| use core::f32; |
| use core::f32::consts; |
| |
| use super::{assert_approx_eq, assert_biteq}; |
| |
| /// Smallest number |
| const TINY_BITS: u32 = 0x1; |
| |
| /// Next smallest number |
| const TINY_UP_BITS: u32 = 0x2; |
| |
| /// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 |
| const MAX_DOWN_BITS: u32 = 0x7f7f_fffe; |
| |
| /// Zeroed exponent, full significant |
| const LARGEST_SUBNORMAL_BITS: u32 = 0x007f_ffff; |
| |
| /// Exponent = 0b1, zeroed significand |
| const SMALLEST_NORMAL_BITS: u32 = 0x0080_0000; |
| |
| /// First pattern over the mantissa |
| const NAN_MASK1: u32 = 0x002a_aaaa; |
| |
| /// Second pattern over the mantissa |
| const NAN_MASK2: u32 = 0x0055_5555; |
| |
| /// Miri adds some extra errors to float functions; make sure the tests still pass. |
| /// These values are purely used as a canary to test against and are thus not a stable guarantee Rust provides. |
| /// They serve as a way to get an idea of the real precision of floating point operations on different platforms. |
| const APPROX_DELTA: f32 = if cfg!(miri) { 1e-4 } else { 1e-6 }; |
| |
| #[test] |
| fn test_abs() { |
| assert_biteq!(f32::INFINITY.abs(), f32::INFINITY); |
| assert_biteq!(1f32.abs(), 1f32); |
| assert_biteq!(0f32.abs(), 0f32); |
| assert_biteq!((-0f32).abs(), 0f32); |
| assert_biteq!((-1f32).abs(), 1f32); |
| assert_biteq!(f32::NEG_INFINITY.abs(), f32::INFINITY); |
| assert_biteq!((1f32 / f32::NEG_INFINITY).abs(), 0f32); |
| assert!(f32::NAN.abs().is_nan()); |
| } |
| |
| #[test] |
| fn test_signum() { |
| assert_biteq!(f32::INFINITY.signum(), 1f32); |
| assert_biteq!(1f32.signum(), 1f32); |
| assert_biteq!(0f32.signum(), 1f32); |
| assert_biteq!((-0f32).signum(), -1f32); |
| assert_biteq!((-1f32).signum(), -1f32); |
| assert_biteq!(f32::NEG_INFINITY.signum(), -1f32); |
| assert_biteq!((1f32 / f32::NEG_INFINITY).signum(), -1f32); |
| assert!(f32::NAN.signum().is_nan()); |
| } |
| |
| #[test] |
| fn test_is_sign_positive() { |
| assert!(f32::INFINITY.is_sign_positive()); |
| assert!(1f32.is_sign_positive()); |
| assert!(0f32.is_sign_positive()); |
| assert!(!(-0f32).is_sign_positive()); |
| assert!(!(-1f32).is_sign_positive()); |
| assert!(!f32::NEG_INFINITY.is_sign_positive()); |
| assert!(!(1f32 / f32::NEG_INFINITY).is_sign_positive()); |
| assert!(f32::NAN.is_sign_positive()); |
| assert!(!(-f32::NAN).is_sign_positive()); |
| } |
| |
| #[test] |
| fn test_is_sign_negative() { |
| assert!(!f32::INFINITY.is_sign_negative()); |
| assert!(!1f32.is_sign_negative()); |
| assert!(!0f32.is_sign_negative()); |
| assert!((-0f32).is_sign_negative()); |
| assert!((-1f32).is_sign_negative()); |
| assert!(f32::NEG_INFINITY.is_sign_negative()); |
| assert!((1f32 / f32::NEG_INFINITY).is_sign_negative()); |
| assert!(!f32::NAN.is_sign_negative()); |
| assert!((-f32::NAN).is_sign_negative()); |
| } |
| |
| #[test] |
| fn test_next_up() { |
| let tiny = f32::from_bits(TINY_BITS); |
| let tiny_up = f32::from_bits(TINY_UP_BITS); |
| let max_down = f32::from_bits(MAX_DOWN_BITS); |
| let largest_subnormal = f32::from_bits(LARGEST_SUBNORMAL_BITS); |
