blob: 12eb2c882ad1affb281e56d979947b5f0cfbe9fc [file] [log] [blame]
//! Implementation of compiling various phases of the compiler and standard
//! library.
//!
//! This module contains some of the real meat in the rustbuild build system
//! which is where Cargo is used to compiler the standard library, libtest, and
//! compiler. This module is also responsible for assembling the sysroot as it
//! goes along from the output of the previous stage.
use std::borrow::Cow;
use std::env;
use std::fs;
use std::io::BufReader;
use std::io::prelude::*;
use std::path::{Path, PathBuf};
use std::process::{Command, Stdio, exit};
use std::str;
use build_helper::{output, t, up_to_date};
use filetime::FileTime;
use serde::Deserialize;
use serde_json;
use crate::dist;
use crate::util::{exe, is_dylib};
use crate::{Compiler, Mode, GitRepo};
use crate::native;
use crate::cache::{INTERNER, Interned};
use crate::builder::{Step, RunConfig, ShouldRun, Builder};
#[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Std {
pub target: Interned<String>,
pub compiler: Compiler,
}
impl Step for Std {
type Output = ();
const DEFAULT: bool = true;
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.all_krates("std")
}
fn make_run(run: RunConfig<'_>) {
run.builder.ensure(Std {
compiler: run.builder.compiler(run.builder.top_stage, run.host),
target: run.target,
});
}
/// Builds the standard library.
///
/// This will build the standard library for a particular stage of the build
/// using the `compiler` targeting the `target` architecture. The artifacts
/// created will also be linked into the sysroot directory.
fn run(self, builder: &Builder<'_>) {
let target = self.target;
let compiler = self.compiler;
if builder.config.keep_stage.contains(&compiler.stage) {
builder.info("Warning: Using a potentially old libstd. This may not behave well.");
builder.ensure(StdLink {
compiler,
target_compiler: compiler,
target,
});
return;
}
builder.ensure(StartupObjects { compiler, target });
let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
if compiler_to_use != compiler {
builder.ensure(Std {
compiler: compiler_to_use,
target,
});
builder.info(&format!("Uplifting stage1 std ({} -> {})", compiler_to_use.host, target));
// Even if we're not building std this stage, the new sysroot must
// still contain the third party objects needed by various targets.
copy_third_party_objects(builder, &compiler, target);
builder.ensure(StdLink {
compiler: compiler_to_use,
target_compiler: compiler,
target,
});
return;
}
copy_third_party_objects(builder, &compiler, target);
let mut cargo = builder.cargo(compiler, Mode::Std, target, "build");
std_cargo(builder, &compiler, target, &mut cargo);
builder.info(&format!("Building stage{} std artifacts ({} -> {})", compiler.stage,
&compiler.host, target));
run_cargo(builder,
&mut cargo,
vec![],
&libstd_stamp(builder, compiler, target),
false);
builder.ensure(StdLink {
compiler: builder.compiler(compiler.stage, builder.config.build),
target_compiler: compiler,
target,
});
}
}
/// Copies third pary objects needed by various targets.
fn copy_third_party_objects(builder: &Builder<'_>, compiler: &Compiler, target: Interned<String>) {
let libdir = builder.sysroot_libdir(*compiler, target);
// Copies the crt(1,i,n).o startup objects
//
// Since musl supports fully static linking, we can cross link for it even
// with a glibc-targeting toolchain, given we have the appropriate startup
// files. As those shipped with glibc won't work, copy the ones provided by
// musl so we have them on linux-gnu hosts.
if target.contains("musl") {
for &obj in &["crt1.o", "crti.o", "crtn.o"] {
builder.copy(
&builder.musl_root(target).unwrap().join("lib").join(obj),
&libdir.join(obj),
);
}
} else if target.ends_with("-wasi") {
for &obj in &["crt1.o"] {
builder.copy(
&builder.wasi_root(target).unwrap().join("lib/wasm32-wasi").join(obj),
&libdir.join(obj),
);
}
}
// Copies libunwind.a compiled to be linked wit x86_64-fortanix-unknown-sgx.
//
// This target needs to be linked to Fortanix's port of llvm's libunwind.
// libunwind requires support for rwlock and printing to stderr,
// which is provided by std for this target.
if target == "x86_64-fortanix-unknown-sgx" {
let src_path_env = "X86_FORTANIX_SGX_LIBS";
let obj = "libunwind.a";
let src = env::var(src_path_env).expect(&format!("{} not found in env", src_path_env));
let src = Path::new(&src).join(obj);
builder.copy(&src, &libdir.join(obj));
}
}
/// Configure cargo to compile the standard library, adding appropriate env vars
/// and such.
pub fn std_cargo(builder: &Builder<'_>,
compiler: &Compiler,
target: Interned<String>,
cargo: &mut Command) {
if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
}
// Determine if we're going to compile in optimized C intrinsics to
// the `compiler-builtins` crate. These intrinsics live in LLVM's
// `compiler-rt` repository, but our `src/llvm-project` submodule isn't
// always checked out, so we need to conditionally look for this. (e.g. if
// an external LLVM is used we skip the LLVM submodule checkout).
