| no_hash |
| desc { |tcx| "elaborating drops for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query mir_for_ctfe( |
| key: DefId |
| ) -> &'tcx mir::Body<'tcx> { |
| desc { |tcx| "caching mir of `{}` for CTFE", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query mir_promoted(key: LocalDefId) -> ( |
| &'tcx Steal<mir::Body<'tcx>>, |
| &'tcx Steal<IndexVec<mir::Promoted, mir::Body<'tcx>>> |
| ) { |
| no_hash |
| desc { |tcx| "promoting constants in MIR for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query closure_typeinfo(key: LocalDefId) -> ty::ClosureTypeInfo<'tcx> { |
| desc { |
| |tcx| "finding symbols for captures of closure `{}`", |
| tcx.def_path_str(key) |
| } |
| } |
| |
| /// Returns names of captured upvars for closures and coroutines. |
| /// |
| /// Here are some examples: |
| /// - `name__field1__field2` when the upvar is captured by value. |
| /// - `_ref__name__field` when the upvar is captured by reference. |
| /// |
| /// For coroutines this only contains upvars that are shared by all states. |
| query closure_saved_names_of_captured_variables(def_id: DefId) -> &'tcx IndexVec<abi::FieldIdx, Symbol> { |
| arena_cache |
| desc { |tcx| "computing debuginfo for closure `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query mir_coroutine_witnesses(key: DefId) -> &'tcx Option<mir::CoroutineLayout<'tcx>> { |
| arena_cache |
| desc { |tcx| "coroutine witness types for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query check_coroutine_obligations(key: LocalDefId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| "verify auto trait bounds for coroutine interior type `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// MIR after our optimization passes have run. This is MIR that is ready |
| /// for codegen. This is also the only query that can fetch non-local MIR, at present. |
| query optimized_mir(key: DefId) -> &'tcx mir::Body<'tcx> { |
| desc { |tcx| "optimizing MIR for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Checks for the nearest `#[coverage(off)]` or `#[coverage(on)]` on |
| /// this def and any enclosing defs, up to the crate root. |
| /// |
| /// Returns `false` if `#[coverage(off)]` was found, or `true` if |
| /// either `#[coverage(on)]` or no coverage attribute was found. |
| query coverage_attr_on(key: LocalDefId) -> bool { |
| desc { |tcx| "checking for `#[coverage(..)]` on `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Summarizes coverage IDs inserted by the `InstrumentCoverage` MIR pass |
| /// (for compiler option `-Cinstrument-coverage`), after MIR optimizations |
| /// have had a chance to potentially remove some of them. |
| query coverage_ids_info(key: ty::InstanceKind<'tcx>) -> &'tcx mir::CoverageIdsInfo { |
| desc { |tcx| "retrieving coverage IDs info from MIR for `{}`", tcx.def_path_str(key.def_id()) } |
| arena_cache |
| } |
| |
| /// The `DefId` is the `DefId` of the containing MIR body. Promoteds do not have their own |
| /// `DefId`. This function returns all promoteds in the specified body. The body references |
| /// promoteds by the `DefId` and the `mir::Promoted` index. This is necessary, because |
| /// after inlining a body may refer to promoteds from other bodies. In that case you still |
| /// need to use the `DefId` of the original body. |
| query promoted_mir(key: DefId) -> &'tcx IndexVec<mir::Promoted, mir::Body<'tcx>> { |
| desc { |tcx| "optimizing promoted MIR for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Erases regions from `ty` to yield a new type. |
| /// Normally you would just use `tcx.erase_regions(value)`, |
| /// however, which uses this query as a kind of cache. |
| query erase_regions_ty(ty: Ty<'tcx>) -> Ty<'tcx> { |
| // This query is not expected to have input -- as a result, it |
| // is not a good candidates for "replay" because it is essentially a |
| // pure function of its input (and hence the expectation is that |
| // no caller would be green **apart** from just these |
| // queries). Making it anonymous avoids hashing the result, which |
| // may save a bit of time. |
| anon |
| desc { "erasing regions from `{}`", ty } |
| } |
| |
| query wasm_import_module_map(_: CrateNum) -> &'tcx DefIdMap<String> { |
| arena_cache |
| desc { "getting wasm import module map" } |
| } |
| |
| /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the |
| /// predicates (where-clauses) directly defined on it. This is |
| /// equal to the `explicit_predicates_of` predicates plus the |
| /// `inferred_outlives_of` predicates. |
| query predicates_defined_on(key: DefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Returns everything that looks like a predicate written explicitly |
| /// by the user on a trait item. |
| /// |
| /// Traits are unusual, because predicates on associated types are |
| /// converted into bounds on that type for backwards compatibility: |
| /// |
| /// trait X where Self::U: Copy { type U; } |
| /// |
| /// becomes |
| /// |
| /// trait X { type U: Copy; } |
| /// |
| /// `explicit_predicates_of` and `explicit_item_bounds` will then take |
| /// the appropriate subsets of the predicates here. |
| query trait_explicit_predicates_and_bounds(key: LocalDefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing explicit predicates of trait `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Returns the predicates written explicitly by the user. |
| /// |
| /// You should probably use `predicates_of` unless you're looking for |
| /// predicates with explicit spans for diagnostics purposes. |
| query explicit_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing explicit predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Returns the inferred outlives predicates (e.g., for `struct |
| /// Foo<'a, T> { x: &'a T }`, this would return `T: 'a`). |
| query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Clause<'tcx>, Span)] { |
| desc { |tcx| "computing inferred outlives predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Maps from the `DefId` of a trait to the list of super-predicates of the trait, |
| /// *before* elaboration (so it doesn't contain transitive super-predicates). This |
| /// is a subset of the full list of predicates. We store these in a separate map |
| /// because we must evaluate them even during type conversion, often before the full |
| /// predicates are available (note that super-predicates must not be cyclic). |
| query explicit_super_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing the super predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// The predicates of the trait that are implied during elaboration. This is a |
| /// superset of the super-predicates of the trait, but a subset of the predicates |
| /// of the trait. For regular traits, this includes all super-predicates and their |
| /// associated type bounds. For trait aliases, currently, this includes all of the |
| /// predicates of the trait alias. |
| query explicit_implied_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing the implied predicates of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// The Ident is the name of an associated type.The query returns only the subset |
| /// of supertraits that define the given associated type. This is used to avoid |
| /// cycles in resolving type-dependent associated item paths like `T::Item`. |
| query explicit_supertraits_containing_assoc_item(key: (DefId, rustc_span::symbol::Ident)) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing the super traits of `{}` with associated type name `{}`", |
| tcx.def_path_str(key.0), |
| key.1 |
| } |
| } |
| |
| /// To avoid cycles within the predicates of a single item we compute |
| /// per-type-parameter predicates for resolving `T::AssocTy`. |
| query type_param_predicates(key: (LocalDefId, LocalDefId, rustc_span::symbol::Ident)) -> ty::GenericPredicates<'tcx> { |
| desc { |tcx| "computing the bounds for type parameter `{}`", tcx.hir().ty_param_name(key.1) } |
| } |
| |
| query trait_def(key: DefId) -> &'tcx ty::TraitDef { |
| desc { |tcx| "computing trait definition for `{}`", tcx.def_path_str(key) } |
| arena_cache |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query adt_def(key: DefId) -> ty::AdtDef<'tcx> { |
| desc { |tcx| "computing ADT definition for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query adt_destructor(key: DefId) -> Option<ty::Destructor> { |
| desc { |tcx| "computing `Drop` impl for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query adt_async_destructor(key: DefId) -> Option<ty::AsyncDestructor> { |
| desc { |tcx| "computing `AsyncDrop` impl for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query adt_sized_constraint(key: DefId) -> Option<ty::EarlyBinder<'tcx, Ty<'tcx>>> { |