| let smallest_normal = f32::from_bits(SMALLEST_NORMAL_BITS); |
| assert_biteq!(f32::NEG_INFINITY.next_up(), f32::MIN); |
| assert_biteq!(f32::MIN.next_up(), -max_down); |
| assert_biteq!((-1.0f32 - f32::EPSILON).next_up(), -1.0f32); |
| assert_biteq!((-smallest_normal).next_up(), -largest_subnormal); |
| assert_biteq!((-tiny_up).next_up(), -tiny); |
| assert_biteq!((-tiny).next_up(), -0.0f32); |
| assert_biteq!((-0.0f32).next_up(), tiny); |
| assert_biteq!(0.0f32.next_up(), tiny); |
| assert_biteq!(tiny.next_up(), tiny_up); |
| assert_biteq!(largest_subnormal.next_up(), smallest_normal); |
| assert_biteq!(1.0f32.next_up(), 1.0 + f32::EPSILON); |
| assert_biteq!(f32::MAX.next_up(), f32::INFINITY); |
| assert_biteq!(f32::INFINITY.next_up(), f32::INFINITY); |
| |
| // Check that NaNs roundtrip. |
| let nan0 = f32::NAN; |
| let nan1 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK1); |
| let nan2 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK2); |
| assert_biteq!(nan0.next_up(), nan0); |
| assert_biteq!(nan1.next_up(), nan1); |
| assert_biteq!(nan2.next_up(), nan2); |
| } |
| |
| #[test] |
| fn test_next_down() { |
| let tiny = f32::from_bits(TINY_BITS); |
| let tiny_up = f32::from_bits(TINY_UP_BITS); |
| let max_down = f32::from_bits(MAX_DOWN_BITS); |
| let largest_subnormal = f32::from_bits(LARGEST_SUBNORMAL_BITS); |
| let smallest_normal = f32::from_bits(SMALLEST_NORMAL_BITS); |
| assert_biteq!(f32::NEG_INFINITY.next_down(), f32::NEG_INFINITY); |
| assert_biteq!(f32::MIN.next_down(), f32::NEG_INFINITY); |
| assert_biteq!((-max_down).next_down(), f32::MIN); |
| assert_biteq!((-1.0f32).next_down(), -1.0 - f32::EPSILON); |
| assert_biteq!((-largest_subnormal).next_down(), -smallest_normal); |
| assert_biteq!((-tiny).next_down(), -tiny_up); |
| assert_biteq!((-0.0f32).next_down(), -tiny); |
| assert_biteq!((0.0f32).next_down(), -tiny); |
| assert_biteq!(tiny.next_down(), 0.0f32); |
| assert_biteq!(tiny_up.next_down(), tiny); |
| assert_biteq!(smallest_normal.next_down(), largest_subnormal); |
| assert_biteq!((1.0 + f32::EPSILON).next_down(), 1.0f32); |
| assert_biteq!(f32::MAX.next_down(), max_down); |
| assert_biteq!(f32::INFINITY.next_down(), f32::MAX); |
| |
| // Check that NaNs roundtrip. |
| let nan0 = f32::NAN; |
| let nan1 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK1); |
| let nan2 = f32::from_bits(f32::NAN.to_bits() ^ NAN_MASK2); |
| assert_biteq!(nan0.next_down(), nan0); |
| assert_biteq!(nan1.next_down(), nan1); |
| assert_biteq!(nan2.next_down(), nan2); |
| } |
| |
| // FIXME(#140515): mingw has an incorrect fma https://sourceforge.net/p/mingw-w64/bugs/848/ |
| #[cfg_attr(all(target_os = "windows", target_env = "gnu", not(target_abi = "llvm")), ignore)] |
| #[test] |
| fn test_mul_add() { |
| let nan: f32 = f32::NAN; |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| assert_biteq!(f32::math::mul_add(12.3f32, 4.5, 6.7), 62.05); |
| assert_biteq!(f32::math::mul_add(-12.3f32, -4.5, -6.7), 48.65); |
| assert_biteq!(f32::math::mul_add(0.0f32, 8.9, 1.2), 1.2); |
