| use smallvec::SmallVec; |
| |
| use rustc_data_structures::captures::Captures; |
| use rustc_middle::ty::{self, Ty}; |
| use rustc_session::lint; |
| use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS; |
| use rustc_span::Span; |
| |
| use crate::constructor::{IntRange, MaybeInfiniteInt}; |
| use crate::errors::{ |
| NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap, |
| OverlappingRangeEndpoints, Uncovered, |
| }; |
| use crate::rustc::{ |
| Constructor, DeconstructedPat, MatchArm, MatchCtxt, PlaceCtxt, RustcMatchCheckCtxt, |
| SplitConstructorSet, WitnessPat, |
| }; |
| use crate::TypeCx; |
| |
| /// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that |
| /// inspect the same subvalue/place". |
| /// This is used to traverse patterns column-by-column for lints. Despite similarities with the |
| /// algorithm in [`crate::usefulness`], this does a different traversal. Notably this is linear in |
| /// the depth of patterns, whereas `compute_exhaustiveness_and_usefulness` is worst-case exponential |
| /// (exhaustiveness is NP-complete). The core difference is that we treat sub-columns separately. |
| /// |
| /// This must not contain an or-pattern. `specialize` takes care to expand them. |
| /// |
| /// This is not used in the main algorithm; only in lints. |
| #[derive(Debug)] |
| pub(crate) struct PatternColumn<'a, 'p, 'tcx> { |
| patterns: Vec<&'a DeconstructedPat<'p, 'tcx>>, |
| } |
| |
| impl<'a, 'p, 'tcx> PatternColumn<'a, 'p, 'tcx> { |
| pub(crate) fn new(arms: &[MatchArm<'p, 'tcx>]) -> Self { |
| let mut patterns = Vec::with_capacity(arms.len()); |
| for arm in arms { |
| if arm.pat.is_or_pat() { |
| patterns.extend(arm.pat.flatten_or_pat()) |
| } else { |
| patterns.push(arm.pat) |
| } |
| } |
| Self { patterns } |
| } |
| |
| fn is_empty(&self) -> bool { |
| self.patterns.is_empty() |
| } |
| fn head_ty(&self) -> Option<Ty<'tcx>> { |
| if self.patterns.len() == 0 { |
| return None; |
| } |
| // If the type is opaque and it is revealed anywhere in the column, we take the revealed |
| // version. Otherwise we could encounter constructors for the revealed type and crash. |
| let first_ty = self.patterns[0].ty(); |
| if RustcMatchCheckCtxt::is_opaque_ty(first_ty) { |
| for pat in &self.patterns { |
| let ty = pat.ty(); |
| if !RustcMatchCheckCtxt::is_opaque_ty(ty) { |
| return Some(ty); |
| } |
| } |
| } |
| Some(first_ty) |
| } |
| |
| /// Do constructor splitting on the constructors of the column. |
| fn analyze_ctors(&self, pcx: &PlaceCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'p, 'tcx> { |
| let column_ctors = self.patterns.iter().map(|p| p.ctor()); |
| pcx.ctors_for_ty().split(pcx, column_ctors) |
| } |
| |
| fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>> + Captures<'b> { |
| self.patterns.iter().copied() |
| } |
| |
| /// Does specialization: given a constructor, this takes the patterns from the column that match |
| /// the constructor, and outputs their fields. |
| /// This returns one column per field of the constructor. They usually all have the same length |
| /// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns |
| /// which may change the lengths. |
| fn specialize( |
| &self, |
| pcx: &PlaceCtxt<'a, 'p, 'tcx>, |
| ctor: &Constructor<'p, 'tcx>, |
| ) -> Vec<PatternColumn<'a, 'p, 'tcx>> { |
| let arity = ctor.arity(pcx); |
| if arity == 0 { |
| return Vec::new(); |
| } |
| |
| // We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These |
| // columns may have different lengths in the presence of or-patterns (this is why we can't |
| // reuse `Matrix`). |
