blob: 3a882506b41d6520e90921c0267f3752f75705b4 [file] [log] [blame]
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use hir::def_id::DefId;
use ty::subst::{Kind, Subst, Substs};
use ty::{self, Ty, TyCtxt, ToPredicate, ToPolyTraitRef};
use ty::outlives::Component;
use util::nodemap::FxHashSet;
use hir::{self};
use traits::specialize::specialization_graph::NodeItem;
use super::{Obligation, ObligationCause, PredicateObligation, SelectionContext, Normalized};
fn anonymize_predicate<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
pred: &ty::Predicate<'tcx>)
-> ty::Predicate<'tcx> {
match *pred {
ty::Predicate::Trait(ref data) =>
ty::Predicate::Trait(tcx.anonymize_late_bound_regions(data)),
ty::Predicate::RegionOutlives(ref data) =>
ty::Predicate::RegionOutlives(tcx.anonymize_late_bound_regions(data)),
ty::Predicate::TypeOutlives(ref data) =>
ty::Predicate::TypeOutlives(tcx.anonymize_late_bound_regions(data)),
ty::Predicate::Projection(ref data) =>
ty::Predicate::Projection(tcx.anonymize_late_bound_regions(data)),
ty::Predicate::WellFormed(data) =>
ty::Predicate::WellFormed(data),
ty::Predicate::ObjectSafe(data) =>
ty::Predicate::ObjectSafe(data),
ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) =>
ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind),
ty::Predicate::Subtype(ref data) =>
ty::Predicate::Subtype(tcx.anonymize_late_bound_regions(data)),
ty::Predicate::ConstEvaluatable(def_id, substs) =>
ty::Predicate::ConstEvaluatable(def_id, substs),
}
}
struct PredicateSet<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
tcx: TyCtxt<'a, 'gcx, 'tcx>,
set: FxHashSet<ty::Predicate<'tcx>>,
}
impl<'a, 'gcx, 'tcx> PredicateSet<'a, 'gcx, 'tcx> {
fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> PredicateSet<'a, 'gcx, 'tcx> {
PredicateSet { tcx: tcx, set: Default::default() }
}
fn insert(&mut self, pred: &ty::Predicate<'tcx>) -> bool {
// We have to be careful here because we want
//
// for<'a> Foo<&'a int>
//
// and
//
// for<'b> Foo<&'b int>
//
// to be considered equivalent. So normalize all late-bound
// regions before we throw things into the underlying set.
self.set.insert(anonymize_predicate(self.tcx, pred))
}
}
///////////////////////////////////////////////////////////////////////////
// `Elaboration` iterator
///////////////////////////////////////////////////////////////////////////
/// "Elaboration" is the process of identifying all the predicates that
/// are implied by a source predicate. Currently this basically means
/// walking the "supertraits" and other similar assumptions. For
/// example, if we know that `T : Ord`, the elaborator would deduce
/// that `T : PartialOrd` holds as well. Similarly, if we have `trait
/// Foo : 'static`, and we know that `T : Foo`, then we know that `T :
/// 'static`.
pub struct Elaborator<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
stack: Vec<ty::Predicate<'tcx>>,
visited: PredicateSet<'a, 'gcx, 'tcx>,
}
pub fn elaborate_trait_ref<'cx, 'gcx, 'tcx>(
tcx: TyCtxt<'cx, 'gcx, 'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>)
-> Elaborator<'cx, 'gcx, 'tcx>
{
elaborate_predicates(tcx, vec![trait_ref.to_predicate()])
}
pub fn elaborate_trait_refs<'cx, 'gcx, 'tcx>(
tcx: TyCtxt<'cx, 'gcx, 'tcx>,
trait_refs: impl Iterator<Item = ty::PolyTraitRef<'tcx>>)
-> Elaborator<'cx, 'gcx, 'tcx>
{
let predicates = trait_refs.map(|trait_ref| trait_ref.to_predicate())
.collect();
elaborate_predicates(tcx, predicates)
}
pub fn elaborate_predicates<'cx, 'gcx, 'tcx>(
tcx: TyCtxt<'cx, 'gcx, 'tcx>,
mut predicates: Vec<ty::Predicate<'tcx>>)
-> Elaborator<'cx, 'gcx, 'tcx>
{
let mut visited = PredicateSet::new(tcx);
predicates.retain(|pred| visited.insert(pred));
Elaborator { stack: predicates, visited: visited }
}
impl<'cx, 'gcx, 'tcx> Elaborator<'cx, 'gcx, 'tcx> {
pub fn filter_to_traits(self) -> FilterToTraits<Self> {
FilterToTraits::new(self)
}
fn push(&mut self, predicate: &ty::Predicate<'tcx>) {
let tcx = self.visited.tcx;
match *predicate {
ty::Predicate::Trait(ref data) => {
// Predicates declared on the trait.