//
// Note that this shouldn't affect the correctness of `compiler-builtins`,
// but only its speed. Some intrinsics in C haven't been translated to Rust
// yet but that's pretty rare. Other intrinsics have optimized
// implementations in C which have only had slower versions ported to Rust,
// so we favor the C version where we can, but it's not critical.
//
// If `compiler-rt` is available ensure that the `c` feature of the
// `compiler-builtins` crate is enabled and it's configured to learn where
// `compiler-rt` is located.
let compiler_builtins_root = builder.src.join("src/llvm-project/compiler-rt");
let compiler_builtins_c_feature = if compiler_builtins_root.exists() {
cargo.env("RUST_COMPILER_RT_ROOT", &compiler_builtins_root);
" compiler-builtins-c".to_string()
} else {
String::new()
};
if builder.no_std(target) == Some(true) {
let mut features = "compiler-builtins-mem".to_string();
features.push_str(&compiler_builtins_c_feature);
// for no-std targets we only compile a few no_std crates
cargo
.args(&["-p", "alloc"])
.arg("--manifest-path")
.arg(builder.src.join("src/liballoc/Cargo.toml"))
.arg("--features")
.arg("compiler-builtins-mem compiler-builtins-c");
} else {
let mut features = builder.std_features();
features.push_str(&compiler_builtins_c_feature);
if compiler.stage != 0 && builder.config.sanitizers {
// This variable is used by the sanitizer runtime crates, e.g.
// rustc_lsan, to build the sanitizer runtime from C code
// When this variable is missing, those crates won't compile the C code,
// so we don't set this variable during stage0 where llvm-config is
// missing
// We also only build the runtimes when --enable-sanitizers (or its
// config.toml equivalent) is used
let llvm_config = builder.ensure(native::Llvm {
target: builder.config.build,
emscripten: false,
});
cargo.env("LLVM_CONFIG", llvm_config);
}
cargo.arg("--features").arg(features)
.arg("--manifest-path")
.arg(builder.src.join("src/libstd/Cargo.toml"));
if target.contains("musl") {
if let Some(p) = builder.musl_root(target) {
cargo.env("MUSL_ROOT", p);
}
}
if target.ends_with("-wasi") {
if let Some(p) = builder.wasi_root(target) {
cargo.env("WASI_ROOT", p);
}
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
struct StdLink {
pub compiler: Compiler,
pub target_compiler: Compiler,
pub target: Interned<String>,
}
impl Step for StdLink {
type Output = ();
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.never()
}
/// Link all libstd rlibs/dylibs into the sysroot location.
///
/// Links those artifacts generated by `compiler` to the `stage` compiler's
/// sysroot for the specified `host` and `target`.
///
/// Note that this assumes that `compiler` has already generated the libstd
/// libraries for `target`, and this method will find them in the relevant
/// output directory.
fn run(self, builder: &Builder<'_>) {
let compiler = self.compiler;
let target_compiler = self.target_compiler;
let target = self.target;
builder.info(&format!("Copying stage{} std from stage{} ({} -> {} / {})",
target_compiler.stage,
compiler.stage,
&compiler.host,
target_compiler.host,
target));
let libdir = builder.sysroot_libdir(target_compiler, target);
let hostdir = builder.sysroot_libdir(target_compiler, compiler.host);
add_to_sysroot(builder, &libdir, &hostdir, &libstd_stamp(builder, compiler, target));
if builder.config.sanitizers && compiler.stage != 0 && target == "x86_64-apple-darwin" {
// The sanitizers are only built in stage1 or above, so the dylibs will
// be missing in stage0 and causes panic. See the `std()` function above
// for reason why the sanitizers are not built in stage0.
copy_apple_sanitizer_dylibs(builder, &builder.native_dir(target), "osx", &libdir);
}
}
}
fn copy_apple_sanitizer_dylibs(
builder: &Builder<'_>,
native_dir: &Path,
platform: &str,
into: &Path,
) {
for &sanitizer in &["asan", "tsan"] {
let filename = format!("lib__rustc__clang_rt.{}_{}_dynamic.dylib", sanitizer, platform);
let mut src_path = native_dir.join(sanitizer);
src_path.push("build");
src_path.push("lib");
src_path.push("darwin");
src_path.push(&filename);
builder.copy(&src_path, &into.join(filename));
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct StartupObjects {
pub compiler: Compiler,
pub target: Interned<String>,
}
impl Step for StartupObjects {
type Output = ();
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.path("src/rtstartup")
}
fn make_run(run: RunConfig<'_>) {
run.builder.ensure(StartupObjects {
compiler: run.builder.compiler(run.builder.top_stage, run.host),
target: run.target,
});
}
/// Builds and prepare startup objects like rsbegin.o and rsend.o
///
/// These are primarily used on Windows right now for linking executables/dlls.
