blob: 1dab02978548104edff35eb928df2ab484e857f8 [file] [log] [blame]
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use ast::NodeId;
use early_buffered_lints::BufferedEarlyLintId;
use ext::tt::macro_parser;
use feature_gate::Features;
use parse::{token, ParseSess};
use print::pprust;
use symbol::keywords;
use syntax_pos::{edition::Edition, BytePos, Span};
use tokenstream::{self, DelimSpan};
use ast;
use rustc_data_structures::sync::Lrc;
use std::iter::Peekable;
/// Contains the sub-token-trees of a "delimited" token tree, such as the contents of `(`. Note
/// that the delimiter itself might be `NoDelim`.
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub struct Delimited {
pub delim: token::DelimToken,
pub tts: Vec<TokenTree>,
}
impl Delimited {
/// Return the opening delimiter (possibly `NoDelim`).
pub fn open_token(&self) -> token::Token {
token::OpenDelim(self.delim)
}
/// Return the closing delimiter (possibly `NoDelim`).
pub fn close_token(&self) -> token::Token {
token::CloseDelim(self.delim)
}
/// Return a `self::TokenTree` with a `Span` corresponding to the opening delimiter.
pub fn open_tt(&self, span: Span) -> TokenTree {
let open_span = if span.is_dummy() {
span
} else {
span.with_lo(span.lo() + BytePos(self.delim.len() as u32))
};
TokenTree::Token(open_span, self.open_token())
}
/// Return a `self::TokenTree` with a `Span` corresponding to the closing delimiter.
pub fn close_tt(&self, span: Span) -> TokenTree {
let close_span = if span.is_dummy() {
span
} else {
span.with_lo(span.hi() - BytePos(self.delim.len() as u32))
};
TokenTree::Token(close_span, self.close_token())
}
}
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub struct SequenceRepetition {
/// The sequence of token trees
pub tts: Vec<TokenTree>,
/// The optional separator
pub separator: Option<token::Token>,
/// Whether the sequence can be repeated zero (*), or one or more times (+)
pub op: KleeneOp,
/// The number of `Match`s that appear in the sequence (and subsequences)
pub num_captures: usize,
}
/// A Kleene-style [repetition operator](http://en.wikipedia.org/wiki/Kleene_star)
/// for token sequences.
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum KleeneOp {
/// Kleene star (`*`) for zero or more repetitions
ZeroOrMore,
/// Kleene plus (`+`) for one or more repetitions
OneOrMore,
ZeroOrOne,
}
/// Similar to `tokenstream::TokenTree`, except that `$i`, `$i:ident`, and `$(...)`
/// are "first-class" token trees. Useful for parsing macros.
#[derive(Debug, Clone, PartialEq, RustcEncodable, RustcDecodable)]
pub enum TokenTree {
Token(Span, token::Token),
Delimited(DelimSpan, Lrc<Delimited>),
/// A kleene-style repetition sequence
Sequence(DelimSpan, Lrc<SequenceRepetition>),
/// e.g., `$var`
MetaVar(Span, ast::Ident),
/// e.g., `$var:expr`. This is only used in the left hand side of MBE macros.
MetaVarDecl(
Span,
ast::Ident, /* name to bind */
ast::Ident, /* kind of nonterminal */
),
}
impl TokenTree {
/// Return the number of tokens in the tree.
pub fn len(&self) -> usize {
match *self {
TokenTree::Delimited(_, ref delimed) => match delimed.delim {
token::NoDelim => delimed.tts.len(),
_ => delimed.tts.len() + 2,
},
TokenTree::Sequence(_, ref seq) => seq.tts.len(),
_ => 0,
}
}
/// Returns true if the given token tree contains no other tokens. This is vacuously true for
/// single tokens or metavar/decls, but may be false for delimited trees or sequences.
pub fn is_empty(&self) -> bool {
match *self {
TokenTree::Delimited(_, ref delimed) => match delimed.delim {
token::NoDelim => delimed.tts.is_empty(),
_ => false,
},
TokenTree::Sequence(_, ref seq) => seq.tts.is_empty(),
_ => true,
}
}
/// Get the `index`-th sub-token-tree. This only makes sense for delimited trees and sequences.