| let mut specialized_columns: Vec<_> = |
| (0..arity).map(|_| Self { patterns: Vec::new() }).collect(); |
| let relevant_patterns = |
| self.patterns.iter().filter(|pat| ctor.is_covered_by(pcx, pat.ctor())); |
| for pat in relevant_patterns { |
| let specialized = pat.specialize(pcx, ctor); |
| for (subpat, column) in specialized.iter().zip(&mut specialized_columns) { |
| if subpat.is_or_pat() { |
| column.patterns.extend(subpat.flatten_or_pat()) |
| } else { |
| column.patterns.push(subpat) |
| } |
| } |
| } |
| |
| assert!( |
| !specialized_columns[0].is_empty(), |
| "ctor {ctor:?} was listed as present but isn't; |
| there is an inconsistency between `Constructor::is_covered_by` and `ConstructorSet::split`" |
| ); |
| specialized_columns |
| } |
| } |
| |
| /// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned |
| /// in a given column. |
| #[instrument(level = "debug", skip(cx), ret)] |
| fn collect_nonexhaustive_missing_variants<'a, 'p, 'tcx>( |
| cx: MatchCtxt<'a, 'p, 'tcx>, |
| column: &PatternColumn<'a, 'p, 'tcx>, |
| ) -> Vec<WitnessPat<'p, 'tcx>> { |
| let Some(ty) = column.head_ty() else { |
| return Vec::new(); |
| }; |
| let pcx = &PlaceCtxt::new_dummy(cx, ty); |
| |
| let set = column.analyze_ctors(pcx); |
| if set.present.is_empty() { |
| // We can't consistently handle the case where no constructors are present (since this would |
| // require digging deep through any type in case there's a non_exhaustive enum somewhere), |
| // so for consistency we refuse to handle the top-level case, where we could handle it. |
| return vec![]; |
| } |
| |
| let mut witnesses = Vec::new(); |
| if cx.tycx.is_foreign_non_exhaustive_enum(ty) { |
| witnesses.extend( |
| set.missing |
| .into_iter() |
| // This will list missing visible variants. |
| .filter(|c| !matches!(c, Constructor::Hidden | Constructor::NonExhaustive)) |
| .map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor)), |
| ) |
| } |
| |
| // Recurse into the fields. |
| for ctor in set.present { |
| let specialized_columns = column.specialize(pcx, &ctor); |
| let wild_pat = WitnessPat::wild_from_ctor(pcx, ctor); |
| for (i, col_i) in specialized_columns.iter().enumerate() { |
| // Compute witnesses for each column. |
| let wits_for_col_i = collect_nonexhaustive_missing_variants(cx, col_i); |
| // For each witness, we build a new pattern in the shape of `ctor(_, _, wit, _, _)`, |
| // adding enough wildcards to match `arity`. |
| for wit in wits_for_col_i { |
| let mut pat = wild_pat.clone(); |
| pat.fields[i] = wit; |
| witnesses.push(pat); |
| } |
| } |
| } |
| witnesses |
| } |
| |
| pub(crate) fn lint_nonexhaustive_missing_variants<'a, 'p, 'tcx>( |
| cx: MatchCtxt<'a, 'p, 'tcx>, |
| arms: &[MatchArm<'p, 'tcx>], |
| pat_column: &PatternColumn<'a, 'p, 'tcx>, |
| scrut_ty: Ty<'tcx>, |
| ) { |
| let rcx: &RustcMatchCheckCtxt<'_, '_> = cx.tycx; |
| if !matches!( |
| rcx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, rcx.match_lint_level).0, |
| rustc_session::lint::Level::Allow |
| ) { |
| let witnesses = collect_nonexhaustive_missing_variants(cx, pat_column); |
| if !witnesses.is_empty() { |
| // Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns` |
| // is not exhaustive enough. |
| // |
| // NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`. |
| rcx.tcx.emit_spanned_lint( |
| NON_EXHAUSTIVE_OMITTED_PATTERNS, |
| rcx.match_lint_level, |
| rcx.scrut_span, |
| NonExhaustiveOmittedPattern { |
| scrut_ty, |
| uncovered: Uncovered::new(rcx.scrut_span, rcx, witnesses), |
| }, |
| ); |
| } |
| } else { |