/// They don't require any library support as they're just plain old object
/// files, so we just use the nightly snapshot compiler to always build them (as
/// no other compilers are guaranteed to be available).
fn run(self, builder: &Builder<'_>) {
let for_compiler = self.compiler;
let target = self.target;
if !target.contains("windows-gnu") {
return
}
let src_dir = &builder.src.join("src/rtstartup");
let dst_dir = &builder.native_dir(target).join("rtstartup");
let sysroot_dir = &builder.sysroot_libdir(for_compiler, target);
t!(fs::create_dir_all(dst_dir));
for file in &["rsbegin", "rsend"] {
let src_file = &src_dir.join(file.to_string() + ".rs");
let dst_file = &dst_dir.join(file.to_string() + ".o");
if !up_to_date(src_file, dst_file) {
let mut cmd = Command::new(&builder.initial_rustc);
builder.run(cmd.env("RUSTC_BOOTSTRAP", "1")
.arg("--cfg").arg("bootstrap")
.arg("--target").arg(target)
.arg("--emit=obj")
.arg("-o").arg(dst_file)
.arg(src_file));
}
builder.copy(dst_file, &sysroot_dir.join(file.to_string() + ".o"));
}
for obj in ["crt2.o", "dllcrt2.o"].iter() {
let src = compiler_file(builder,
builder.cc(target),
target,
obj);
builder.copy(&src, &sysroot_dir.join(obj));
}
}
}
#[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Test {
pub target: Interned<String>,
pub compiler: Compiler,
}
impl Step for Test {
type Output = ();
const DEFAULT: bool = true;
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.all_krates("test")
}
fn make_run(run: RunConfig<'_>) {
run.builder.ensure(Test {
compiler: run.builder.compiler(run.builder.top_stage, run.host),
target: run.target,
});
}
/// Builds libtest.
///
/// This will build libtest and supporting libraries for a particular stage of
/// the build using the `compiler` targeting the `target` architecture. The
/// artifacts created will also be linked into the sysroot directory.
fn run(self, builder: &Builder<'_>) {
let target = self.target;
let compiler = self.compiler;
builder.ensure(Std { compiler, target });
if builder.config.keep_stage.contains(&compiler.stage) {
builder.info("Warning: Using a potentially old libtest. This may not behave well.");
builder.ensure(TestLink {
compiler,
target_compiler: compiler,
target,
});
return;
}
let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
if compiler_to_use != compiler {
builder.ensure(Test {
compiler: compiler_to_use,
target,
});
builder.info(
&format!("Uplifting stage1 test ({} -> {})", builder.config.build, target));
builder.ensure(TestLink {
compiler: compiler_to_use,
target_compiler: compiler,
target,
});
return;
}
let mut cargo = builder.cargo(compiler, Mode::Test, target, "build");
test_cargo(builder, &compiler, target, &mut cargo);
builder.info(&format!("Building stage{} test artifacts ({} -> {})", compiler.stage,
&compiler.host, target));
run_cargo(builder,
&mut cargo,
vec![],
&libtest_stamp(builder, compiler, target),
false);
builder.ensure(TestLink {
compiler: builder.compiler(compiler.stage, builder.config.build),
target_compiler: compiler,
target,
});
}
}
/// Same as `std_cargo`, but for libtest
pub fn test_cargo(builder: &Builder<'_>,
_compiler: &Compiler,
_target: Interned<String>,
cargo: &mut Command) {
if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
}
cargo.arg("--manifest-path")
.arg(builder.src.join("src/libtest/Cargo.toml"));
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct TestLink {
pub compiler: Compiler,
pub target_compiler: Compiler,
pub target: Interned<String>,
}
impl Step for TestLink {
type Output = ();
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.never()
}
/// Same as `std_link`, only for libtest
fn run(self, builder: &Builder<'_>) {
let compiler = self.compiler;
let target_compiler = self.target_compiler;
let target = self.target;
builder.info(&format!("Copying stage{} test from stage{} ({} -> {} / {})",
target_compiler.stage,
compiler.stage,
&compiler.host,
target_compiler.host,
target));
add_to_sysroot(
builder,
&builder.sysroot_libdir(target_compiler, target),
&builder.sysroot_libdir(target_compiler, compiler.host),
&libtest_stamp(builder, compiler, target)
);
}
}
#[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Rustc {
pub target: Interned<String>,
pub compiler: Compiler,
}
impl Step for Rustc {
type Output = ();
const ONLY_HOSTS: bool = true;
const DEFAULT: bool = true;
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.all_krates("rustc-main")
}
fn make_run(run: RunConfig<'_>) {
run.builder.ensure(Rustc {
compiler: run.builder.compiler(run.builder.top_stage, run.host),
target: run.target,
});
}
/// Builds the compiler.