pub fn get_tt(&self, index: usize) -> TokenTree {
match (self, index) {
(&TokenTree::Delimited(_, ref delimed), _) if delimed.delim == token::NoDelim => {
delimed.tts[index].clone()
}
(&TokenTree::Delimited(span, ref delimed), _) => {
if index == 0 {
return delimed.open_tt(span.open);
}
if index == delimed.tts.len() + 1 {
return delimed.close_tt(span.close);
}
delimed.tts[index - 1].clone()
}
(&TokenTree::Sequence(_, ref seq), _) => seq.tts[index].clone(),
_ => panic!("Cannot expand a token tree"),
}
}
/// Retrieve the `TokenTree`'s span.
pub fn span(&self) -> Span {
match *self {
TokenTree::Token(sp, _)
| TokenTree::MetaVar(sp, _)
| TokenTree::MetaVarDecl(sp, _, _) => sp,
TokenTree::Delimited(sp, _)
| TokenTree::Sequence(sp, _) => sp.entire(),
}
}
}
/// Takes a `tokenstream::TokenStream` and returns a `Vec<self::TokenTree>`. Specifically, this
/// takes a generic `TokenStream`, such as is used in the rest of the compiler, and returns a
/// collection of `TokenTree` for use in parsing a macro.
///
/// # Parameters
///
/// - `input`: a token stream to read from, the contents of which we are parsing.
/// - `expect_matchers`: `parse` can be used to parse either the "patterns" or the "body" of a
/// macro. Both take roughly the same form _except_ that in a pattern, metavars are declared with
/// their "matcher" type. For example `$var:expr` or `$id:ident`. In this example, `expr` and
/// `ident` are "matchers". They are not present in the body of a macro rule -- just in the
/// pattern, so we pass a parameter to indicate whether to expect them or not.
/// - `sess`: the parsing session. Any errors will be emitted to this session.
/// - `features`, `attrs`: language feature flags and attributes so that we know whether to use
/// unstable features or not.
/// - `edition`: which edition are we in.
/// - `macro_node_id`: the NodeId of the macro we are parsing.
///
/// # Returns
///
/// A collection of `self::TokenTree`. There may also be some errors emitted to `sess`.
pub fn parse(
input: tokenstream::TokenStream,
expect_matchers: bool,
sess: &ParseSess,
features: &Features,
attrs: &[ast::Attribute],
edition: Edition,
macro_node_id: NodeId,
) -> Vec<TokenTree> {
// Will contain the final collection of `self::TokenTree`
let mut result = Vec::new();
// For each token tree in `input`, parse the token into a `self::TokenTree`, consuming
// additional trees if need be.
let mut trees = input.trees().peekable();
while let Some(tree) = trees.next() {
// Given the parsed tree, if there is a metavar and we are expecting matchers, actually
// parse out the matcher (i.e., in `$id:ident` this would parse the `:` and `ident`).
let tree = parse_tree(
tree,
&mut trees,
expect_matchers,
sess,
features,
attrs,
edition,
macro_node_id,
);
match tree {
TokenTree::MetaVar(start_sp, ident) if expect_matchers => {
let span = match trees.next() {
Some(tokenstream::TokenTree::Token(span, token::Colon)) => match trees.next() {
Some(tokenstream::TokenTree::Token(end_sp, ref tok)) => match tok.ident() {
Some((kind, _)) => {
let span = end_sp.with_lo(start_sp.lo());
result.push(TokenTree::MetaVarDecl(span, ident, kind));
continue;
}
_ => end_sp,
},
tree => tree
.as_ref()
.map(tokenstream::TokenTree::span)
.unwrap_or(span),
},
tree => tree
.as_ref()
.map(tokenstream::TokenTree::span)
.unwrap_or(start_sp),
};
sess.missing_fragment_specifiers.borrow_mut().insert(span);
result.push(TokenTree::MetaVarDecl(
span,
ident,
keywords::Invalid.ident(),
));
}
// Not a metavar or no matchers allowed, so just return the tree
_ => result.push(tree),
}
}
result
}
/// Takes a `tokenstream::TokenTree` and returns a `self::TokenTree`. Specifically, this takes a
/// generic `TokenTree`, such as is used in the rest of the compiler, and returns a `TokenTree`
/// for use in parsing a macro.
