blob: 072ef4836a84e9f988ba74079477dab9b1045abd [file] [log] [blame]
use smallvec::SmallVec;
use rustc_data_structures::captures::Captures;
use rustc_middle::ty::{self, Ty};
use rustc_session::lint;
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
use rustc_span::Span;
use crate::constructor::{IntRange, MaybeInfiniteInt};
use crate::errors::{
NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap,
OverlappingRangeEndpoints, Uncovered,
};
use crate::rustc::{
Constructor, DeconstructedPat, MatchArm, MatchCtxt, PlaceCtxt, RustcMatchCheckCtxt,
SplitConstructorSet, WitnessPat,
};
use crate::TypeCx;
/// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that
/// inspect the same subvalue/place".
/// This is used to traverse patterns column-by-column for lints. Despite similarities with the
/// algorithm in [`crate::usefulness`], this does a different traversal. Notably this is linear in
/// the depth of patterns, whereas `compute_exhaustiveness_and_usefulness` is worst-case exponential
/// (exhaustiveness is NP-complete). The core difference is that we treat sub-columns separately.
///
/// This must not contain an or-pattern. `specialize` takes care to expand them.
///
/// This is not used in the main algorithm; only in lints.
#[derive(Debug)]
pub(crate) struct PatternColumn<'a, 'p, 'tcx> {
patterns: Vec<&'a DeconstructedPat<'p, 'tcx>>,
}
impl<'a, 'p, 'tcx> PatternColumn<'a, 'p, 'tcx> {
pub(crate) fn new(arms: &[MatchArm<'p, 'tcx>]) -> Self {
let mut patterns = Vec::with_capacity(arms.len());
for arm in arms {
if arm.pat.is_or_pat() {
patterns.extend(arm.pat.flatten_or_pat())
} else {
patterns.push(arm.pat)
}
}
Self { patterns }
}
fn is_empty(&self) -> bool {
self.patterns.is_empty()
}
fn head_ty(&self) -> Option<Ty<'tcx>> {
if self.patterns.len() == 0 {
return None;
}
// If the type is opaque and it is revealed anywhere in the column, we take the revealed
// version. Otherwise we could encounter constructors for the revealed type and crash.
let first_ty = self.patterns[0].ty();
if RustcMatchCheckCtxt::is_opaque_ty(first_ty) {
for pat in &self.patterns {
let ty = pat.ty();
if !RustcMatchCheckCtxt::is_opaque_ty(ty) {
return Some(ty);
}
}
}
Some(first_ty)
}
/// Do constructor splitting on the constructors of the column.
fn analyze_ctors(&self, pcx: &PlaceCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'p, 'tcx> {
let column_ctors = self.patterns.iter().map(|p| p.ctor());
pcx.ctors_for_ty().split(pcx, column_ctors)
}
fn iter<'b>(&'b self) -> impl Iterator<Item = &'a DeconstructedPat<'p, 'tcx>> + Captures<'b> {
self.patterns.iter().copied()
}
/// Does specialization: given a constructor, this takes the patterns from the column that match
/// the constructor, and outputs their fields.
/// This returns one column per field of the constructor. They usually all have the same length
/// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
/// which may change the lengths.
fn specialize(
&self,
pcx: &PlaceCtxt<'a, 'p, 'tcx>,
ctor: &Constructor<'p, 'tcx>,
) -> Vec<PatternColumn<'a, 'p, 'tcx>> {
let arity = ctor.arity(pcx);
if arity == 0 {
return Vec::new();
}
// We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
// columns may have different lengths in the presence of or-patterns (this is why we can't
// reuse `Matrix`).
let mut specialized_columns: Vec<_> =
(0..arity).map(|_| Self { patterns: Vec::new() }).collect();
let relevant_patterns =
self.patterns.iter().filter(|pat| ctor.is_covered_by(pcx, pat.ctor()));
for pat in relevant_patterns {
let specialized = pat.specialize(pcx, ctor);
for (subpat, column) in specialized.iter().zip(&mut specialized_columns) {
if subpat.is_or_pat() {
column.patterns.extend(subpat.flatten_or_pat())
} else {
column.patterns.push(subpat)
}
}
}
assert!(
!specialized_columns[0].is_empty(),
"ctor {ctor:?} was listed as present but isn't;
there is an inconsistency between `Constructor::is_covered_by` and `ConstructorSet::split`"
);
specialized_columns
}
}
/// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned
/// in a given column.
#[instrument(level = "debug", skip(cx), ret)]
fn collect_nonexhaustive_missing_variants<'a, 'p, 'tcx>(
cx: MatchCtxt<'a, 'p, 'tcx>,
column: &PatternColumn<'a, 'p, 'tcx>,
) -> Vec<WitnessPat<'p, 'tcx>> {
let Some(ty) = column.head_ty() else {
return Vec::new();
};
let pcx = &PlaceCtxt::new_dummy(cx, ty);
let set = column.analyze_ctors(pcx);
if set.present.is_empty() {
// We can't consistently handle the case where no constructors are present (since this would
// require digging deep through any type in case there's a non_exhaustive enum somewhere),
// so for consistency we refuse to handle the top-level case, where we could handle it.
return vec![];
}
let mut witnesses = Vec::new();
if cx.tycx.is_foreign_non_exhaustive_enum(ty) {
witnesses.extend(
set.missing
.into_iter()
// This will list missing visible variants.