| desc { |tcx| "computing the `Sized` constraint for `{}`", tcx.def_path_str(key) } |
| } |
| |
| query adt_dtorck_constraint( |
| key: DefId |
| ) -> Result<&'tcx DropckConstraint<'tcx>, NoSolution> { |
| desc { |tcx| "computing drop-check constraints for `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Returns `true` if this is a const fn, use the `is_const_fn` to know whether your crate |
| /// actually sees it as const fn (e.g., the const-fn-ness might be unstable and you might |
| /// not have the feature gate active). |
| /// |
| /// **Do not call this function manually.** It is only meant to cache the base data for the |
| /// `is_const_fn` function. Consider using `is_const_fn` or `is_const_fn_raw` instead. |
| query constness(key: DefId) -> hir::Constness { |
| desc { |tcx| "checking if item is const: `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| } |
| |
| query asyncness(key: DefId) -> ty::Asyncness { |
| desc { |tcx| "checking if the function is async: `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| } |
| |
| /// Returns `true` if calls to the function may be promoted. |
| /// |
| /// This is either because the function is e.g., a tuple-struct or tuple-variant |
| /// constructor, or because it has the `#[rustc_promotable]` attribute. The attribute should |
| /// be removed in the future in favour of some form of check which figures out whether the |
| /// function does not inspect the bits of any of its arguments (so is essentially just a |
| /// constructor function). |
| query is_promotable_const_fn(key: DefId) -> bool { |
| desc { |tcx| "checking if item is promotable: `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Returns `Some(coroutine_kind)` if the node pointed to by `def_id` is a coroutine. |
| query coroutine_kind(def_id: DefId) -> Option<hir::CoroutineKind> { |
| desc { |tcx| "looking up coroutine kind of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query coroutine_for_closure(def_id: DefId) -> DefId { |
| desc { |_tcx| "Given a coroutine-closure def id, return the def id of the coroutine returned by it" } |
| separate_provide_extern |
| } |
| |
| /// Gets a map with the variance of every item; use `variances_of` instead. |
| query crate_variances(_: ()) -> &'tcx ty::CrateVariancesMap<'tcx> { |
| arena_cache |
| desc { "computing the variances for items in this crate" } |
| } |
| |
| /// Maps from the `DefId` of a type or region parameter to its (inferred) variance. |
| query variances_of(def_id: DefId) -> &'tcx [ty::Variance] { |
| desc { |tcx| "computing the variances of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| cycle_delay_bug |
| } |
| |
| /// Maps from thee `DefId` of a type to its (inferred) outlives. |
| query inferred_outlives_crate(_: ()) -> &'tcx ty::CratePredicatesMap<'tcx> { |
| arena_cache |
| desc { "computing the inferred outlives predicates for items in this crate" } |
| } |
| |
| /// Maps from an impl/trait or struct/variant `DefId` |
| /// to a list of the `DefId`s of its associated items or fields. |
| query associated_item_def_ids(key: DefId) -> &'tcx [DefId] { |
| desc { |tcx| "collecting associated items or fields of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Maps from a trait/impl item to the trait/impl item "descriptor". |
| query associated_item(key: DefId) -> ty::AssocItem { |
| desc { |tcx| "computing associated item data for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Collects the associated items defined on a trait or impl. |
| query associated_items(key: DefId) -> &'tcx ty::AssocItems { |
| arena_cache |
| desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Maps from associated items on a trait to the corresponding associated |
| /// item on the impl specified by `impl_id`. |
| /// |
| /// For example, with the following code |
| /// |
| /// ``` |
| /// struct Type {} |
| /// // DefId |
| /// trait Trait { // trait_id |
| /// fn f(); // trait_f |
| /// fn g() {} // trait_g |
| /// } |
| /// |
| /// impl Trait for Type { // impl_id |
| /// fn f() {} // impl_f |
| /// fn g() {} // impl_g |
| /// } |
| /// ``` |
| /// |
| /// The map returned for `tcx.impl_item_implementor_ids(impl_id)` would be |
| ///`{ trait_f: impl_f, trait_g: impl_g }` |
| query impl_item_implementor_ids(impl_id: DefId) -> &'tcx DefIdMap<DefId> { |
| arena_cache |
| desc { |tcx| "comparing impl items against trait for `{}`", tcx.def_path_str(impl_id) } |
| } |
| |
| /// Given `fn_def_id` of a trait or of an impl that implements a given trait: |
| /// if `fn_def_id` is the def id of a function defined inside a trait, then it creates and returns |
| /// the associated items that correspond to each impl trait in return position for that trait. |
| /// if `fn_def_id` is the def id of a function defined inside an impl that implements a trait, then it |
| /// creates and returns the associated items that correspond to each impl trait in return position |
| /// of the implemented trait. |
| query associated_types_for_impl_traits_in_associated_fn(fn_def_id: DefId) -> &'tcx [DefId] { |
| desc { |tcx| "creating associated items for opaque types returned by `{}`", tcx.def_path_str(fn_def_id) } |
| cache_on_disk_if { fn_def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query associated_type_for_effects(def_id: DefId) -> Option<DefId> { |
| desc { |tcx| "creating associated items for effects in `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Given an impl trait in trait `opaque_ty_def_id`, create and return the corresponding |
| /// associated item. |
| query associated_type_for_impl_trait_in_trait(opaque_ty_def_id: LocalDefId) -> LocalDefId { |
| desc { |tcx| "creating the associated item corresponding to the opaque type `{}`", tcx.def_path_str(opaque_ty_def_id.to_def_id()) } |
| cache_on_disk_if { true } |
| } |
| |
| /// Given an `impl_id`, return the trait it implements along with some header information. |
| /// Return `None` if this is an inherent impl. |
| query impl_trait_header(impl_id: DefId) -> Option<ty::ImplTraitHeader<'tcx>> { |
| desc { |tcx| "computing trait implemented by `{}`", tcx.def_path_str(impl_id) } |
| cache_on_disk_if { impl_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query self_ty_of_trait_impl_enabling_order_dep_trait_object_hack( |
| key: DefId |
| ) -> Option<ty::EarlyBinder<'tcx, ty::Ty<'tcx>>> { |
| desc { |tcx| "computing self type wrt issue #33140 `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Maps a `DefId` of a type to a list of its inherent impls. |
| /// Contains implementations of methods that are inherent to a type. |
| /// Methods in these implementations don't need to be exported. |
| query inherent_impls(key: DefId) -> Result<&'tcx [DefId], ErrorGuaranteed> { |
| desc { |tcx| "collecting inherent impls for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query incoherent_impls(key: SimplifiedType) -> Result<&'tcx [DefId], ErrorGuaranteed> { |
| desc { |tcx| "collecting all inherent impls for `{:?}`", key } |
| } |
| |
| /// Unsafety-check this `LocalDefId`. |
| query check_unsafety(key: LocalDefId) { |
| desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { true } |
| } |
| |
| /// Returns the types assumed to be well formed while "inside" of the given item. |
| /// |
| /// Note that we've liberated the late bound regions of function signatures, so |
| /// this can not be used to check whether these types are well formed. |
| query assumed_wf_types(key: LocalDefId) -> &'tcx [(Ty<'tcx>, Span)] { |
| desc { |tcx| "computing the implied bounds of `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// We need to store the assumed_wf_types for an RPITIT so that impls of foreign |
| /// traits with return-position impl trait in traits can inherit the right wf types. |
| query assumed_wf_types_for_rpitit(key: DefId) -> &'tcx [(Ty<'tcx>, Span)] { |
| desc { |tcx| "computing the implied bounds of `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| } |
| |
| /// Computes the signature of the function. |
| query fn_sig(key: DefId) -> ty::EarlyBinder<'tcx, ty::PolyFnSig<'tcx>> { |
| desc { |tcx| "computing function signature of `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| cycle_delay_bug |
| } |
| |
| /// Performs lint checking for the module. |
| query lint_mod(key: LocalModDefId) { |
| desc { |tcx| "linting {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_unused_traits(_: ()) { |
| desc { "checking unused trait imports in crate" } |
| } |
| |
| /// Checks the attributes in the module. |
| query check_mod_attrs(key: LocalModDefId) { |
| desc { |tcx| "checking attributes in {}", describe_as_module(key, tcx) } |