///
/// Converting the given tree may involve reading more tokens.
///
/// # Parameters
///
/// - `tree`: the tree we wish to convert.
/// - `trees`: an iterator over trees. We may need to read more tokens from it in order to finish
/// converting `tree`
/// - `expect_matchers`: same as for `parse` (see above).
/// - `sess`: the parsing session. Any errors will be emitted to this session.
/// - `features`, `attrs`: language feature flags and attributes so that we know whether to use
/// unstable features or not.
fn parse_tree<I>(
tree: tokenstream::TokenTree,
trees: &mut Peekable<I>,
expect_matchers: bool,
sess: &ParseSess,
features: &Features,
attrs: &[ast::Attribute],
edition: Edition,
macro_node_id: NodeId,
) -> TokenTree
where
I: Iterator<Item = tokenstream::TokenTree>,
{
// Depending on what `tree` is, we could be parsing different parts of a macro
match tree {
// `tree` is a `$` token. Look at the next token in `trees`
tokenstream::TokenTree::Token(span, token::Dollar) => match trees.next() {
// `tree` is followed by a delimited set of token trees. This indicates the beginning
// of a repetition sequence in the macro (e.g., `$(pat)*`).
Some(tokenstream::TokenTree::Delimited(span, delimited)) => {
// Must have `(` not `{` or `[`
if delimited.delim != token::Paren {
let tok = pprust::token_to_string(&token::OpenDelim(delimited.delim));
let msg = format!("expected `(`, found `{}`", tok);
sess.span_diagnostic.span_err(span.entire(), &msg);
}
// Parse the contents of the sequence itself
let sequence = parse(
delimited.tts.into(),
expect_matchers,
sess,
features,
attrs,
edition,
macro_node_id,
);
// Get the Kleene operator and optional separator
let (separator, op) =
parse_sep_and_kleene_op(
trees,
span.entire(),
sess,
features,
attrs,
edition,
macro_node_id,
);
// Count the number of captured "names" (i.e., named metavars)
let name_captures = macro_parser::count_names(&sequence);
TokenTree::Sequence(
span,
Lrc::new(SequenceRepetition {
tts: sequence,
separator,
op,
num_captures: name_captures,
}),
)
}
// `tree` is followed by an `ident`. This could be `$meta_var` or the `$crate` special
// metavariable that names the crate of the invocation.
Some(tokenstream::TokenTree::Token(ident_span, ref token)) if token.is_ident() => {
let (ident, is_raw) = token.ident().unwrap();
let span = ident_span.with_lo(span.lo());
if ident.name == keywords::Crate.name() && !is_raw {
let ident = ast::Ident::new(keywords::DollarCrate.name(), ident.span);
TokenTree::Token(span, token::Ident(ident, is_raw))
} else {
TokenTree::MetaVar(span, ident)
}
}
// `tree` is followed by a random token. This is an error.
Some(tokenstream::TokenTree::Token(span, tok)) => {
let msg = format!(
"expected identifier, found `{}`",
pprust::token_to_string(&tok)
);
sess.span_diagnostic.span_err(span, &msg);
TokenTree::MetaVar(span, keywords::Invalid.ident())
}
// There are no more tokens. Just return the `$` we already have.
None => TokenTree::Token(span, token::Dollar),
},
// `tree` is an arbitrary token. Keep it.
tokenstream::TokenTree::Token(span, tok) => TokenTree::Token(span, tok),
// `tree` is the beginning of a delimited set of tokens (e.g., `(` or `{`). We need to
// descend into the delimited set and further parse it.
tokenstream::TokenTree::Delimited(span, delimited) => TokenTree::Delimited(
span,
Lrc::new(Delimited {
delim: delimited.delim,
tts: parse(
delimited.tts.into(),
expect_matchers,
sess,
features,
attrs,
edition,
macro_node_id,
),
}),
),
}
}
/// Takes a token and returns `Some(KleeneOp)` if the token is `+` `*` or `?`. Otherwise, return
/// `None`.