///
/// This will build the compiler for a particular stage of the build using
/// the `compiler` targeting the `target` architecture. The artifacts
/// created will also be linked into the sysroot directory.
fn run(self, builder: &Builder<'_>) {
let compiler = self.compiler;
let target = self.target;
builder.ensure(Test { compiler, target });
if builder.config.keep_stage.contains(&compiler.stage) {
builder.info("Warning: Using a potentially old librustc. This may not behave well.");
builder.ensure(RustcLink {
compiler,
target_compiler: compiler,
target,
});
return;
}
let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
if compiler_to_use != compiler {
builder.ensure(Rustc {
compiler: compiler_to_use,
target,
});
builder.info(&format!("Uplifting stage1 rustc ({} -> {})",
builder.config.build, target));
builder.ensure(RustcLink {
compiler: compiler_to_use,
target_compiler: compiler,
target,
});
return;
}
// Ensure that build scripts and proc macros have a std / libproc_macro to link against.
builder.ensure(Test {
compiler: builder.compiler(self.compiler.stage, builder.config.build),
target: builder.config.build,
});
let mut cargo = builder.cargo(compiler, Mode::Rustc, target, "build");
rustc_cargo(builder, &mut cargo);
builder.info(&format!("Building stage{} compiler artifacts ({} -> {})",
compiler.stage, &compiler.host, target));
run_cargo(builder,
&mut cargo,
vec![],
&librustc_stamp(builder, compiler, target),
false);
builder.ensure(RustcLink {
compiler: builder.compiler(compiler.stage, builder.config.build),
target_compiler: compiler,
target,
});
}
}
pub fn rustc_cargo(builder: &Builder<'_>, cargo: &mut Command) {
cargo.arg("--features").arg(builder.rustc_features())
.arg("--manifest-path")
.arg(builder.src.join("src/rustc/Cargo.toml"));
rustc_cargo_env(builder, cargo);
}
pub fn rustc_cargo_env(builder: &Builder<'_>, cargo: &mut Command) {
// Set some configuration variables picked up by build scripts and
// the compiler alike
cargo.env("CFG_RELEASE", builder.rust_release())
.env("CFG_RELEASE_CHANNEL", &builder.config.channel)
.env("CFG_VERSION", builder.rust_version())
.env("CFG_PREFIX", builder.config.prefix.clone().unwrap_or_default())
.env("CFG_CODEGEN_BACKENDS_DIR", &builder.config.rust_codegen_backends_dir);
let libdir_relative = builder.config.libdir_relative().unwrap_or(Path::new("lib"));
cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative);
if let Some(ref ver_date) = builder.rust_info.commit_date() {
cargo.env("CFG_VER_DATE", ver_date);
}
if let Some(ref ver_hash) = builder.rust_info.sha() {
cargo.env("CFG_VER_HASH", ver_hash);
}
if !builder.unstable_features() {
cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
}
if let Some(ref s) = builder.config.rustc_default_linker {
cargo.env("CFG_DEFAULT_LINKER", s);
}
if builder.config.rustc_parallel {
cargo.env("RUSTC_PARALLEL_COMPILER", "1");
}
if builder.config.rust_verify_llvm_ir {
cargo.env("RUSTC_VERIFY_LLVM_IR", "1");
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
struct RustcLink {
pub compiler: Compiler,
pub target_compiler: Compiler,
pub target: Interned<String>,
}
impl Step for RustcLink {
type Output = ();
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.never()
}
/// Same as `std_link`, only for librustc
fn run(self, builder: &Builder<'_>) {
let compiler = self.compiler;
let target_compiler = self.target_compiler;
let target = self.target;
builder.info(&format!("Copying stage{} rustc from stage{} ({} -> {} / {})",
target_compiler.stage,
compiler.stage,
&compiler.host,
target_compiler.host,
target));
add_to_sysroot(
builder,
&builder.sysroot_libdir(target_compiler, target),
&builder.sysroot_libdir(target_compiler, compiler.host),
&librustc_stamp(builder, compiler, target)
);
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct CodegenBackend {
pub compiler: Compiler,
pub target: Interned<String>,
pub backend: Interned<String>,
}
impl Step for CodegenBackend {
type Output = ();
const ONLY_HOSTS: bool = true;
const DEFAULT: bool = true;
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.all_krates("rustc_codegen_llvm")
}
fn make_run(run: RunConfig<'_>) {
let backend = run.builder.config.rust_codegen_backends.get(0);
let backend = backend.cloned().unwrap_or_else(|| {
INTERNER.intern_str("llvm")
});
run.builder.ensure(CodegenBackend {
compiler: run.builder.compiler(run.builder.top_stage, run.host),
target: run.target,
backend,
});
}
fn run(self, builder: &Builder<'_>) {
let compiler = self.compiler;
let target = self.target;
let backend = self.backend;
builder.ensure(Rustc { compiler, target });
if builder.config.keep_stage.contains(&compiler.stage) {
builder.info("Warning: Using a potentially old codegen backend. \
This may not behave well.");
// Codegen backends are linked separately from this step today, so we don't do
// anything here.