| } |
| |
| /// Checks for uses of unstable APIs in the module. |
| query check_mod_unstable_api_usage(key: LocalModDefId) { |
| desc { |tcx| "checking for unstable API usage in {}", describe_as_module(key, tcx) } |
| } |
| |
| /// Checks the const bodies in the module for illegal operations (e.g. `if` or `loop`). |
| query check_mod_const_bodies(key: LocalModDefId) { |
| desc { |tcx| "checking consts in {}", describe_as_module(key, tcx) } |
| } |
| |
| /// Checks the loops in the module. |
| query check_mod_loops(key: LocalModDefId) { |
| desc { |tcx| "checking loops in {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_mod_naked_functions(key: LocalModDefId) { |
| desc { |tcx| "checking naked functions in {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_mod_privacy(key: LocalModDefId) { |
| desc { |tcx| "checking privacy in {}", describe_as_module(key.to_local_def_id(), tcx) } |
| } |
| |
| query check_liveness(key: LocalDefId) { |
| desc { |tcx| "checking liveness of variables in `{}`", tcx.def_path_str(key) } |
| } |
| |
| /// Return the live symbols in the crate for dead code check. |
| /// |
| /// The second return value maps from ADTs to ignored derived traits (e.g. Debug and Clone) and |
| /// their respective impl (i.e., part of the derive macro) |
| query live_symbols_and_ignored_derived_traits(_: ()) -> &'tcx ( |
| LocalDefIdSet, |
| LocalDefIdMap<Vec<(DefId, DefId)>> |
| ) { |
| arena_cache |
| desc { "finding live symbols in crate" } |
| } |
| |
| query check_mod_deathness(key: LocalModDefId) { |
| desc { |tcx| "checking deathness of variables in {}", describe_as_module(key, tcx) } |
| } |
| |
| query check_mod_type_wf(key: LocalModDefId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| "checking that types are well-formed in {}", describe_as_module(key, tcx) } |
| ensure_forwards_result_if_red |
| } |
| |
| /// Caches `CoerceUnsized` kinds for impls on custom types. |
| query coerce_unsized_info(key: DefId) -> Result<ty::adjustment::CoerceUnsizedInfo, ErrorGuaranteed> { |
| desc { |tcx| "computing CoerceUnsized info for `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| ensure_forwards_result_if_red |
| } |
| |
| query typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> { |
| desc { |tcx| "type-checking `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if(tcx) { !tcx.is_typeck_child(key.to_def_id()) } |
| } |
| query diagnostic_only_typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> { |
| desc { |tcx| "type-checking `{}`", tcx.def_path_str(key) } |
| } |
| |
| query used_trait_imports(key: LocalDefId) -> &'tcx UnordSet<LocalDefId> { |
| desc { |tcx| "finding used_trait_imports `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { true } |
| } |
| |
| query coherent_trait(def_id: DefId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| "coherence checking all impls of trait `{}`", tcx.def_path_str(def_id) } |
| ensure_forwards_result_if_red |
| } |
| |
| /// Borrow-checks the function body. If this is a closure, returns |
| /// additional requirements that the closure's creator must verify. |
| query mir_borrowck(key: LocalDefId) -> &'tcx mir::BorrowCheckResult<'tcx> { |
| desc { |tcx| "borrow-checking `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if(tcx) { tcx.is_typeck_child(key.to_def_id()) } |
| } |
| |
| /// Gets a complete map from all types to their inherent impls. |
| /// Not meant to be used directly outside of coherence. |
| query crate_inherent_impls(k: ()) -> Result<&'tcx CrateInherentImpls, ErrorGuaranteed> { |
| desc { "finding all inherent impls defined in crate" } |
| ensure_forwards_result_if_red |
| } |
| |
| /// Checks all types in the crate for overlap in their inherent impls. Reports errors. |
| /// Not meant to be used directly outside of coherence. |
| query crate_inherent_impls_overlap_check(_: ()) -> Result<(), ErrorGuaranteed> { |
| desc { "check for overlap between inherent impls defined in this crate" } |
| ensure_forwards_result_if_red |
| } |
| |
| /// Checks whether all impls in the crate pass the overlap check, returning |
| /// which impls fail it. If all impls are correct, the returned slice is empty. |
| query orphan_check_impl(key: LocalDefId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| |
| "checking whether impl `{}` follows the orphan rules", |
| tcx.def_path_str(key), |
| } |
| ensure_forwards_result_if_red |
| } |
| |
| /// Check whether the function has any recursion that could cause the inliner to trigger |
| /// a cycle. Returns the call stack causing the cycle. The call stack does not contain the |
| /// current function, just all intermediate functions. |
| query mir_callgraph_reachable(key: (ty::Instance<'tcx>, LocalDefId)) -> bool { |
| fatal_cycle |
| desc { |tcx| |
| "computing if `{}` (transitively) calls `{}`", |
| key.0, |
| tcx.def_path_str(key.1), |
| } |
| } |
| |
| /// Obtain all the calls into other local functions |
| query mir_inliner_callees(key: ty::InstanceKind<'tcx>) -> &'tcx [(DefId, GenericArgsRef<'tcx>)] { |
| fatal_cycle |
| desc { |tcx| |
| "computing all local function calls in `{}`", |
| tcx.def_path_str(key.def_id()), |
| } |
| } |
| |
| /// Computes the tag (if any) for a given type and variant. |
| query tag_for_variant( |
| key: (Ty<'tcx>, abi::VariantIdx) |
| ) -> Option<ty::ScalarInt> { |
| desc { "computing variant tag for enum" } |
| } |
| |
| /// Evaluates a constant and returns the computed allocation. |
| /// |
| /// **Do not use this** directly, use the `eval_to_const_value` or `eval_to_valtree` instead. |
| query eval_to_allocation_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>) |
| -> EvalToAllocationRawResult<'tcx> { |
| desc { |tcx| |
| "const-evaluating + checking `{}`", |
| key.value.display(tcx) |
| } |
| cache_on_disk_if { true } |
| } |
| |
| /// Evaluate a static's initializer, returning the allocation of the initializer's memory. |
| query eval_static_initializer(key: DefId) -> EvalStaticInitializerRawResult<'tcx> { |
| desc { |tcx| |
| "evaluating initializer of static `{}`", |
| tcx.def_path_str(key) |
| } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Evaluates const items or anonymous constants |
| /// (such as enum variant explicit discriminants or array lengths) |
| /// into a representation suitable for the type system and const generics. |
| /// |
| /// **Do not use this** directly, use one of the following wrappers: `tcx.const_eval_poly`, |
| /// `tcx.const_eval_resolve`, `tcx.const_eval_instance`, or `tcx.const_eval_global_id`. |
| query eval_to_const_value_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>) |
| -> EvalToConstValueResult<'tcx> { |
| desc { |tcx| |
| "simplifying constant for the type system `{}`", |
| key.value.display(tcx) |
| } |
| cache_on_disk_if { true } |
| } |
| |
| /// Evaluate a constant and convert it to a type level constant or |
| /// return `None` if that is not possible. |
| query eval_to_valtree( |
| key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>> |
| ) -> EvalToValTreeResult<'tcx> { |
| desc { "evaluating type-level constant" } |
| } |
| |
| /// Converts a type level constant value into `ConstValue` |
| query valtree_to_const_val(key: (Ty<'tcx>, ty::ValTree<'tcx>)) -> mir::ConstValue<'tcx> { |
| desc { "converting type-level constant value to mir constant value"} |
| } |
| |
| /// Destructures array, ADT or tuple constants into the constants |
| /// of their fields. |
| query destructure_const(key: ty::Const<'tcx>) -> ty::DestructuredConst<'tcx> { |
| desc { "destructuring type level constant"} |
| } |
| |
| // FIXME get rid of this with valtrees |
| query lit_to_const( |
| key: LitToConstInput<'tcx> |
| ) -> Result<ty::Const<'tcx>, LitToConstError> { |
| desc { "converting literal to const" } |
| } |
| |
| query check_match(key: LocalDefId) -> Result<(), rustc_errors::ErrorGuaranteed> { |
| desc { |tcx| "match-checking `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { true } |
| } |
| |
| /// Performs part of the privacy check and computes effective visibilities. |
| query effective_visibilities(_: ()) -> &'tcx EffectiveVisibilities { |
| eval_always |
| desc { "checking effective visibilities" } |
| } |
| query check_private_in_public(_: ()) { |
| eval_always |
| desc { "checking for private elements in public interfaces" } |
| } |
| |
| query reachable_set(_: ()) -> &'tcx LocalDefIdSet { |
| arena_cache |
| desc { "reachability" } |
| cache_on_disk_if { true } |
| } |
| |
| /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body; |
| /// in the case of closures, this will be redirected to the enclosing function. |