.filter(|c| !matches!(c, Constructor::Hidden | Constructor::NonExhaustive))
.map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor)),
)
}
// Recurse into the fields.
for ctor in set.present {
let specialized_columns = column.specialize(pcx, &ctor);
let wild_pat = WitnessPat::wild_from_ctor(pcx, ctor);
for (i, col_i) in specialized_columns.iter().enumerate() {
// Compute witnesses for each column.
let wits_for_col_i = collect_nonexhaustive_missing_variants(cx, col_i);
// For each witness, we build a new pattern in the shape of `ctor(_, _, wit, _, _)`,
// adding enough wildcards to match `arity`.
for wit in wits_for_col_i {
let mut pat = wild_pat.clone();
pat.fields[i] = wit;
witnesses.push(pat);
}
}
}
witnesses
}
pub(crate) fn lint_nonexhaustive_missing_variants<'a, 'p, 'tcx>(
cx: MatchCtxt<'a, 'p, 'tcx>,
arms: &[MatchArm<'p, 'tcx>],
pat_column: &PatternColumn<'a, 'p, 'tcx>,
scrut_ty: Ty<'tcx>,
) {
let rcx: &RustcMatchCheckCtxt<'_, '_> = cx.tycx;
if !matches!(
rcx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, rcx.match_lint_level).0,
rustc_session::lint::Level::Allow
) {
let witnesses = collect_nonexhaustive_missing_variants(cx, pat_column);
if !witnesses.is_empty() {
// Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns`
// is not exhaustive enough.
//
// NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`.
rcx.tcx.emit_spanned_lint(
NON_EXHAUSTIVE_OMITTED_PATTERNS,
rcx.match_lint_level,
rcx.scrut_span,
NonExhaustiveOmittedPattern {
scrut_ty,
uncovered: Uncovered::new(rcx.scrut_span, rcx, witnesses),
},
);
}
} else {
// We used to allow putting the `#[allow(non_exhaustive_omitted_patterns)]` on a match
// arm. This no longer makes sense so we warn users, to avoid silently breaking their
// usage of the lint.
for arm in arms {
let (lint_level, lint_level_source) =
rcx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, arm.arm_data);
if !matches!(lint_level, rustc_session::lint::Level::Allow) {
let decorator = NonExhaustiveOmittedPatternLintOnArm {
lint_span: lint_level_source.span(),
suggest_lint_on_match: rcx.whole_match_span.map(|span| span.shrink_to_lo()),
lint_level: lint_level.as_str(),
lint_name: "non_exhaustive_omitted_patterns",
};
use rustc_errors::DecorateLint;
let mut err = rcx.tcx.sess.struct_span_warn(*arm.pat.data(), "");
err.set_primary_message(decorator.msg());
decorator.decorate_lint(&mut err);
err.emit();
}
}
}
}
/// Traverse the patterns to warn the user about ranges that overlap on their endpoints.
#[instrument(level = "debug", skip(cx))]
pub(crate) fn lint_overlapping_range_endpoints<'a, 'p, 'tcx>(
cx: MatchCtxt<'a, 'p, 'tcx>,
column: &PatternColumn<'a, 'p, 'tcx>,
) {
let Some(ty) = column.head_ty() else {
return;
};
let pcx = &PlaceCtxt::new_dummy(cx, ty);
let rcx: &RustcMatchCheckCtxt<'_, '_> = cx.tycx;
let set = column.analyze_ctors(pcx);
if matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_)) {
let emit_lint = |overlap: &IntRange, this_span: Span, overlapped_spans: &[Span]| {
let overlap_as_pat = rcx.hoist_pat_range(overlap, ty);
let overlaps: Vec<_> = overlapped_spans
.iter()
.copied()
.map(|span| Overlap { range: overlap_as_pat.clone(), span })
.collect();
rcx.tcx.emit_spanned_lint(
lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
rcx.match_lint_level,
this_span,
OverlappingRangeEndpoints { overlap: overlaps, range: this_span },
);
};
// If two ranges overlapped, the split set will contain their intersection as a singleton.
let split_int_ranges = set.present.iter().filter_map(|c| c.as_int_range());
for overlap_range in split_int_ranges.clone() {
if overlap_range.is_singleton() {
let overlap: MaybeInfiniteInt = overlap_range.lo;
// Ranges that look like `lo..=overlap`.
let mut prefixes: SmallVec<[_; 1]> = Default::default();
// Ranges that look like `overlap..=hi`.
let mut suffixes: SmallVec<[_; 1]> = Default::default();
// Iterate on patterns that contained `overlap`.
for pat in column.iter() {
let this_span = *pat.data();
let Constructor::IntRange(this_range) = pat.ctor() else { continue };
if this_range.is_singleton() {
// Don't lint when one of the ranges is a singleton.
continue;
}
if this_range.lo == overlap {
// `this_range` looks like `overlap..=this_range.hi`; it overlaps with any
// ranges that look like `lo..=overlap`.
if !prefixes.is_empty() {
emit_lint(overlap_range, this_span, &prefixes);
}
suffixes.push(this_span)
} else if this_range.hi == overlap.plus_one() {
// `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
// ranges that look like `overlap..=hi`.
if !suffixes.is_empty() {
emit_lint(overlap_range, this_span, &suffixes);
}
prefixes.push(this_span)
}
}
}
}
} else {
// Recurse into the fields.
for ctor in set.present {
for col in column.specialize(pcx, &ctor) {
lint_overlapping_range_endpoints(cx, &col);
}
}
}
}