return;
}
let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
if compiler_to_use != compiler {
builder.ensure(CodegenBackend {
compiler: compiler_to_use,
target,
backend,
});
return;
}
let out_dir = builder.cargo_out(compiler, Mode::Codegen, target);
let mut cargo = builder.cargo(compiler, Mode::Codegen, target, "build");
cargo.arg("--manifest-path")
.arg(builder.src.join("src/librustc_codegen_llvm/Cargo.toml"));
rustc_cargo_env(builder, &mut cargo);
let features = build_codegen_backend(&builder, &mut cargo, &compiler, target, backend);
let tmp_stamp = out_dir.join(".tmp.stamp");
let files = run_cargo(builder,
cargo.arg("--features").arg(features),
vec![],
&tmp_stamp,
false);
if builder.config.dry_run {
return;
}
let mut files = files.into_iter()
.filter(|f| {
let filename = f.file_name().unwrap().to_str().unwrap();
is_dylib(filename) && filename.contains("rustc_codegen_llvm-")
});
let codegen_backend = match files.next() {
Some(f) => f,
None => panic!("no dylibs built for codegen backend?"),
};
if let Some(f) = files.next() {
panic!("codegen backend built two dylibs:\n{}\n{}",
codegen_backend.display(),
f.display());
}
let stamp = codegen_backend_stamp(builder, compiler, target, backend);
let codegen_backend = codegen_backend.to_str().unwrap();
t!(fs::write(&stamp, &codegen_backend));
}
}
pub fn build_codegen_backend(builder: &Builder<'_>,
cargo: &mut Command,
compiler: &Compiler,
target: Interned<String>,
backend: Interned<String>) -> String {
let mut features = String::new();
match &*backend {
"llvm" | "emscripten" => {
// Build LLVM for our target. This will implicitly build the
// host LLVM if necessary.
let llvm_config = builder.ensure(native::Llvm {
target,
emscripten: backend == "emscripten",
});
if backend == "emscripten" {
features.push_str(" emscripten");
}
builder.info(&format!("Building stage{} codegen artifacts ({} -> {}, {})",
compiler.stage, &compiler.host, target, backend));
// Pass down configuration from the LLVM build into the build of
// librustc_llvm and librustc_codegen_llvm.
if builder.is_rust_llvm(target) && backend != "emscripten" {
cargo.env("LLVM_RUSTLLVM", "1");
}
cargo.env("LLVM_CONFIG", &llvm_config);
if backend != "emscripten" {
let target_config = builder.config.target_config.get(&target);
if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) {
cargo.env("CFG_LLVM_ROOT", s);
}
}
// Some LLVM linker flags (-L and -l) may be needed to link librustc_llvm.
if let Some(ref s) = builder.config.llvm_ldflags {
cargo.env("LLVM_LINKER_FLAGS", s);
}
// Building with a static libstdc++ is only supported on linux right now,
// not for MSVC or macOS
if builder.config.llvm_static_stdcpp &&
!target.contains("freebsd") &&
!target.contains("windows") &&
!target.contains("apple") {
let file = compiler_file(builder,
builder.cxx(target).unwrap(),
target,
"libstdc++.a");
cargo.env("LLVM_STATIC_STDCPP", file);
}
if builder.config.llvm_link_shared ||
(builder.config.llvm_thin_lto && backend != "emscripten")
{
cargo.env("LLVM_LINK_SHARED", "1");
}
if builder.config.llvm_use_libcxx {
cargo.env("LLVM_USE_LIBCXX", "1");
}
}
_ => panic!("unknown backend: {}", backend),
}
features
}
/// Creates the `codegen-backends` folder for a compiler that's about to be
/// assembled as a complete compiler.
///
/// This will take the codegen artifacts produced by `compiler` and link them
/// into an appropriate location for `target_compiler` to be a functional
/// compiler.
fn copy_codegen_backends_to_sysroot(builder: &Builder<'_>,
compiler: Compiler,
target_compiler: Compiler) {
let target = target_compiler.host;
// Note that this step is different than all the other `*Link` steps in
// that it's not assembling a bunch of libraries but rather is primarily
// moving the codegen backend into place. The codegen backend of rustc is
// not linked into the main compiler by default but is rather dynamically
// selected at runtime for inclusion.
//
// Here we're looking for the output dylib of the `CodegenBackend` step and
// we're copying that into the `codegen-backends` folder.
let dst = builder.sysroot_codegen_backends(target_compiler);
t!(fs::create_dir_all(&dst));
if builder.config.dry_run {
return;
}
for backend in builder.config.rust_codegen_backends.iter() {
let stamp = codegen_backend_stamp(builder, compiler, target, *backend);
let dylib = t!(fs::read_to_string(&stamp));
let file = Path::new(&dylib);
let filename = file.file_name().unwrap().to_str().unwrap();
// change `librustc_codegen_llvm-xxxxxx.so` to `librustc_codegen_llvm-llvm.so`
let target_filename = {
let dash = filename.find('-').unwrap();
let dot = filename.find('.').unwrap();
format!("{}-{}{}",
&filename[..dash],
backend,
&filename[dot..])