| assert_biteq!(f32::math::mul_add(3.4f32, -0.0, 5.6), 5.6); |
| assert!(f32::math::mul_add(nan, 7.8, 9.0).is_nan()); |
| assert_biteq!(f32::math::mul_add(inf, 7.8, 9.0), inf); |
| assert_biteq!(f32::math::mul_add(neg_inf, 7.8, 9.0), neg_inf); |
| assert_biteq!(f32::math::mul_add(8.9f32, inf, 3.2), inf); |
| assert_biteq!(f32::math::mul_add(-3.2f32, 2.4, neg_inf), neg_inf); |
| } |
| |
| #[test] |
| fn test_recip() { |
| let nan: f32 = f32::NAN; |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| assert_biteq!(1.0f32.recip(), 1.0); |
| assert_biteq!(2.0f32.recip(), 0.5); |
| assert_biteq!((-0.4f32).recip(), -2.5); |
| assert_biteq!(0.0f32.recip(), inf); |
| assert!(nan.recip().is_nan()); |
| assert_biteq!(inf.recip(), 0.0); |
| assert_biteq!(neg_inf.recip(), -0.0); |
| } |
| |
| #[test] |
| fn test_powi() { |
| let nan: f32 = f32::NAN; |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| assert_approx_eq!(1.0f32.powi(1), 1.0); |
| assert_approx_eq!((-3.1f32).powi(2), 9.61, APPROX_DELTA); |
| assert_approx_eq!(5.9f32.powi(-2), 0.028727); |
| assert_biteq!(8.3f32.powi(0), 1.0); |
| assert!(nan.powi(2).is_nan()); |
| assert_biteq!(inf.powi(3), inf); |
| assert_biteq!(neg_inf.powi(2), inf); |
| } |
| |
| #[test] |
| fn test_sqrt_domain() { |
| assert!(f32::NAN.sqrt().is_nan()); |
| assert!(f32::NEG_INFINITY.sqrt().is_nan()); |
| assert!((-1.0f32).sqrt().is_nan()); |
| assert_biteq!((-0.0f32).sqrt(), -0.0); |
| assert_biteq!(0.0f32.sqrt(), 0.0); |
| assert_biteq!(1.0f32.sqrt(), 1.0); |
| assert_biteq!(f32::INFINITY.sqrt(), f32::INFINITY); |
| } |
| |
| #[test] |
| fn test_to_degrees() { |
| let pi: f32 = consts::PI; |
| let nan: f32 = f32::NAN; |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| assert_biteq!(0.0f32.to_degrees(), 0.0); |
| assert_approx_eq!((-5.8f32).to_degrees(), -332.315521); |
| assert_biteq!(pi.to_degrees(), 180.0); |
| assert!(nan.to_degrees().is_nan()); |
| assert_biteq!(inf.to_degrees(), inf); |
| assert_biteq!(neg_inf.to_degrees(), neg_inf); |
| assert_biteq!(1_f32.to_degrees(), 57.2957795130823208767981548141051703); |
| } |
| |
| #[test] |
| fn test_to_radians() { |
| let pi: f32 = consts::PI; |
| let nan: f32 = f32::NAN; |
| let inf: f32 = f32::INFINITY; |
| let neg_inf: f32 = f32::NEG_INFINITY; |
| assert_biteq!(0.0f32.to_radians(), 0.0); |
| assert_approx_eq!(154.6f32.to_radians(), 2.698279); |
| assert_approx_eq!((-332.31f32).to_radians(), -5.799903); |
| assert_biteq!(180.0f32.to_radians(), pi); |
| assert!(nan.to_radians().is_nan()); |
| assert_biteq!(inf.to_radians(), inf); |
| assert_biteq!(neg_inf.to_radians(), neg_inf); |
| } |
| |
| #[test] |
| fn test_float_bits_conv() { |
| assert_eq!((1f32).to_bits(), 0x3f800000); |
| assert_eq!((12.5f32).to_bits(), 0x41480000); |
| assert_eq!((1337f32).to_bits(), 0x44a72000); |
| assert_eq!((-14.25f32).to_bits(), 0xc1640000); |
| assert_biteq!(f32::from_bits(0x3f800000), 1.0); |
| assert_biteq!(f32::from_bits(0x41480000), 12.5); |
| assert_biteq!(f32::from_bits(0x44a72000), 1337.0); |
| assert_biteq!(f32::from_bits(0xc1640000), -14.25); |