| query region_scope_tree(def_id: DefId) -> &'tcx crate::middle::region::ScopeTree { |
| desc { |tcx| "computing drop scopes for `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Generates a MIR body for the shim. |
| query mir_shims(key: ty::InstanceKind<'tcx>) -> &'tcx mir::Body<'tcx> { |
| arena_cache |
| desc { |tcx| "generating MIR shim for `{}`", tcx.def_path_str(key.def_id()) } |
| } |
| |
| /// The `symbol_name` query provides the symbol name for calling a |
| /// given instance from the local crate. In particular, it will also |
| /// look up the correct symbol name of instances from upstream crates. |
| query symbol_name(key: ty::Instance<'tcx>) -> ty::SymbolName<'tcx> { |
| desc { "computing the symbol for `{}`", key } |
| cache_on_disk_if { true } |
| } |
| |
| query def_kind(def_id: DefId) -> DefKind { |
| desc { |tcx| "looking up definition kind of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Gets the span for the definition. |
| query def_span(def_id: DefId) -> Span { |
| desc { |tcx| "looking up span for `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| /// Gets the span for the identifier of the definition. |
| query def_ident_span(def_id: DefId) -> Option<Span> { |
| desc { |tcx| "looking up span for `{}`'s identifier", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| query lookup_stability(def_id: DefId) -> Option<attr::Stability> { |
| desc { |tcx| "looking up stability of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query lookup_const_stability(def_id: DefId) -> Option<attr::ConstStability> { |
| desc { |tcx| "looking up const stability of `{}`", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| query lookup_default_body_stability(def_id: DefId) -> Option<attr::DefaultBodyStability> { |
| desc { |tcx| "looking up default body stability of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query should_inherit_track_caller(def_id: DefId) -> bool { |
| desc { |tcx| "computing should_inherit_track_caller of `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| query lookup_deprecation_entry(def_id: DefId) -> Option<DeprecationEntry> { |
| desc { |tcx| "checking whether `{}` is deprecated", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| |
| /// Determines whether an item is annotated with `doc(hidden)`. |
| query is_doc_hidden(def_id: DefId) -> bool { |
| desc { |tcx| "checking whether `{}` is `doc(hidden)`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| /// Determines whether an item is annotated with `doc(notable_trait)`. |
| query is_doc_notable_trait(def_id: DefId) -> bool { |
| desc { |tcx| "checking whether `{}` is `doc(notable_trait)`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Returns the attributes on the item at `def_id`. |
| /// |
| /// Do not use this directly, use `tcx.get_attrs` instead. |
| query item_attrs(def_id: DefId) -> &'tcx [ast::Attribute] { |
| desc { |tcx| "collecting attributes of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query codegen_fn_attrs(def_id: DefId) -> &'tcx CodegenFnAttrs { |
| desc { |tcx| "computing codegen attributes of `{}`", tcx.def_path_str(def_id) } |
| arena_cache |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| feedable |
| } |
| |
| query asm_target_features(def_id: DefId) -> &'tcx FxIndexSet<Symbol> { |
| desc { |tcx| "computing target features for inline asm of `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| query fn_arg_names(def_id: DefId) -> &'tcx [rustc_span::symbol::Ident] { |
| desc { |tcx| "looking up function parameter names for `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| /// Gets the rendered value of the specified constant or associated constant. |
| /// Used by rustdoc. |
| query rendered_const(def_id: DefId) -> &'tcx String { |
| arena_cache |
| desc { |tcx| "rendering constant initializer of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| /// Gets the rendered precise capturing args for an opaque for use in rustdoc. |
| query rendered_precise_capturing_args(def_id: DefId) -> Option<&'tcx [Symbol]> { |
| desc { |tcx| "rendering precise capturing args for `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query impl_parent(def_id: DefId) -> Option<DefId> { |
| desc { |tcx| "computing specialization parent impl of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query is_ctfe_mir_available(key: DefId) -> bool { |
| desc { |tcx| "checking if item has CTFE MIR available: `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| query is_mir_available(key: DefId) -> bool { |
| desc { |tcx| "checking if item has MIR available: `{}`", tcx.def_path_str(key) } |
| cache_on_disk_if { key.is_local() } |
| separate_provide_extern |
| } |
| |
| query own_existential_vtable_entries( |
| key: DefId |
| ) -> &'tcx [DefId] { |
| desc { |tcx| "finding all existential vtable entries for trait `{}`", tcx.def_path_str(key) } |
| } |
| |
| query vtable_entries(key: ty::PolyTraitRef<'tcx>) |
| -> &'tcx [ty::VtblEntry<'tcx>] { |
| desc { |tcx| "finding all vtable entries for trait `{}`", tcx.def_path_str(key.def_id()) } |
| } |
| |
| query first_method_vtable_slot(key: ty::TraitRef<'tcx>) -> usize { |
| desc { |tcx| "finding the slot within the vtable of `{}` for the implementation of `{}`", key.self_ty(), key.print_only_trait_name() } |
| } |
| |
| query supertrait_vtable_slot(key: (Ty<'tcx>, Ty<'tcx>)) -> Option<usize> { |
| desc { |tcx| "finding the slot within vtable for trait object `{}` vtable ptr during trait upcasting coercion from `{}` vtable", |
| key.1, key.0 } |
| } |
| |
| query vtable_allocation(key: (Ty<'tcx>, Option<ty::PolyExistentialTraitRef<'tcx>>)) -> mir::interpret::AllocId { |
| desc { |tcx| "vtable const allocation for <{} as {}>", |
| key.0, |
| key.1.map(|trait_ref| format!("{trait_ref}")).unwrap_or("_".to_owned()) |
| } |
| } |
| |
| query codegen_select_candidate( |
| key: (ty::ParamEnv<'tcx>, ty::TraitRef<'tcx>) |
| ) -> Result<&'tcx ImplSource<'tcx, ()>, CodegenObligationError> { |
| cache_on_disk_if { true } |
| desc { |tcx| "computing candidate for `{}`", key.1 } |
| } |
| |
| /// Return all `impl` blocks in the current crate. |
| query all_local_trait_impls(_: ()) -> &'tcx rustc_data_structures::fx::FxIndexMap<DefId, Vec<LocalDefId>> { |
| desc { "finding local trait impls" } |
| } |
| |
| /// Given a trait `trait_id`, return all known `impl` blocks. |
| query trait_impls_of(trait_id: DefId) -> &'tcx ty::trait_def::TraitImpls { |
| arena_cache |
| desc { |tcx| "finding trait impls of `{}`", tcx.def_path_str(trait_id) } |
| } |
| |
| query specialization_graph_of(trait_id: DefId) -> Result<&'tcx specialization_graph::Graph, ErrorGuaranteed> { |
| desc { |tcx| "building specialization graph of trait `{}`", tcx.def_path_str(trait_id) } |
| cache_on_disk_if { true } |
| ensure_forwards_result_if_red |
| } |
| query object_safety_violations(trait_id: DefId) -> &'tcx [ObjectSafetyViolation] { |
| desc { |tcx| "determining object safety of trait `{}`", tcx.def_path_str(trait_id) } |
| } |
| query is_object_safe(trait_id: DefId) -> bool { |
| desc { |tcx| "checking if trait `{}` is object safe", tcx.def_path_str(trait_id) } |
| } |
| |
| /// Gets the ParameterEnvironment for a given item; this environment |
| /// will be in "user-facing" mode, meaning that it is suitable for |
| /// type-checking etc, and it does not normalize specializable |
| /// associated types. This is almost always what you want, |
| /// unless you are doing MIR optimizations, in which case you |
| /// might want to use `reveal_all()` method to change modes. |
| query param_env(def_id: DefId) -> ty::ParamEnv<'tcx> { |
| desc { |tcx| "computing normalized predicates of `{}`", tcx.def_path_str(def_id) } |
| feedable |
| } |
| |
| /// Like `param_env`, but returns the `ParamEnv` in `Reveal::All` mode. |
| /// Prefer this over `tcx.param_env(def_id).with_reveal_all_normalized(tcx)`, |
| /// as this method is more efficient. |
| query param_env_reveal_all_normalized(def_id: DefId) -> ty::ParamEnv<'tcx> { |
| desc { |tcx| "computing revealed normalized predicates of `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| /// Trait selection queries. These are best used by invoking `ty.is_copy_modulo_regions()`, |
| /// `ty.is_copy()`, etc, since that will prune the environment where possible. |
| query is_copy_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is `Copy`", env.value } |
| } |
| /// Query backing `Ty::is_sized`. |
| query is_sized_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is `Sized`", env.value } |
| } |
| /// Query backing `Ty::is_freeze`. |
| query is_freeze_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is freeze", env.value } |
| } |
| /// Query backing `Ty::is_unpin`. |