let predicates = tcx.super_predicates_of(data.def_id());
let mut predicates: Vec<_> =
predicates.predicates
.iter()
.map(|(p, _)| p.subst_supertrait(tcx, &data.to_poly_trait_ref()))
.collect();
debug!("super_predicates: data={:?} predicates={:?}",
data, predicates);
// Only keep those bounds that we haven't already
// seen. This is necessary to prevent infinite
// recursion in some cases. One common case is when
// people define `trait Sized: Sized { }` rather than `trait
// Sized { }`.
predicates.retain(|r| self.visited.insert(r));
self.stack.extend(predicates);
}
ty::Predicate::WellFormed(..) => {
// Currently, we do not elaborate WF predicates,
// although we easily could.
}
ty::Predicate::ObjectSafe(..) => {
// Currently, we do not elaborate object-safe
// predicates.
}
ty::Predicate::Subtype(..) => {
// Currently, we do not "elaborate" predicates like `X
// <: Y`, though conceivably we might.
}
ty::Predicate::Projection(..) => {
// Nothing to elaborate in a projection predicate.
}
ty::Predicate::ClosureKind(..) => {
// Nothing to elaborate when waiting for a closure's kind to be inferred.
}
ty::Predicate::ConstEvaluatable(..) => {
// Currently, we do not elaborate const-evaluatable
// predicates.
}
ty::Predicate::RegionOutlives(..) => {
// Nothing to elaborate from `'a: 'b`.
}
ty::Predicate::TypeOutlives(ref data) => {
// We know that `T: 'a` for some type `T`. We can
// often elaborate this. For example, if we know that
// `[U]: 'a`, that implies that `U: 'a`. Similarly, if
// we know `&'a U: 'b`, then we know that `'a: 'b` and
// `U: 'b`.
//
// We can basically ignore bound regions here. So for
// example `for<'c> Foo<'a,'c>: 'b` can be elaborated to
// `'a: 'b`.
// Ignore `for<'a> T: 'a` -- we might in the future
// consider this as evidence that `T: 'static`, but
// I'm a bit wary of such constructions and so for now
// I want to be conservative. --nmatsakis
let ty_max = data.skip_binder().0;
let r_min = data.skip_binder().1;
if r_min.is_late_bound() {
return;
}
let visited = &mut self.visited;
let mut components = smallvec![];
tcx.push_outlives_components(ty_max, &mut components);
self.stack.extend(
components
.into_iter()
.filter_map(|component| match component {
Component::Region(r) => if r.is_late_bound() {
None
} else {
Some(ty::Predicate::RegionOutlives(
ty::Binder::dummy(ty::OutlivesPredicate(r, r_min))))
},
Component::Param(p) => {
let ty = tcx.mk_ty_param(p.idx, p.name);
Some(ty::Predicate::TypeOutlives(
ty::Binder::dummy(ty::OutlivesPredicate(ty, r_min))))
},
Component::UnresolvedInferenceVariable(_) => {
None
},
Component::Projection(_) |
Component::EscapingProjection(_) => {
// We can probably do more here. This
// corresponds to a case like `<T as
// Foo<'a>>::U: 'b`.
None
},
})
.filter(|p| visited.insert(p)));
}
}
}
}
impl<'cx, 'gcx, 'tcx> Iterator for Elaborator<'cx, 'gcx, 'tcx> {
type Item = ty::Predicate<'tcx>;
fn size_hint(&self) -> (usize, Option<usize>) {
(self.stack.len(), None)
}
fn next(&mut self) -> Option<ty::Predicate<'tcx>> {
// Extract next item from top-most stack frame, if any.
let next_predicate = match self.stack.pop() {
Some(predicate) => predicate,
None => {
// No more stack frames. Done.