| |
| // Check that NaNs roundtrip their bits regardless of signaling-ness |
| // 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits |
| let masked_nan1 = f32::NAN.to_bits() ^ NAN_MASK1; |
| let masked_nan2 = f32::NAN.to_bits() ^ NAN_MASK2; |
| assert!(f32::from_bits(masked_nan1).is_nan()); |
| assert!(f32::from_bits(masked_nan2).is_nan()); |
| |
| assert_eq!(f32::from_bits(masked_nan1).to_bits(), masked_nan1); |
| assert_eq!(f32::from_bits(masked_nan2).to_bits(), masked_nan2); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_clamp_min_greater_than_max() { |
| let _ = 1.0f32.clamp(3.0, 1.0); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_clamp_min_is_nan() { |
| let _ = 1.0f32.clamp(f32::NAN, 1.0); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_clamp_max_is_nan() { |
| let _ = 1.0f32.clamp(3.0, f32::NAN); |
| } |
| |
| #[test] |
| fn test_total_cmp() { |
| use core::cmp::Ordering; |
| |
| fn quiet_bit_mask() -> u32 { |
| 1 << (f32::MANTISSA_DIGITS - 2) |
| } |
| |
| fn min_subnorm() -> f32 { |
| f32::MIN_POSITIVE / f32::powf(2.0, f32::MANTISSA_DIGITS as f32 - 1.0) |
| } |
| |
| fn max_subnorm() -> f32 { |
| f32::MIN_POSITIVE - min_subnorm() |
| } |
| |
| fn q_nan() -> f32 { |
| f32::from_bits(f32::NAN.to_bits() | quiet_bit_mask()) |
| } |
| |
| fn s_nan() -> f32 { |
| f32::from_bits((f32::NAN.to_bits() & !quiet_bit_mask()) + 42) |
| } |
| |
| assert_eq!(Ordering::Equal, (-q_nan()).total_cmp(&-q_nan())); |
| assert_eq!(Ordering::Equal, (-s_nan()).total_cmp(&-s_nan())); |
| assert_eq!(Ordering::Equal, (-f32::INFINITY).total_cmp(&-f32::INFINITY)); |
| assert_eq!(Ordering::Equal, (-f32::MAX).total_cmp(&-f32::MAX)); |
| assert_eq!(Ordering::Equal, (-2.5_f32).total_cmp(&-2.5)); |
| assert_eq!(Ordering::Equal, (-1.0_f32).total_cmp(&-1.0)); |
| assert_eq!(Ordering::Equal, (-1.5_f32).total_cmp(&-1.5)); |
| assert_eq!(Ordering::Equal, (-0.5_f32).total_cmp(&-0.5)); |
| assert_eq!(Ordering::Equal, (-f32::MIN_POSITIVE).total_cmp(&-f32::MIN_POSITIVE)); |
| assert_eq!(Ordering::Equal, (-max_subnorm()).total_cmp(&-max_subnorm())); |
| assert_eq!(Ordering::Equal, (-min_subnorm()).total_cmp(&-min_subnorm())); |
| assert_eq!(Ordering::Equal, (-0.0_f32).total_cmp(&-0.0)); |
| assert_eq!(Ordering::Equal, 0.0_f32.total_cmp(&0.0)); |
| assert_eq!(Ordering::Equal, min_subnorm().total_cmp(&min_subnorm())); |
| assert_eq!(Ordering::Equal, max_subnorm().total_cmp(&max_subnorm())); |
| assert_eq!(Ordering::Equal, f32::MIN_POSITIVE.total_cmp(&f32::MIN_POSITIVE)); |
| assert_eq!(Ordering::Equal, 0.5_f32.total_cmp(&0.5)); |
| assert_eq!(Ordering::Equal, 1.0_f32.total_cmp(&1.0)); |
| assert_eq!(Ordering::Equal, 1.5_f32.total_cmp(&1.5)); |
| assert_eq!(Ordering::Equal, 2.5_f32.total_cmp(&2.5)); |
| assert_eq!(Ordering::Equal, f32::MAX.total_cmp(&f32::MAX)); |
| assert_eq!(Ordering::Equal, f32::INFINITY.total_cmp(&f32::INFINITY)); |
| assert_eq!(Ordering::Equal, s_nan().total_cmp(&s_nan())); |
| assert_eq!(Ordering::Equal, q_nan().total_cmp(&q_nan())); |
| |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::INFINITY)); |