};
builder.copy(&file, &dst.join(target_filename));
}
}
fn copy_lld_to_sysroot(builder: &Builder<'_>,
target_compiler: Compiler,
lld_install_root: &Path) {
let target = target_compiler.host;
let dst = builder.sysroot_libdir(target_compiler, target)
.parent()
.unwrap()
.join("bin");
t!(fs::create_dir_all(&dst));
let src_exe = exe("lld", &target);
let dst_exe = exe("rust-lld", &target);
// we prepend this bin directory to the user PATH when linking Rust binaries. To
// avoid shadowing the system LLD we rename the LLD we provide to `rust-lld`.
builder.copy(&lld_install_root.join("bin").join(&src_exe), &dst.join(&dst_exe));
}
/// Cargo's output path for the standard library in a given stage, compiled
/// by a particular compiler for the specified target.
pub fn libstd_stamp(
builder: &Builder<'_>,
compiler: Compiler,
target: Interned<String>,
) -> PathBuf {
builder.cargo_out(compiler, Mode::Std, target).join(".libstd.stamp")
}
/// Cargo's output path for libtest in a given stage, compiled by a particular
/// compiler for the specified target.
pub fn libtest_stamp(
builder: &Builder<'_>,
compiler: Compiler,
target: Interned<String>,
) -> PathBuf {
builder.cargo_out(compiler, Mode::Test, target).join(".libtest.stamp")
}
/// Cargo's output path for librustc in a given stage, compiled by a particular
/// compiler for the specified target.
pub fn librustc_stamp(
builder: &Builder<'_>,
compiler: Compiler,
target: Interned<String>,
) -> PathBuf {
builder.cargo_out(compiler, Mode::Rustc, target).join(".librustc.stamp")
}
/// Cargo's output path for librustc_codegen_llvm in a given stage, compiled by a particular
/// compiler for the specified target and backend.
fn codegen_backend_stamp(builder: &Builder<'_>,
compiler: Compiler,
target: Interned<String>,
backend: Interned<String>) -> PathBuf {
builder.cargo_out(compiler, Mode::Codegen, target)
.join(format!(".librustc_codegen_llvm-{}.stamp", backend))
}
pub fn compiler_file(
builder: &Builder<'_>,
compiler: &Path,
target: Interned<String>,
file: &str,
) -> PathBuf {
let mut cmd = Command::new(compiler);
cmd.args(builder.cflags(target, GitRepo::Rustc));
cmd.arg(format!("-print-file-name={}", file));
let out = output(&mut cmd);
PathBuf::from(out.trim())
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Sysroot {
pub compiler: Compiler,
}
impl Step for Sysroot {
type Output = Interned<PathBuf>;
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.never()
}
/// Returns the sysroot for the `compiler` specified that *this build system
/// generates*.
///
/// That is, the sysroot for the stage0 compiler is not what the compiler
/// thinks it is by default, but it's the same as the default for stages
/// 1-3.
fn run(self, builder: &Builder<'_>) -> Interned<PathBuf> {
let compiler = self.compiler;
let sysroot = if compiler.stage == 0 {
builder.out.join(&compiler.host).join("stage0-sysroot")
} else {
builder.out.join(&compiler.host).join(format!("stage{}", compiler.stage))
};
let _ = fs::remove_dir_all(&sysroot);
t!(fs::create_dir_all(&sysroot));
INTERNER.intern_path(sysroot)
}
}
#[derive(Debug, Copy, PartialOrd, Ord, Clone, PartialEq, Eq, Hash)]
pub struct Assemble {
/// The compiler which we will produce in this step. Assemble itself will
/// take care of ensuring that the necessary prerequisites to do so exist,
/// that is, this target can be a stage2 compiler and Assemble will build
/// previous stages for you.
pub target_compiler: Compiler,
}
impl Step for Assemble {
type Output = Compiler;
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.never()
}
/// Prepare a new compiler from the artifacts in `stage`
///
/// This will assemble a compiler in `build/$host/stage$stage`. The compiler
/// must have been previously produced by the `stage - 1` builder.build
/// compiler.
fn run(self, builder: &Builder<'_>) -> Compiler {
let target_compiler = self.target_compiler;
if target_compiler.stage == 0 {
assert_eq!(builder.config.build, target_compiler.host,
"Cannot obtain compiler for non-native build triple at stage 0");
// The stage 0 compiler for the build triple is always pre-built.
return target_compiler;
}
// Get the compiler that we'll use to bootstrap ourselves.
//
// Note that this is where the recursive nature of the bootstrap
// happens, as this will request the previous stage's compiler on
// downwards to stage 0.