| query is_unpin_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` is `Unpin`", env.value } |
| } |
| /// Query backing `Ty::needs_drop`. |
| query needs_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` needs drop", env.value } |
| } |
| /// Query backing `Ty::needs_async_drop`. |
| query needs_async_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` needs async drop", env.value } |
| } |
| /// Query backing `Ty::has_significant_drop_raw`. |
| query has_significant_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { |
| desc { "computing whether `{}` has a significant drop", env.value } |
| } |
| |
| /// Query backing `Ty::is_structural_eq_shallow`. |
| /// |
| /// This is only correct for ADTs. Call `is_structural_eq_shallow` to handle all types |
| /// correctly. |
| query has_structural_eq_impl(ty: Ty<'tcx>) -> bool { |
| desc { |
| "computing whether `{}` implements `StructuralPartialEq`", |
| ty |
| } |
| } |
| |
| /// A list of types where the ADT requires drop if and only if any of |
| /// those types require drop. If the ADT is known to always need drop |
| /// then `Err(AlwaysRequiresDrop)` is returned. |
| query adt_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> { |
| desc { |tcx| "computing when `{}` needs drop", tcx.def_path_str(def_id) } |
| cache_on_disk_if { true } |
| } |
| |
| /// A list of types where the ADT requires drop if and only if any of those types |
| /// has significant drop. A type marked with the attribute `rustc_insignificant_dtor` |
| /// is considered to not be significant. A drop is significant if it is implemented |
| /// by the user or does anything that will have any observable behavior (other than |
| /// freeing up memory). If the ADT is known to have a significant destructor then |
| /// `Err(AlwaysRequiresDrop)` is returned. |
| query adt_significant_drop_tys(def_id: DefId) -> Result<&'tcx ty::List<Ty<'tcx>>, AlwaysRequiresDrop> { |
| desc { |tcx| "computing when `{}` has a significant destructor", tcx.def_path_str(def_id) } |
| cache_on_disk_if { false } |
| } |
| |
| /// Computes the layout of a type. Note that this implicitly |
| /// executes in "reveal all" mode, and will normalize the input type. |
| query layout_of( |
| key: ty::ParamEnvAnd<'tcx, Ty<'tcx>> |
| ) -> Result<ty::layout::TyAndLayout<'tcx>, &'tcx ty::layout::LayoutError<'tcx>> { |
| depth_limit |
| desc { "computing layout of `{}`", key.value } |
| // we emit our own error during query cycle handling |
| cycle_delay_bug |
| } |
| |
| /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers. |
| /// |
| /// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance` |
| /// instead, where the instance is an `InstanceKind::Virtual`. |
| query fn_abi_of_fn_ptr( |
| key: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)> |
| ) -> Result<&'tcx abi::call::FnAbi<'tcx, Ty<'tcx>>, &'tcx ty::layout::FnAbiError<'tcx>> { |
| desc { "computing call ABI of `{}` function pointers", key.value.0 } |
| } |
| |
| /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for |
| /// direct calls to an `fn`. |
| /// |
| /// NB: that includes virtual calls, which are represented by "direct calls" |
| /// to an `InstanceKind::Virtual` instance (of `<dyn Trait as Trait>::fn`). |
| query fn_abi_of_instance( |
| key: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)> |
| ) -> Result<&'tcx abi::call::FnAbi<'tcx, Ty<'tcx>>, &'tcx ty::layout::FnAbiError<'tcx>> { |
| desc { "computing call ABI of `{}`", key.value.0 } |
| } |
| |
| query dylib_dependency_formats(_: CrateNum) |
| -> &'tcx [(CrateNum, LinkagePreference)] { |
| desc { "getting dylib dependency formats of crate" } |
| separate_provide_extern |
| } |
| |
| query dependency_formats(_: ()) -> &'tcx Lrc<crate::middle::dependency_format::Dependencies> { |
| arena_cache |
| desc { "getting the linkage format of all dependencies" } |
| } |
| |
| query is_compiler_builtins(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if the crate is_compiler_builtins" } |
| separate_provide_extern |
| } |
| query has_global_allocator(_: CrateNum) -> bool { |
| // This query depends on untracked global state in CStore |
| eval_always |
| fatal_cycle |
| desc { "checking if the crate has_global_allocator" } |
| separate_provide_extern |
| } |
| query has_alloc_error_handler(_: CrateNum) -> bool { |
| // This query depends on untracked global state in CStore |
| eval_always |
| fatal_cycle |
| desc { "checking if the crate has_alloc_error_handler" } |
| separate_provide_extern |
| } |
| query has_panic_handler(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if the crate has_panic_handler" } |
| separate_provide_extern |
| } |
| query is_profiler_runtime(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "checking if a crate is `#![profiler_runtime]`" } |
| separate_provide_extern |
| } |
| query has_ffi_unwind_calls(key: LocalDefId) -> bool { |
| desc { |tcx| "checking if `{}` contains FFI-unwind calls", tcx.def_path_str(key) } |
| cache_on_disk_if { true } |
| } |
| query required_panic_strategy(_: CrateNum) -> Option<PanicStrategy> { |
| fatal_cycle |
| desc { "getting a crate's required panic strategy" } |
| separate_provide_extern |
| } |
| query panic_in_drop_strategy(_: CrateNum) -> PanicStrategy { |
| fatal_cycle |
| desc { "getting a crate's configured panic-in-drop strategy" } |
| separate_provide_extern |
| } |
| query is_no_builtins(_: CrateNum) -> bool { |
| fatal_cycle |
| desc { "getting whether a crate has `#![no_builtins]`" } |
| separate_provide_extern |
| } |
| query symbol_mangling_version(_: CrateNum) -> SymbolManglingVersion { |
| fatal_cycle |
| desc { "getting a crate's symbol mangling version" } |
| separate_provide_extern |
| } |
| |
| query extern_crate(def_id: DefId) -> Option<&'tcx ExternCrate> { |
| eval_always |
| desc { "getting crate's ExternCrateData" } |
| separate_provide_extern |
| } |
| |
| query specialization_enabled_in(cnum: CrateNum) -> bool { |
| desc { "checking whether the crate enabled `specialization`/`min_specialization`" } |
| separate_provide_extern |
| } |
| |
| query specializes(_: (DefId, DefId)) -> bool { |
| desc { "computing whether impls specialize one another" } |
| } |
| query in_scope_traits_map(_: hir::OwnerId) |
| -> Option<&'tcx ItemLocalMap<Box<[TraitCandidate]>>> { |
| desc { "getting traits in scope at a block" } |
| } |
| |
| /// Returns whether the impl or associated function has the `default` keyword. |
| query defaultness(def_id: DefId) -> hir::Defaultness { |
| desc { |tcx| "looking up whether `{}` has `default`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| feedable |
| } |
| |
| query check_well_formed(key: hir::OwnerId) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key) } |
| ensure_forwards_result_if_red |
| } |
| |
| // The `DefId`s of all non-generic functions and statics in the given crate |
| // that can be reached from outside the crate. |
| // |
| // We expect this items to be available for being linked to. |
| // |
| // This query can also be called for `LOCAL_CRATE`. In this case it will |
| // compute which items will be reachable to other crates, taking into account |
| // the kind of crate that is currently compiled. Crates with only a |
| // C interface have fewer reachable things. |
| // |
| // Does not include external symbols that don't have a corresponding DefId, |
| // like the compiler-generated `main` function and so on. |
| query reachable_non_generics(_: CrateNum) |
| -> &'tcx DefIdMap<SymbolExportInfo> { |
| arena_cache |
| desc { "looking up the exported symbols of a crate" } |
| separate_provide_extern |
| } |
| query is_reachable_non_generic(def_id: DefId) -> bool { |
| desc { |tcx| "checking whether `{}` is an exported symbol", tcx.def_path_str(def_id) } |
| cache_on_disk_if { def_id.is_local() } |
| separate_provide_extern |
| } |
| query is_unreachable_local_definition(def_id: LocalDefId) -> bool { |
| desc { |tcx| |
| "checking whether `{}` is reachable from outside the crate", |
| tcx.def_path_str(def_id), |
| } |
| } |
| |
| /// The entire set of monomorphizations the local crate can safely |
| /// link to because they are exported from upstream crates. Do |
| /// not depend on this directly, as its value changes anytime |
| /// a monomorphization gets added or removed in any upstream |
| /// crate. Instead use the narrower `upstream_monomorphizations_for`, |
| /// `upstream_drop_glue_for`, `upstream_async_drop_glue_for`, or, |
| /// even better, `Instance::upstream_monomorphization()`. |
| query upstream_monomorphizations(_: ()) -> &'tcx DefIdMap<UnordMap<GenericArgsRef<'tcx>, CrateNum>> { |
| arena_cache |