return None;
}
};
self.push(&next_predicate);
return Some(next_predicate);
}
}
///////////////////////////////////////////////////////////////////////////
// Supertrait iterator
///////////////////////////////////////////////////////////////////////////
pub type Supertraits<'cx, 'gcx, 'tcx> = FilterToTraits<Elaborator<'cx, 'gcx, 'tcx>>;
pub fn supertraits<'cx, 'gcx, 'tcx>(tcx: TyCtxt<'cx, 'gcx, 'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>)
-> Supertraits<'cx, 'gcx, 'tcx>
{
elaborate_trait_ref(tcx, trait_ref).filter_to_traits()
}
pub fn transitive_bounds<'cx, 'gcx, 'tcx>(tcx: TyCtxt<'cx, 'gcx, 'tcx>,
bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>)
-> Supertraits<'cx, 'gcx, 'tcx>
{
elaborate_trait_refs(tcx, bounds).filter_to_traits()
}
///////////////////////////////////////////////////////////////////////////
// Iterator over def-ids of supertraits
pub struct SupertraitDefIds<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
tcx: TyCtxt<'a, 'gcx, 'tcx>,
stack: Vec<DefId>,
visited: FxHashSet<DefId>,
}
pub fn supertrait_def_ids<'cx, 'gcx, 'tcx>(tcx: TyCtxt<'cx, 'gcx, 'tcx>,
trait_def_id: DefId)
-> SupertraitDefIds<'cx, 'gcx, 'tcx>
{
SupertraitDefIds {
tcx,
stack: vec![trait_def_id],
visited: Some(trait_def_id).into_iter().collect(),
}
}
impl<'cx, 'gcx, 'tcx> Iterator for SupertraitDefIds<'cx, 'gcx, 'tcx> {
type Item = DefId;
fn next(&mut self) -> Option<DefId> {
let def_id = match self.stack.pop() {
Some(def_id) => def_id,
None => { return None; }
};
let predicates = self.tcx.super_predicates_of(def_id);
let visited = &mut self.visited;
self.stack.extend(
predicates.predicates
.iter()
.filter_map(|(p, _)| p.to_opt_poly_trait_ref())
.map(|t| t.def_id())
.filter(|&super_def_id| visited.insert(super_def_id)));
Some(def_id)
}
}
///////////////////////////////////////////////////////////////////////////
// Other
///////////////////////////////////////////////////////////////////////////
/// A filter around an iterator of predicates that makes it yield up
/// just trait references.
pub struct FilterToTraits<I> {
base_iterator: I
}
impl<I> FilterToTraits<I> {
fn new(base: I) -> FilterToTraits<I> {
FilterToTraits { base_iterator: base }
}
}
impl<'tcx, I: Iterator<Item = ty::Predicate<'tcx>>> Iterator for FilterToTraits<I> {
type Item = ty::PolyTraitRef<'tcx>;
fn next(&mut self) -> Option<ty::PolyTraitRef<'tcx>> {
loop {
match self.base_iterator.next() {
None => {
return None;
}
Some(ty::Predicate::Trait(data)) => {
return Some(data.to_poly_trait_ref());
}
Some(_) => {}
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.base_iterator.size_hint();
(0, upper)
}
}
///////////////////////////////////////////////////////////////////////////
// Other
///////////////////////////////////////////////////////////////////////////
/// Instantiate all bound parameters of the impl with the given substs,
/// returning the resulting trait ref and all obligations that arise.
/// The obligations are closed under normalization.
pub fn impl_trait_ref_and_oblig<'a, 'gcx, 'tcx>(selcx: &mut SelectionContext<'a, 'gcx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
impl_def_id: DefId,
impl_substs: &Substs<'tcx>)
-> (ty::TraitRef<'tcx>,
Vec<PredicateObligation<'tcx>>)
{
let impl_trait_ref =
selcx.tcx().impl_trait_ref(impl_def_id).unwrap();
let impl_trait_ref =
impl_trait_ref.subst(selcx.tcx(), impl_substs);
let Normalized { value: impl_trait_ref, obligations: normalization_obligations1 } =
super::normalize(selcx, param_env, ObligationCause::dummy(), &impl_trait_ref);
let predicates = selcx.tcx().predicates_of(impl_def_id);
let predicates = predicates.instantiate(selcx.tcx(), impl_substs);
let Normalized { value: predicates, obligations: normalization_obligations2 } =
super::normalize(selcx, param_env, ObligationCause::dummy(), &predicates);
let impl_obligations =
predicates_for_generics(ObligationCause::dummy(), 0, param_env, &predicates);
let impl_obligations: Vec<_> =
impl_obligations.into_iter()
.chain(normalization_obligations1)
.chain(normalization_obligations2)
.collect();
(impl_trait_ref, impl_obligations)
}
/// See `super::obligations_for_generics`
pub fn predicates_for_generics<'tcx>(cause: ObligationCause<'tcx>,
recursion_depth: usize,
param_env: ty::ParamEnv<'tcx>,
generic_bounds: &ty::InstantiatedPredicates<'tcx>)
-> Vec<PredicateObligation<'tcx>>
{
debug!("predicates_for_generics(generic_bounds={:?})",
generic_bounds);
generic_bounds.predicates.iter().map(|predicate| {
Obligation { cause: cause.clone(),
recursion_depth,
param_env,
predicate: predicate.clone() }
}).collect()
}
pub fn predicate_for_trait_ref<'tcx>(
cause: ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
recursion_depth: usize)
-> PredicateObligation<'tcx>
{
Obligation {
cause,
param_env,
recursion_depth,
predicate: trait_ref.to_predicate(),
}
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
pub fn predicate_for_trait_def(self,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
trait_def_id: DefId,
recursion_depth: usize,
self_ty: Ty<'tcx>,
params: &[Kind<'tcx>])
-> PredicateObligation<'tcx>
{
let trait_ref = ty::TraitRef {
def_id: trait_def_id,
substs: self.mk_substs_trait(self_ty, params)
};
predicate_for_trait_ref(cause, param_env, trait_ref, recursion_depth)
}
/// Cast a trait reference into a reference to one of its super
/// traits; returns `None` if `target_trait_def_id` is not a
/// supertrait.