| // We used to allow putting the `#[allow(non_exhaustive_omitted_patterns)]` on a match |
| // arm. This no longer makes sense so we warn users, to avoid silently breaking their |
| // usage of the lint. |
| for arm in arms { |
| let (lint_level, lint_level_source) = |
| rcx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, arm.arm_data); |
| if !matches!(lint_level, rustc_session::lint::Level::Allow) { |
| let decorator = NonExhaustiveOmittedPatternLintOnArm { |
| lint_span: lint_level_source.span(), |
| suggest_lint_on_match: rcx.whole_match_span.map(|span| span.shrink_to_lo()), |
| lint_level: lint_level.as_str(), |
| lint_name: "non_exhaustive_omitted_patterns", |
| }; |
| |
| use rustc_errors::DecorateLint; |
| let mut err = rcx.tcx.sess.struct_span_warn(*arm.pat.data(), ""); |
| err.set_primary_message(decorator.msg()); |
| decorator.decorate_lint(&mut err); |
| err.emit(); |
| } |
| } |
| } |
| } |
| |
| /// Traverse the patterns to warn the user about ranges that overlap on their endpoints. |
| #[instrument(level = "debug", skip(cx))] |
| pub(crate) fn lint_overlapping_range_endpoints<'a, 'p, 'tcx>( |
| cx: MatchCtxt<'a, 'p, 'tcx>, |
| column: &PatternColumn<'a, 'p, 'tcx>, |
| ) { |
| let Some(ty) = column.head_ty() else { |
| return; |
| }; |
| let pcx = &PlaceCtxt::new_dummy(cx, ty); |
| let rcx: &RustcMatchCheckCtxt<'_, '_> = cx.tycx; |
| |
| let set = column.analyze_ctors(pcx); |
| |
| if matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_)) { |
| let emit_lint = |overlap: &IntRange, this_span: Span, overlapped_spans: &[Span]| { |
| let overlap_as_pat = rcx.hoist_pat_range(overlap, ty); |
| let overlaps: Vec<_> = overlapped_spans |
| .iter() |
| .copied() |
| .map(|span| Overlap { range: overlap_as_pat.clone(), span }) |
| .collect(); |
| rcx.tcx.emit_spanned_lint( |
| lint::builtin::OVERLAPPING_RANGE_ENDPOINTS, |
| rcx.match_lint_level, |
| this_span, |
| OverlappingRangeEndpoints { overlap: overlaps, range: this_span }, |
| ); |
| }; |
| |
| // If two ranges overlapped, the split set will contain their intersection as a singleton. |
| let split_int_ranges = set.present.iter().filter_map(|c| c.as_int_range()); |
| for overlap_range in split_int_ranges.clone() { |
| if overlap_range.is_singleton() { |
| let overlap: MaybeInfiniteInt = overlap_range.lo; |
| // Ranges that look like `lo..=overlap`. |
| let mut prefixes: SmallVec<[_; 1]> = Default::default(); |
| // Ranges that look like `overlap..=hi`. |
| let mut suffixes: SmallVec<[_; 1]> = Default::default(); |
| // Iterate on patterns that contained `overlap`. |
| for pat in column.iter() { |
| let this_span = *pat.data(); |
| let Constructor::IntRange(this_range) = pat.ctor() else { continue }; |
| if this_range.is_singleton() { |
| // Don't lint when one of the ranges is a singleton. |
| continue; |
| } |
| if this_range.lo == overlap { |
| // `this_range` looks like `overlap..=this_range.hi`; it overlaps with any |
| // ranges that look like `lo..=overlap`. |
| if !prefixes.is_empty() { |
| emit_lint(overlap_range, this_span, &prefixes); |
| } |
| suffixes.push(this_span) |
| } else if this_range.hi == overlap.plus_one() { |
| // `this_range` looks like `this_range.lo..=overlap`; it overlaps with any |
| // ranges that look like `overlap..=hi`. |
| if !suffixes.is_empty() { |
| emit_lint(overlap_range, this_span, &suffixes); |
| } |
| prefixes.push(this_span) |
| } |
| } |
| } |
| } |
| } else { |
| // Recurse into the fields. |
| for ctor in set.present { |
| for col in column.specialize(pcx, &ctor) { |
| lint_overlapping_range_endpoints(cx, &col); |
| } |
| } |
| } |
| } |