| desc { "collecting available upstream monomorphizations" } |
| } |
| |
| /// Returns the set of upstream monomorphizations available for the |
| /// generic function identified by the given `def_id`. The query makes |
| /// sure to make a stable selection if the same monomorphization is |
| /// available in multiple upstream crates. |
| /// |
| /// You likely want to call `Instance::upstream_monomorphization()` |
| /// instead of invoking this query directly. |
| query upstream_monomorphizations_for(def_id: DefId) |
| -> Option<&'tcx UnordMap<GenericArgsRef<'tcx>, CrateNum>> |
| { |
| desc { |tcx| |
| "collecting available upstream monomorphizations for `{}`", |
| tcx.def_path_str(def_id), |
| } |
| separate_provide_extern |
| } |
| |
| /// Returns the upstream crate that exports drop-glue for the given |
| /// type (`args` is expected to be a single-item list containing the |
| /// type one wants drop-glue for). |
| /// |
| /// This is a subset of `upstream_monomorphizations_for` in order to |
| /// increase dep-tracking granularity. Otherwise adding or removing any |
| /// type with drop-glue in any upstream crate would invalidate all |
| /// functions calling drop-glue of an upstream type. |
| /// |
| /// You likely want to call `Instance::upstream_monomorphization()` |
| /// instead of invoking this query directly. |
| /// |
| /// NOTE: This query could easily be extended to also support other |
| /// common functions that have are large set of monomorphizations |
| /// (like `Clone::clone` for example). |
| query upstream_drop_glue_for(args: GenericArgsRef<'tcx>) -> Option<CrateNum> { |
| desc { "available upstream drop-glue for `{:?}`", args } |
| } |
| |
| /// Returns the upstream crate that exports async-drop-glue for |
| /// the given type (`args` is expected to be a single-item list |
| /// containing the type one wants async-drop-glue for). |
| /// |
| /// This is a subset of `upstream_monomorphizations_for` in order |
| /// to increase dep-tracking granularity. Otherwise adding or |
| /// removing any type with async-drop-glue in any upstream crate |
| /// would invalidate all functions calling async-drop-glue of an |
| /// upstream type. |
| /// |
| /// You likely want to call `Instance::upstream_monomorphization()` |
| /// instead of invoking this query directly. |
| /// |
| /// NOTE: This query could easily be extended to also support other |
| /// common functions that have are large set of monomorphizations |
| /// (like `Clone::clone` for example). |
| query upstream_async_drop_glue_for(args: GenericArgsRef<'tcx>) -> Option<CrateNum> { |
| desc { "available upstream async-drop-glue for `{:?}`", args } |
| } |
| |
| /// Returns a list of all `extern` blocks of a crate. |
| query foreign_modules(_: CrateNum) -> &'tcx FxIndexMap<DefId, ForeignModule> { |
| arena_cache |
| desc { "looking up the foreign modules of a linked crate" } |
| separate_provide_extern |
| } |
| |
| /// Lint against `extern fn` declarations having incompatible types. |
| query clashing_extern_declarations(_: ()) { |
| desc { "checking `extern fn` declarations are compatible" } |
| } |
| |
| /// Identifies the entry-point (e.g., the `main` function) for a given |
| /// crate, returning `None` if there is no entry point (such as for library crates). |
| query entry_fn(_: ()) -> Option<(DefId, EntryFnType)> { |
| desc { "looking up the entry function of a crate" } |
| } |
| |
| /// Finds the `rustc_proc_macro_decls` item of a crate. |
| query proc_macro_decls_static(_: ()) -> Option<LocalDefId> { |
| desc { "looking up the proc macro declarations for a crate" } |
| } |
| |
| // The macro which defines `rustc_metadata::provide_extern` depends on this query's name. |
| // Changing the name should cause a compiler error, but in case that changes, be aware. |
| query crate_hash(_: CrateNum) -> Svh { |
| eval_always |
| desc { "looking up the hash a crate" } |
| separate_provide_extern |
| } |
| |
| /// Gets the hash for the host proc macro. Used to support -Z dual-proc-macro. |
| query crate_host_hash(_: CrateNum) -> Option<Svh> { |
| eval_always |
| desc { "looking up the hash of a host version of a crate" } |
| separate_provide_extern |
| } |
| |
| /// Gets the extra data to put in each output filename for a crate. |
| /// For example, compiling the `foo` crate with `extra-filename=-a` creates a `libfoo-b.rlib` file. |
| query extra_filename(_: CrateNum) -> &'tcx String { |
| arena_cache |
| eval_always |
| desc { "looking up the extra filename for a crate" } |
| separate_provide_extern |
| } |
| |
| /// Gets the paths where the crate came from in the file system. |
| query crate_extern_paths(_: CrateNum) -> &'tcx Vec<PathBuf> { |
| arena_cache |
| eval_always |
| desc { "looking up the paths for extern crates" } |
| separate_provide_extern |
| } |
| |
| /// Given a crate and a trait, look up all impls of that trait in the crate. |
| /// Return `(impl_id, self_ty)`. |
| query implementations_of_trait(_: (CrateNum, DefId)) -> &'tcx [(DefId, Option<SimplifiedType>)] { |
| desc { "looking up implementations of a trait in a crate" } |
| separate_provide_extern |
| } |
| |
| /// Collects all incoherent impls for the given crate and type. |
| /// |
| /// Do not call this directly, but instead use the `incoherent_impls` query. |
| /// This query is only used to get the data necessary for that query. |
| query crate_incoherent_impls(key: (CrateNum, SimplifiedType)) -> Result<&'tcx [DefId], ErrorGuaranteed> { |
| desc { |tcx| "collecting all impls for a type in a crate" } |
| separate_provide_extern |
| } |
| |
| /// Get the corresponding native library from the `native_libraries` query |
| query native_library(def_id: DefId) -> Option<&'tcx NativeLib> { |
| desc { |tcx| "getting the native library for `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| query inherit_sig_for_delegation_item(def_id: LocalDefId) -> &'tcx [Ty<'tcx>] { |
| desc { "inheriting delegation signature" } |
| } |
| |
| /// Does lifetime resolution on items. Importantly, we can't resolve |
| /// lifetimes directly on things like trait methods, because of trait params. |
| /// See `rustc_resolve::late::lifetimes` for details. |
| query resolve_bound_vars(_: hir::OwnerId) -> &'tcx ResolveBoundVars { |
| arena_cache |
| desc { "resolving lifetimes" } |
| } |
| query named_variable_map(_: hir::OwnerId) -> |
| Option<&'tcx FxIndexMap<ItemLocalId, ResolvedArg>> { |
| desc { "looking up a named region" } |
| } |
| query is_late_bound_map(_: hir::OwnerId) -> Option<&'tcx FxIndexSet<ItemLocalId>> { |
| desc { "testing if a region is late bound" } |
| } |
| /// For a given item's generic parameter, gets the default lifetimes to be used |
| /// for each parameter if a trait object were to be passed for that parameter. |
| /// For example, for `T` in `struct Foo<'a, T>`, this would be `'static`. |
| /// For `T` in `struct Foo<'a, T: 'a>`, this would instead be `'a`. |
| /// This query will panic if passed something that is not a type parameter. |
| query object_lifetime_default(key: DefId) -> ObjectLifetimeDefault { |
| desc { "looking up lifetime defaults for generic parameter `{}`", tcx.def_path_str(key) } |
| separate_provide_extern |
| } |
| query late_bound_vars_map(_: hir::OwnerId) |
| -> Option<&'tcx FxIndexMap<ItemLocalId, Vec<ty::BoundVariableKind>>> { |
| desc { "looking up late bound vars" } |
| } |
| |
| /// Computes the visibility of the provided `def_id`. |
| /// |
| /// If the item from the `def_id` doesn't have a visibility, it will panic. For example |
| /// a generic type parameter will panic if you call this method on it: |
| /// |
| /// ``` |
| /// use std::fmt::Debug; |
| /// |
| /// pub trait Foo<T: Debug> {} |
| /// ``` |
| /// |
| /// In here, if you call `visibility` on `T`, it'll panic. |
| query visibility(def_id: DefId) -> ty::Visibility<DefId> { |
| desc { |tcx| "computing visibility of `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| feedable |
| } |
| |
| query inhabited_predicate_adt(key: DefId) -> ty::inhabitedness::InhabitedPredicate<'tcx> { |
| desc { "computing the uninhabited predicate of `{:?}`", key } |
| } |
| |
| /// Do not call this query directly: invoke `Ty::inhabited_predicate` instead. |
| query inhabited_predicate_type(key: Ty<'tcx>) -> ty::inhabitedness::InhabitedPredicate<'tcx> { |
| desc { "computing the uninhabited predicate of `{}`", key } |
| } |
| |
| query dep_kind(_: CrateNum) -> CrateDepKind { |
| eval_always |
| desc { "fetching what a dependency looks like" } |
| separate_provide_extern |
| } |
| |
| /// Gets the name of the crate. |
| query crate_name(_: CrateNum) -> Symbol { |
| feedable |
| desc { "fetching what a crate is named" } |