pub fn upcast_choices(self,
source_trait_ref: ty::PolyTraitRef<'tcx>,
target_trait_def_id: DefId)
-> Vec<ty::PolyTraitRef<'tcx>>
{
if source_trait_ref.def_id() == target_trait_def_id {
return vec![source_trait_ref]; // shorcut the most common case
}
supertraits(self, source_trait_ref)
.filter(|r| r.def_id() == target_trait_def_id)
.collect()
}
/// Given a trait `trait_ref`, returns the number of vtable entries
/// that come from `trait_ref`, excluding its supertraits. Used in
/// computing the vtable base for an upcast trait of a trait object.
pub fn count_own_vtable_entries(self, trait_ref: ty::PolyTraitRef<'tcx>) -> usize {
let mut entries = 0;
// Count number of methods and add them to the total offset.
// Skip over associated types and constants.
for trait_item in self.associated_items(trait_ref.def_id()) {
if trait_item.kind == ty::AssociatedKind::Method {
entries += 1;
}
}
entries
}
/// Given an upcast trait object described by `object`, returns the
/// index of the method `method_def_id` (which should be part of
/// `object.upcast_trait_ref`) within the vtable for `object`.
pub fn get_vtable_index_of_object_method<N>(self,
object: &super::VtableObjectData<'tcx, N>,
method_def_id: DefId) -> usize {
// Count number of methods preceding the one we are selecting and
// add them to the total offset.
// Skip over associated types and constants.
let mut entries = object.vtable_base;
for trait_item in self.associated_items(object.upcast_trait_ref.def_id()) {
if trait_item.def_id == method_def_id {
// The item with the ID we were given really ought to be a method.
assert_eq!(trait_item.kind, ty::AssociatedKind::Method);
return entries;
}
if trait_item.kind == ty::AssociatedKind::Method {
entries += 1;
}
}
bug!("get_vtable_index_of_object_method: {:?} was not found",
method_def_id);
}
pub fn closure_trait_ref_and_return_type(self,
fn_trait_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::PolyFnSig<'tcx>,
tuple_arguments: TupleArgumentsFlag)
-> ty::Binder<(ty::TraitRef<'tcx>, Ty<'tcx>)>
{
let arguments_tuple = match tuple_arguments {
TupleArgumentsFlag::No => sig.skip_binder().inputs()[0],
TupleArgumentsFlag::Yes =>
self.intern_tup(sig.skip_binder().inputs()),
};
let trait_ref = ty::TraitRef {
def_id: fn_trait_def_id,
substs: self.mk_substs_trait(self_ty, &[arguments_tuple.into()]),
};
ty::Binder::bind((trait_ref, sig.skip_binder().output()))
}
pub fn generator_trait_ref_and_outputs(self,
fn_trait_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::PolyGenSig<'tcx>)
-> ty::Binder<(ty::TraitRef<'tcx>, Ty<'tcx>, Ty<'tcx>)>
{
let trait_ref = ty::TraitRef {
def_id: fn_trait_def_id,
substs: self.mk_substs_trait(self_ty, &[]),
};
ty::Binder::bind((trait_ref, sig.skip_binder().yield_ty, sig.skip_binder().return_ty))
}
pub fn impl_is_default(self, node_item_def_id: DefId) -> bool {
match self.hir.as_local_node_id(node_item_def_id) {
Some(node_id) => {
let item = self.hir.expect_item(node_id);
if let hir::ItemKind::Impl(_, _, defaultness, ..) = item.node {
defaultness.is_default()
} else {
false
}
}
None => {
self.global_tcx()
.impl_defaultness(node_item_def_id)
.is_default()
}
}
}
pub fn impl_item_is_final(self, node_item: &NodeItem<hir::Defaultness>) -> bool {
node_item.item.is_final() && !self.impl_is_default(node_item.node.def_id())
}
}
pub enum TupleArgumentsFlag { Yes, No }