fn kleene_op(token: &token::Token) -> Option<KleeneOp> {
match *token {
token::BinOp(token::Star) => Some(KleeneOp::ZeroOrMore),
token::BinOp(token::Plus) => Some(KleeneOp::OneOrMore),
token::Question => Some(KleeneOp::ZeroOrOne),
_ => None,
}
}
/// Parse the next token tree of the input looking for a KleeneOp. Returns
///
/// - Ok(Ok((op, span))) if the next token tree is a KleeneOp
/// - Ok(Err(tok, span)) if the next token tree is a token but not a KleeneOp
/// - Err(span) if the next token tree is not a token
fn parse_kleene_op<I>(
input: &mut I,
span: Span,
) -> Result<Result<(KleeneOp, Span), (token::Token, Span)>, Span>
where
I: Iterator<Item = tokenstream::TokenTree>,
{
match input.next() {
Some(tokenstream::TokenTree::Token(span, tok)) => match kleene_op(&tok) {
Some(op) => Ok(Ok((op, span))),
None => Ok(Err((tok, span))),
},
tree => Err(tree
.as_ref()
.map(tokenstream::TokenTree::span)
.unwrap_or(span)),
}
}
/// Attempt to parse a single Kleene star, possibly with a separator.
///
/// For example, in a pattern such as `$(a),*`, `a` is the pattern to be repeated, `,` is the
/// separator, and `*` is the Kleene operator. This function is specifically concerned with parsing
/// the last two tokens of such a pattern: namely, the optional separator and the Kleene operator
/// itself. Note that here we are parsing the _macro_ itself, rather than trying to match some
/// stream of tokens in an invocation of a macro.
///
/// This function will take some input iterator `input` corresponding to `span` and a parsing
/// session `sess`. If the next one (or possibly two) tokens in `input` correspond to a Kleene
/// operator and separator, then a tuple with `(separator, KleeneOp)` is returned. Otherwise, an
/// error with the appropriate span is emitted to `sess` and a dummy value is returned.
///
/// NOTE: In 2015 edition, * and + are the only Kleene operators and `?` is a separator. In 2018,
/// `?` is a Kleene op and not a separator.
fn parse_sep_and_kleene_op<I>(
input: &mut Peekable<I>,
span: Span,
sess: &ParseSess,
features: &Features,
attrs: &[ast::Attribute],
edition: Edition,
macro_node_id: NodeId,
) -> (Option<token::Token>, KleeneOp)
where
I: Iterator<Item = tokenstream::TokenTree>,
{
match edition {
Edition::Edition2015 => parse_sep_and_kleene_op_2015(
input,
span,
sess,
features,
attrs,
macro_node_id,
),
Edition::Edition2018 => parse_sep_and_kleene_op_2018(input, span, sess, features, attrs),
}
}
// `?` is a separator (with a migration warning) and never a KleeneOp.
fn parse_sep_and_kleene_op_2015<I>(
input: &mut Peekable<I>,
span: Span,
sess: &ParseSess,
_features: &Features,
_attrs: &[ast::Attribute],
macro_node_id: NodeId,
) -> (Option<token::Token>, KleeneOp)
where
I: Iterator<Item = tokenstream::TokenTree>,
{
// We basically look at two token trees here, denoted as #1 and #2 below
let span = match parse_kleene_op(input, span) {
// #1 is a `+` or `*` KleeneOp
//
// `?` is ambiguous: it could be a separator (warning) or a Kleene::ZeroOrOne (error), so
// we need to look ahead one more token to be sure.
Ok(Ok((op, _))) if op != KleeneOp::ZeroOrOne => return (None, op),
// #1 is `?` token, but it could be a Kleene::ZeroOrOne (error in 2015) without a separator
// or it could be a `?` separator followed by any Kleene operator. We need to look ahead 1
// token to find out which.
Ok(Ok((op, op1_span))) => {
assert_eq!(op, KleeneOp::ZeroOrOne);
// Lookahead at #2. If it is a KleenOp, then #1 is a separator.
let is_1_sep = if let Some(&tokenstream::TokenTree::Token(_, ref tok2)) = input.peek() {
kleene_op(tok2).is_some()
} else {
false
};
if is_1_sep {
// #1 is a separator and #2 should be a KleepeOp.