| separate_provide_extern |
| } |
| query module_children(def_id: DefId) -> &'tcx [ModChild] { |
| desc { |tcx| "collecting child items of module `{}`", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| query extern_mod_stmt_cnum(def_id: LocalDefId) -> Option<CrateNum> { |
| desc { |tcx| "computing crate imported by `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| query lib_features(_: CrateNum) -> &'tcx LibFeatures { |
| desc { "calculating the lib features defined in a crate" } |
| separate_provide_extern |
| arena_cache |
| } |
| query stability_implications(_: CrateNum) -> &'tcx UnordMap<Symbol, Symbol> { |
| arena_cache |
| desc { "calculating the implications between `#[unstable]` features defined in a crate" } |
| separate_provide_extern |
| } |
| /// Whether the function is an intrinsic |
| query intrinsic_raw(def_id: DefId) -> Option<rustc_middle::ty::IntrinsicDef> { |
| desc { |tcx| "fetch intrinsic name if `{}` is an intrinsic", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| /// Returns the lang items defined in another crate by loading it from metadata. |
| query get_lang_items(_: ()) -> &'tcx LanguageItems { |
| arena_cache |
| eval_always |
| desc { "calculating the lang items map" } |
| } |
| |
| /// Returns all diagnostic items defined in all crates. |
| query all_diagnostic_items(_: ()) -> &'tcx rustc_hir::diagnostic_items::DiagnosticItems { |
| arena_cache |
| eval_always |
| desc { "calculating the diagnostic items map" } |
| } |
| |
| /// Returns the lang items defined in another crate by loading it from metadata. |
| query defined_lang_items(_: CrateNum) -> &'tcx [(DefId, LangItem)] { |
| desc { "calculating the lang items defined in a crate" } |
| separate_provide_extern |
| } |
| |
| /// Returns the diagnostic items defined in a crate. |
| query diagnostic_items(_: CrateNum) -> &'tcx rustc_hir::diagnostic_items::DiagnosticItems { |
| arena_cache |
| desc { "calculating the diagnostic items map in a crate" } |
| separate_provide_extern |
| } |
| |
| query missing_lang_items(_: CrateNum) -> &'tcx [LangItem] { |
| desc { "calculating the missing lang items in a crate" } |
| separate_provide_extern |
| } |
| |
| /// The visible parent map is a map from every item to a visible parent. |
| /// It prefers the shortest visible path to an item. |
| /// Used for diagnostics, for example path trimming. |
| /// The parents are modules, enums or traits. |
| query visible_parent_map(_: ()) -> &'tcx DefIdMap<DefId> { |
| arena_cache |
| desc { "calculating the visible parent map" } |
| } |
| /// Collects the "trimmed", shortest accessible paths to all items for diagnostics. |
| /// See the [provider docs](`rustc_middle::ty::print::trimmed_def_paths`) for more info. |
| query trimmed_def_paths(_: ()) -> &'tcx DefIdMap<Symbol> { |
| arena_cache |
| desc { "calculating trimmed def paths" } |
| } |
| query missing_extern_crate_item(_: CrateNum) -> bool { |
| eval_always |
| desc { "seeing if we're missing an `extern crate` item for this crate" } |
| separate_provide_extern |
| } |
| query used_crate_source(_: CrateNum) -> &'tcx Lrc<CrateSource> { |
| arena_cache |
| eval_always |
| desc { "looking at the source for a crate" } |
| separate_provide_extern |
| } |
| |
| /// Returns the debugger visualizers defined for this crate. |
| /// NOTE: This query has to be marked `eval_always` because it reads data |
| /// directly from disk that is not tracked anywhere else. I.e. it |
| /// represents a genuine input to the query system. |
| query debugger_visualizers(_: CrateNum) -> &'tcx Vec<DebuggerVisualizerFile> { |
| arena_cache |
| desc { "looking up the debugger visualizers for this crate" } |
| separate_provide_extern |
| eval_always |
| } |
| |
| query postorder_cnums(_: ()) -> &'tcx [CrateNum] { |
| eval_always |
| desc { "generating a postorder list of CrateNums" } |
| } |
| /// Returns whether or not the crate with CrateNum 'cnum' |
| /// is marked as a private dependency |
| query is_private_dep(c: CrateNum) -> bool { |
| eval_always |
| desc { "checking whether crate `{}` is a private dependency", c } |
| separate_provide_extern |
| } |
| query allocator_kind(_: ()) -> Option<AllocatorKind> { |
| eval_always |
| desc { "getting the allocator kind for the current crate" } |
| } |
| query alloc_error_handler_kind(_: ()) -> Option<AllocatorKind> { |
| eval_always |
| desc { "alloc error handler kind for the current crate" } |
| } |
| |
| query upvars_mentioned(def_id: DefId) -> Option<&'tcx FxIndexMap<hir::HirId, hir::Upvar>> { |
| desc { |tcx| "collecting upvars mentioned in `{}`", tcx.def_path_str(def_id) } |
| } |
| query maybe_unused_trait_imports(_: ()) -> &'tcx FxIndexSet<LocalDefId> { |
| desc { "fetching potentially unused trait imports" } |
| } |
| query names_imported_by_glob_use(def_id: LocalDefId) -> &'tcx UnordSet<Symbol> { |
| desc { |tcx| "finding names imported by glob use for `{}`", tcx.def_path_str(def_id) } |
| } |
| |
| query stability_index(_: ()) -> &'tcx stability::Index { |
| arena_cache |
| eval_always |
| desc { "calculating the stability index for the local crate" } |
| } |
| query crates(_: ()) -> &'tcx [CrateNum] { |
| eval_always |
| desc { "fetching all foreign CrateNum instances" } |
| } |
| // Crates that are loaded non-speculatively (not for diagnostics or doc links). |
| // FIXME: This is currently only used for collecting lang items, but should be used instead of |
| // `crates` in most other cases too. |
| query used_crates(_: ()) -> &'tcx [CrateNum] { |
| eval_always |
| desc { "fetching `CrateNum`s for all crates loaded non-speculatively" } |
| } |
| |
| /// A list of all traits in a crate, used by rustdoc and error reporting. |
| query traits(_: CrateNum) -> &'tcx [DefId] { |
| desc { "fetching all traits in a crate" } |
| separate_provide_extern |
| } |
| |
| query trait_impls_in_crate(_: CrateNum) -> &'tcx [DefId] { |
| desc { "fetching all trait impls in a crate" } |
| separate_provide_extern |
| } |
| |
| /// The list of symbols exported from the given crate. |
| /// |
| /// - All names contained in `exported_symbols(cnum)` are guaranteed to |
| /// correspond to a publicly visible symbol in `cnum` machine code. |
| /// - The `exported_symbols` sets of different crates do not intersect. |
| query exported_symbols(cnum: CrateNum) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] { |
| desc { "collecting exported symbols for crate `{}`", cnum} |
| cache_on_disk_if { *cnum == LOCAL_CRATE } |
| separate_provide_extern |
| } |
| |
| query collect_and_partition_mono_items(_: ()) -> (&'tcx DefIdSet, &'tcx [CodegenUnit<'tcx>]) { |
| eval_always |
| desc { "collect_and_partition_mono_items" } |
| } |
| |
| query is_codegened_item(def_id: DefId) -> bool { |
| desc { |tcx| "determining whether `{}` needs codegen", tcx.def_path_str(def_id) } |
| } |
| |
| query codegen_unit(sym: Symbol) -> &'tcx CodegenUnit<'tcx> { |
| desc { "getting codegen unit `{sym}`" } |
| } |
| |
| query unused_generic_params(key: ty::InstanceKind<'tcx>) -> UnusedGenericParams { |
| cache_on_disk_if { key.def_id().is_local() } |
| desc { |
| |tcx| "determining which generic parameters are unused by `{}`", |
| tcx.def_path_str(key.def_id()) |
| } |
| separate_provide_extern |
| } |
| |
| query backend_optimization_level(_: ()) -> OptLevel { |
| desc { "optimization level used by backend" } |
| } |
| |
| /// Return the filenames where output artefacts shall be stored. |
| /// |
| /// This query returns an `&Arc` because codegen backends need the value even after the `TyCtxt` |
| /// has been destroyed. |
| query output_filenames(_: ()) -> &'tcx Arc<OutputFilenames> { |
| feedable |
| desc { "getting output filenames" } |
| arena_cache |
| } |
| |
| /// <div class="warning"> |
| /// |
| /// Do not call this query directly: Invoke `normalize` instead. |
| /// |
| /// </div> |
| query normalize_canonicalized_projection_ty( |
| goal: CanonicalAliasGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{}`", goal.value.value } |
| } |
| |
| /// <div class="warning"> |
| /// |
| /// Do not call this query directly: Invoke `normalize` instead. |
| /// |
| /// </div> |
| query normalize_canonicalized_weak_ty( |
| goal: CanonicalAliasGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{}`", goal.value.value } |
| } |
| |
| /// <div class="warning"> |
| /// |
| /// Do not call this query directly: Invoke `normalize` instead. |
| /// |
| /// </div> |
| query normalize_canonicalized_inherent_projection_ty( |
| goal: CanonicalAliasGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{}`", goal.value.value } |
| } |
| |
| /// Do not call this query directly: invoke `try_normalize_erasing_regions` instead. |