//
// Also note that we're building a compiler for the host platform. We
// only assume that we can run `build` artifacts, which means that to
// produce some other architecture compiler we need to start from
// `build` to get there.
//
// FIXME: Perhaps we should download those libraries?
// It would make builds faster...
//
// FIXME: It may be faster if we build just a stage 1 compiler and then
// use that to bootstrap this compiler forward.
let build_compiler =
builder.compiler(target_compiler.stage - 1, builder.config.build);
// Build the libraries for this compiler to link to (i.e., the libraries
// it uses at runtime). NOTE: Crates the target compiler compiles don't
// link to these. (FIXME: Is that correct? It seems to be correct most
// of the time but I think we do link to these for stage2/bin compilers
// when not performing a full bootstrap).
builder.ensure(Rustc {
compiler: build_compiler,
target: target_compiler.host,
});
for &backend in builder.config.rust_codegen_backends.iter() {
builder.ensure(CodegenBackend {
compiler: build_compiler,
target: target_compiler.host,
backend,
});
}
let lld_install = if builder.config.lld_enabled {
Some(builder.ensure(native::Lld {
target: target_compiler.host,
}))
} else {
None
};
let stage = target_compiler.stage;
let host = target_compiler.host;
builder.info(&format!("Assembling stage{} compiler ({})", stage, host));
// Link in all dylibs to the libdir
let sysroot = builder.sysroot(target_compiler);
let rustc_libdir = builder.rustc_libdir(target_compiler);
t!(fs::create_dir_all(&rustc_libdir));
let src_libdir = builder.sysroot_libdir(build_compiler, host);
for f in builder.read_dir(&src_libdir) {
let filename = f.file_name().into_string().unwrap();
if is_dylib(&filename) {
builder.copy(&f.path(), &rustc_libdir.join(&filename));
}
}
copy_codegen_backends_to_sysroot(builder,
build_compiler,
target_compiler);
if let Some(lld_install) = lld_install {
copy_lld_to_sysroot(builder, target_compiler, &lld_install);
}
dist::maybe_install_llvm_dylib(builder, target_compiler.host, &sysroot);
// Link the compiler binary itself into place
let out_dir = builder.cargo_out(build_compiler, Mode::Rustc, host);
let rustc = out_dir.join(exe("rustc_binary", &*host));
let bindir = sysroot.join("bin");
t!(fs::create_dir_all(&bindir));
let compiler = builder.rustc(target_compiler);
let _ = fs::remove_file(&compiler);
builder.copy(&rustc, &compiler);
target_compiler
}
}
/// Link some files into a rustc sysroot.
///
/// For a particular stage this will link the file listed in `stamp` into the
/// `sysroot_dst` provided.
pub fn add_to_sysroot(
builder: &Builder<'_>,
sysroot_dst: &Path,
sysroot_host_dst: &Path,
stamp: &Path
) {
t!(fs::create_dir_all(&sysroot_dst));
t!(fs::create_dir_all(&sysroot_host_dst));
for (path, host) in builder.read_stamp_file(stamp) {
if host {
builder.copy(&path, &sysroot_host_dst.join(path.file_name().unwrap()));
} else {
builder.copy(&path, &sysroot_dst.join(path.file_name().unwrap()));
}
}
}
pub fn run_cargo(builder: &Builder<'_>,
cargo: &mut Command,
tail_args: Vec<String>,
stamp: &Path,
is_check: bool)
-> Vec<PathBuf>
{
if builder.config.dry_run {
return Vec::new();
}
// `target_root_dir` looks like $dir/$target/release
let target_root_dir = stamp.parent().unwrap();
// `target_deps_dir` looks like $dir/$target/release/deps
let target_deps_dir = target_root_dir.join("deps");
// `host_root_dir` looks like $dir/release
let host_root_dir = target_root_dir.parent().unwrap() // chop off `release`
.parent().unwrap() // chop off `$target`
.join(target_root_dir.file_name().unwrap());
// Spawn Cargo slurping up its JSON output. We'll start building up the
// `deps` array of all files it generated along with a `toplevel` array of
// files we need to probe for later.
let mut deps = Vec::new();
let mut toplevel = Vec::new();
let ok = stream_cargo(builder, cargo, tail_args, &mut |msg| {
let (filenames, crate_types) = match msg {
CargoMessage::CompilerArtifact {
filenames,
target: CargoTarget {
crate_types,
},
..
} => (filenames, crate_types),
_ => return,
};
for filename in filenames {
// Skip files like executables
if !filename.ends_with(".rlib") &&
!filename.ends_with(".lib") &&
!filename.ends_with(".a") &&
!is_dylib(&filename) &&
!(is_check && filename.ends_with(".rmeta")) {
continue;
}
let filename = Path::new(&*filename);
// If this was an output file in the "host dir" we don't actually
// worry about it, it's not relevant for us
if filename.starts_with(&host_root_dir) {
// Unless it's a proc macro used in the compiler
if crate_types.iter().any(|t| t == "proc-macro") {
deps.push((filename.to_path_buf(), true));
}
continue;
}
// If this was output in the `deps` dir then this is a precise file
// name (hash included) so we start tracking it.
if filename.starts_with(&target_deps_dir) {
deps.push((filename.to_path_buf(), false));
continue;
}
// Otherwise this was a "top level artifact" which right now doesn't
// have a hash in the name, but there's a version of this file in
// the `deps` folder which *does* have a hash in the name. That's
// the one we'll want to we'll probe for it later.