// (N.B. We need to advance the input iterator.)
match parse_kleene_op(input, span) {
// #2 is `?`, which is not allowed as a Kleene op in 2015 edition.
Ok(Ok((op, op2_span))) if op == KleeneOp::ZeroOrOne => {
sess.span_diagnostic
.struct_span_err(op2_span, "expected `*` or `+`")
.note("`?` is not a macro repetition operator")
.emit();
// Return a dummy
return (None, KleeneOp::ZeroOrMore);
}
// #2 is a Kleene op, which is the only valid option
Ok(Ok((op, _))) => {
// Warn that `?` as a separator will be deprecated
sess.buffer_lint(
BufferedEarlyLintId::QuestionMarkMacroSep,
op1_span,
macro_node_id,
"using `?` as a separator is deprecated and will be \
a hard error in an upcoming edition",
);
return (Some(token::Question), op);
}
// #2 is a random token (this is an error) :(
Ok(Err((_, _))) => op1_span,
// #2 is not even a token at all :(
Err(_) => op1_span,
}
} else {
// `?` is not allowed as a Kleene op in 2015
sess.span_diagnostic
.struct_span_err(op1_span, "expected `*` or `+`")
.note("`?` is not a macro repetition operator")
.emit();
// Return a dummy
return (None, KleeneOp::ZeroOrMore);
}
}
// #1 is a separator followed by #2, a KleeneOp
Ok(Err((tok, span))) => match parse_kleene_op(input, span) {
// #2 is a `?`, which is not allowed as a Kleene op in 2015 edition.
Ok(Ok((op, op2_span))) if op == KleeneOp::ZeroOrOne => {
sess.span_diagnostic
.struct_span_err(op2_span, "expected `*` or `+`")
.note("`?` is not a macro repetition operator")
.emit();
// Return a dummy
return (None, KleeneOp::ZeroOrMore);
}
// #2 is a KleeneOp :D
Ok(Ok((op, _))) => return (Some(tok), op),
// #2 is a random token :(
Ok(Err((_, span))) => span,
// #2 is not a token at all :(
Err(span) => span,
},
// #1 is not a token
Err(span) => span,
};
sess.span_diagnostic.span_err(span, "expected `*` or `+`");
// Return a dummy
(None, KleeneOp::ZeroOrMore)
}
// `?` is a Kleene op, not a separator
fn parse_sep_and_kleene_op_2018<I>(
input: &mut Peekable<I>,
span: Span,
sess: &ParseSess,
_features: &Features,
_attrs: &[ast::Attribute],
) -> (Option<token::Token>, KleeneOp)
where
I: Iterator<Item = tokenstream::TokenTree>,
{
// We basically look at two token trees here, denoted as #1 and #2 below
let span = match parse_kleene_op(input, span) {
// #1 is a `?` (needs feature gate)
Ok(Ok((op, _op1_span))) if op == KleeneOp::ZeroOrOne => {
return (None, op);
}
// #1 is a `+` or `*` KleeneOp
Ok(Ok((op, _))) => return (None, op),
// #1 is a separator followed by #2, a KleeneOp
Ok(Err((tok, span))) => match parse_kleene_op(input, span) {
// #2 is the `?` Kleene op, which does not take a separator (error)
Ok(Ok((op, _op2_span))) if op == KleeneOp::ZeroOrOne => {
// Error!
sess.span_diagnostic.span_err(
span,
"the `?` macro repetition operator does not take a separator",
);
// Return a dummy
return (None, KleeneOp::ZeroOrMore);
}
// #2 is a KleeneOp :D
Ok(Ok((op, _))) => return (Some(tok), op),
// #2 is a random token :(
Ok(Err((_, span))) => span,
// #2 is not a token at all :(
Err(span) => span,
},
// #1 is not a token
Err(span) => span,
};
// If we ever get to this point, we have experienced an "unexpected token" error
sess.span_diagnostic
.span_err(span, "expected one of: `*`, `+`, or `?`");
// Return a dummy
(None, KleeneOp::ZeroOrMore)
}