| query try_normalize_generic_arg_after_erasing_regions( |
| goal: ParamEnvAnd<'tcx, GenericArg<'tcx>> |
| ) -> Result<GenericArg<'tcx>, NoSolution> { |
| desc { "normalizing `{}`", goal.value } |
| } |
| |
| query implied_outlives_bounds_compat( |
| goal: CanonicalTyGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec<OutlivesBound<'tcx>>>>, |
| NoSolution, |
| > { |
| desc { "computing implied outlives bounds for `{}`", goal.value.value } |
| } |
| |
| query implied_outlives_bounds( |
| goal: CanonicalTyGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec<OutlivesBound<'tcx>>>>, |
| NoSolution, |
| > { |
| desc { "computing implied outlives bounds v2 for `{}`", goal.value.value } |
| } |
| |
| /// Do not call this query directly: |
| /// invoke `DropckOutlives::new(dropped_ty)).fully_perform(typeck.infcx)` instead. |
| query dropck_outlives( |
| goal: CanonicalTyGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "computing dropck types for `{}`", goal.value.value } |
| } |
| |
| /// Do not call this query directly: invoke `infcx.predicate_may_hold()` or |
| /// `infcx.predicate_must_hold()` instead. |
| query evaluate_obligation( |
| goal: CanonicalPredicateGoal<'tcx> |
| ) -> Result<EvaluationResult, OverflowError> { |
| desc { "evaluating trait selection obligation `{}`", goal.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Eq` type-op |
| query type_op_ascribe_user_type( |
| goal: CanonicalTypeOpAscribeUserTypeGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, |
| NoSolution, |
| > { |
| desc { "evaluating `type_op_ascribe_user_type` `{:?}`", goal.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Eq` type-op |
| query type_op_eq( |
| goal: CanonicalTypeOpEqGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, |
| NoSolution, |
| > { |
| desc { "evaluating `type_op_eq` `{:?}`", goal.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Subtype` type-op |
| query type_op_subtype( |
| goal: CanonicalTypeOpSubtypeGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, |
| NoSolution, |
| > { |
| desc { "evaluating `type_op_subtype` `{:?}`", goal.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `ProvePredicate` type-op |
| query type_op_prove_predicate( |
| goal: CanonicalTypeOpProvePredicateGoal<'tcx> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, |
| NoSolution, |
| > { |
| desc { "evaluating `type_op_prove_predicate` `{:?}`", goal.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_ty( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Ty<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{}`", goal.value.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_clause( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::Clause<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::Clause<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{:?}`", goal.value.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_poly_fn_sig( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::PolyFnSig<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::PolyFnSig<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{:?}`", goal.value.value.value } |
| } |
| |
| /// Do not call this query directly: part of the `Normalize` type-op |
| query type_op_normalize_fn_sig( |
| goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::FnSig<'tcx>> |
| ) -> Result< |
| &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::FnSig<'tcx>>>, |
| NoSolution, |
| > { |
| desc { "normalizing `{:?}`", goal.value.value.value } |
| } |
| |
| query instantiate_and_check_impossible_predicates(key: (DefId, GenericArgsRef<'tcx>)) -> bool { |
| desc { |tcx| |
| "checking impossible instantiated predicates: `{}`", |
| tcx.def_path_str(key.0) |
| } |
| } |
| |
| query is_impossible_associated_item(key: (DefId, DefId)) -> bool { |
| desc { |tcx| |
| "checking if `{}` is impossible to reference within `{}`", |
| tcx.def_path_str(key.1), |
| tcx.def_path_str(key.0), |
| } |
| } |
| |
| query method_autoderef_steps( |
| goal: CanonicalTyGoal<'tcx> |
| ) -> MethodAutoderefStepsResult<'tcx> { |
| desc { "computing autoderef types for `{}`", goal.value.value } |
| } |
| |
| query supported_target_features(_: CrateNum) -> &'tcx UnordMap<String, Option<Symbol>> { |
| arena_cache |
| eval_always |
| desc { "looking up supported target features" } |
| } |
| |
| query features_query(_: ()) -> &'tcx rustc_feature::Features { |
| feedable |
| desc { "looking up enabled feature gates" } |
| } |
| |
| query crate_for_resolver((): ()) -> &'tcx Steal<(rustc_ast::Crate, rustc_ast::AttrVec)> { |
| feedable |
| no_hash |
| desc { "the ast before macro expansion and name resolution" } |
| } |
| |
| /// Attempt to resolve the given `DefId` to an `Instance`, for the |
| /// given generics args (`GenericArgsRef`), returning one of: |
| /// * `Ok(Some(instance))` on success |
| /// * `Ok(None)` when the `GenericArgsRef` are still too generic, |
| /// and therefore don't allow finding the final `Instance` |
| /// * `Err(ErrorGuaranteed)` when the `Instance` resolution process |
| /// couldn't complete due to errors elsewhere - this is distinct |
| /// from `Ok(None)` to avoid misleading diagnostics when an error |
| /// has already been/will be emitted, for the original cause. |
| query resolve_instance_raw( |
| key: ty::ParamEnvAnd<'tcx, (DefId, GenericArgsRef<'tcx>)> |
| ) -> Result<Option<ty::Instance<'tcx>>, ErrorGuaranteed> { |
| desc { "resolving instance `{}`", ty::Instance::new(key.value.0, key.value.1) } |
| } |
| |
| query reveal_opaque_types_in_bounds(key: ty::Clauses<'tcx>) -> ty::Clauses<'tcx> { |
| desc { "revealing opaque types in `{:?}`", key } |
| } |
| |
| query limits(key: ()) -> Limits { |
| desc { "looking up limits" } |
| } |
| |
| /// Performs an HIR-based well-formed check on the item with the given `HirId`. If |
| /// we get an `Unimplemented` error that matches the provided `Predicate`, return |
| /// the cause of the newly created obligation. |
| /// |
| /// This is only used by error-reporting code to get a better cause (in particular, a better |
| /// span) for an *existing* error. Therefore, it is best-effort, and may never handle |
| /// all of the cases that the normal `ty::Ty`-based wfcheck does. This is fine, |
| /// because the `ty::Ty`-based wfcheck is always run. |
| query diagnostic_hir_wf_check( |
| key: (ty::Predicate<'tcx>, WellFormedLoc) |
| ) -> &'tcx Option<ObligationCause<'tcx>> { |
| arena_cache |
| eval_always |
| no_hash |
| desc { "performing HIR wf-checking for predicate `{:?}` at item `{:?}`", key.0, key.1 } |
| } |
| |
| /// The list of backend features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, |
| /// `--target` and similar). |
| query global_backend_features(_: ()) -> &'tcx Vec<String> { |
| arena_cache |
| eval_always |
| desc { "computing the backend features for CLI flags" } |
| } |
| |
| query check_validity_requirement(key: (ValidityRequirement, ty::ParamEnvAnd<'tcx, Ty<'tcx>>)) -> Result<bool, &'tcx ty::layout::LayoutError<'tcx>> { |
| desc { "checking validity requirement for `{}`: {}", key.1.value, key.0 } |
| } |
| |
| query compare_impl_const( |
| key: (LocalDefId, DefId) |
| ) -> Result<(), ErrorGuaranteed> { |
| desc { |tcx| "checking assoc const `{}` has the same type as trait item", tcx.def_path_str(key.0) } |
| } |
| |
| query deduced_param_attrs(def_id: DefId) -> &'tcx [ty::DeducedParamAttrs] { |
| desc { |tcx| "deducing parameter attributes for {}", tcx.def_path_str(def_id) } |
| separate_provide_extern |
| } |
| |
| query doc_link_resolutions(def_id: DefId) -> &'tcx DocLinkResMap { |
| eval_always |
| desc { "resolutions for documentation links for a module" } |
| separate_provide_extern |
| } |
| |
| query doc_link_traits_in_scope(def_id: DefId) -> &'tcx [DefId] { |
| eval_always |
| desc { "traits in scope for documentation links for a module" } |
| separate_provide_extern |
| } |
| |
| /// Get all item paths that were stripped by a `#[cfg]` in a particular crate. |
| /// Should not be called for the local crate before the resolver outputs are created, as it |
| /// is only fed there. |
| query stripped_cfg_items(cnum: CrateNum) -> &'tcx [StrippedCfgItem] { |
| desc { "getting cfg-ed out item names" } |
| separate_provide_extern |
| } |
| |
| query generics_require_sized_self(def_id: DefId) -> bool { |
| desc { "check whether the item has a `where Self: Sized` bound" } |
| } |
| |
| query cross_crate_inlinable(def_id: DefId) -> bool { |
| desc { "whether the item should be made inlinable across crates" } |
| separate_provide_extern |
| } |
| } |
| |
| rustc_query_append! { define_callbacks! } |
| rustc_feedable_queries! { define_feedable! } |