//
// We do not use `Path::file_stem` or `Path::extension` here,
// because some generated files may have multiple extensions e.g.
// `std-<hash>.dll.lib` on Windows. The aforementioned methods only
// split the file name by the last extension (`.lib`) while we need
// to split by all extensions (`.dll.lib`).
let expected_len = t!(filename.metadata()).len();
let filename = filename.file_name().unwrap().to_str().unwrap();
let mut parts = filename.splitn(2, '.');
let file_stem = parts.next().unwrap().to_owned();
let extension = parts.next().unwrap().to_owned();
toplevel.push((file_stem, extension, expected_len));
}
});
if !ok {
exit(1);
}
// Ok now we need to actually find all the files listed in `toplevel`. We've
// got a list of prefix/extensions and we basically just need to find the
// most recent file in the `deps` folder corresponding to each one.
let contents = t!(target_deps_dir.read_dir())
.map(|e| t!(e))
.map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata())))
.collect::<Vec<_>>();
for (prefix, extension, expected_len) in toplevel {
let candidates = contents.iter().filter(|&&(_, ref filename, ref meta)| {
filename.starts_with(&prefix[..]) &&
filename[prefix.len()..].starts_with("-") &&
filename.ends_with(&extension[..]) &&
meta.len() == expected_len
});
let max = candidates.max_by_key(|&&(_, _, ref metadata)| {
FileTime::from_last_modification_time(metadata)
});
let path_to_add = match max {
Some(triple) => triple.0.to_str().unwrap(),
None => panic!("no output generated for {:?} {:?}", prefix, extension),
};
if is_dylib(path_to_add) {
let candidate = format!("{}.lib", path_to_add);
let candidate = PathBuf::from(candidate);
if candidate.exists() {
deps.push((candidate, false));
}
}
deps.push((path_to_add.into(), false));
}
deps.sort();
let mut new_contents = Vec::new();
for (dep, proc_macro) in deps.iter() {
new_contents.extend(if *proc_macro { b"h" } else { b"t" });
new_contents.extend(dep.to_str().unwrap().as_bytes());
new_contents.extend(b"\0");
}
t!(fs::write(&stamp, &new_contents));
deps.into_iter().map(|(d, _)| d).collect()
}
pub fn stream_cargo(
builder: &Builder<'_>,
cargo: &mut Command,
tail_args: Vec<String>,
cb: &mut dyn FnMut(CargoMessage<'_>),
) -> bool {
if builder.config.dry_run {
return true;
}
// Instruct Cargo to give us json messages on stdout, critically leaving
// stderr as piped so we can get those pretty colors.
let mut message_format = String::from("json-render-diagnostics");
if let Some(s) = &builder.config.rustc_error_format {
message_format.push_str(",json-diagnostic-");
message_format.push_str(s);
}
cargo.arg("--message-format").arg(message_format).stdout(Stdio::piped());
for arg in tail_args {
cargo.arg(arg);
}
builder.verbose(&format!("running: {:?}", cargo));
let mut child = match cargo.spawn() {
Ok(child) => child,
Err(e) => panic!("failed to execute command: {:?}\nerror: {}", cargo, e),
};
// Spawn Cargo slurping up its JSON output. We'll start building up the
// `deps` array of all files it generated along with a `toplevel` array of
// files we need to probe for later.
let stdout = BufReader::new(child.stdout.take().unwrap());
for line in stdout.lines() {
let line = t!(line);
match serde_json::from_str::<CargoMessage<'_>>(&line) {
Ok(msg) => cb(msg),
// If this was informational, just print it out and continue
Err(_) => println!("{}", line)
}
}
// Make sure Cargo actually succeeded after we read all of its stdout.
let status = t!(child.wait());
if !status.success() {
eprintln!("command did not execute successfully: {:?}\n\
expected success, got: {}",
cargo,
status);
}
status.success()
}
#[derive(Deserialize)]
pub struct CargoTarget<'a> {
crate_types: Vec<Cow<'a, str>>,
}
#[derive(Deserialize)]
#[serde(tag = "reason", rename_all = "kebab-case")]
pub enum CargoMessage<'a> {
CompilerArtifact {
package_id: Cow<'a, str>,
features: Vec<Cow<'a, str>>,
filenames: Vec<Cow<'a, str>>,
target: CargoTarget<'a>,
},
BuildScriptExecuted {
package_id: Cow<'a, str>,
},
}