| assert_eq!(Ordering::Less, (-f32::INFINITY).total_cmp(&-f32::MAX)); |
| assert_eq!(Ordering::Less, (-f32::MAX).total_cmp(&-2.5)); |
| assert_eq!(Ordering::Less, (-2.5_f32).total_cmp(&-1.5)); |
| assert_eq!(Ordering::Less, (-1.5_f32).total_cmp(&-1.0)); |
| assert_eq!(Ordering::Less, (-1.0_f32).total_cmp(&-0.5)); |
| assert_eq!(Ordering::Less, (-0.5_f32).total_cmp(&-f32::MIN_POSITIVE)); |
| assert_eq!(Ordering::Less, (-f32::MIN_POSITIVE).total_cmp(&-max_subnorm())); |
| assert_eq!(Ordering::Less, (-max_subnorm()).total_cmp(&-min_subnorm())); |
| assert_eq!(Ordering::Less, (-min_subnorm()).total_cmp(&-0.0)); |
| assert_eq!(Ordering::Less, (-0.0_f32).total_cmp(&0.0)); |
| assert_eq!(Ordering::Less, 0.0_f32.total_cmp(&min_subnorm())); |
| assert_eq!(Ordering::Less, min_subnorm().total_cmp(&max_subnorm())); |
| assert_eq!(Ordering::Less, max_subnorm().total_cmp(&f32::MIN_POSITIVE)); |
| assert_eq!(Ordering::Less, f32::MIN_POSITIVE.total_cmp(&0.5)); |
| assert_eq!(Ordering::Less, 0.5_f32.total_cmp(&1.0)); |
| assert_eq!(Ordering::Less, 1.0_f32.total_cmp(&1.5)); |
| assert_eq!(Ordering::Less, 1.5_f32.total_cmp(&2.5)); |
| assert_eq!(Ordering::Less, 2.5_f32.total_cmp(&f32::MAX)); |
| assert_eq!(Ordering::Less, f32::MAX.total_cmp(&f32::INFINITY)); |
| assert_eq!(Ordering::Less, f32::INFINITY.total_cmp(&s_nan())); |
| assert_eq!(Ordering::Less, s_nan().total_cmp(&q_nan())); |
| |
| assert_eq!(Ordering::Greater, (-s_nan()).total_cmp(&-q_nan())); |
| assert_eq!(Ordering::Greater, (-f32::INFINITY).total_cmp(&-s_nan())); |
| assert_eq!(Ordering::Greater, (-f32::MAX).total_cmp(&-f32::INFINITY)); |
| assert_eq!(Ordering::Greater, (-2.5_f32).total_cmp(&-f32::MAX)); |
| assert_eq!(Ordering::Greater, (-1.5_f32).total_cmp(&-2.5)); |
| assert_eq!(Ordering::Greater, (-1.0_f32).total_cmp(&-1.5)); |
| assert_eq!(Ordering::Greater, (-0.5_f32).total_cmp(&-1.0)); |
| assert_eq!(Ordering::Greater, (-f32::MIN_POSITIVE).total_cmp(&-0.5)); |
| assert_eq!(Ordering::Greater, (-max_subnorm()).total_cmp(&-f32::MIN_POSITIVE)); |
| assert_eq!(Ordering::Greater, (-min_subnorm()).total_cmp(&-max_subnorm())); |
| assert_eq!(Ordering::Greater, (-0.0_f32).total_cmp(&-min_subnorm())); |
| assert_eq!(Ordering::Greater, 0.0_f32.total_cmp(&-0.0)); |
| assert_eq!(Ordering::Greater, min_subnorm().total_cmp(&0.0)); |
| assert_eq!(Ordering::Greater, max_subnorm().total_cmp(&min_subnorm())); |
| assert_eq!(Ordering::Greater, f32::MIN_POSITIVE.total_cmp(&max_subnorm())); |
| assert_eq!(Ordering::Greater, 0.5_f32.total_cmp(&f32::MIN_POSITIVE)); |
| assert_eq!(Ordering::Greater, 1.0_f32.total_cmp(&0.5)); |
| assert_eq!(Ordering::Greater, 1.5_f32.total_cmp(&1.0)); |
| assert_eq!(Ordering::Greater, 2.5_f32.total_cmp(&1.5)); |
| assert_eq!(Ordering::Greater, f32::MAX.total_cmp(&2.5)); |
| assert_eq!(Ordering::Greater, f32::INFINITY.total_cmp(&f32::MAX)); |
| assert_eq!(Ordering::Greater, s_nan().total_cmp(&f32::INFINITY)); |
| assert_eq!(Ordering::Greater, q_nan().total_cmp(&s_nan())); |
| |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-s_nan())); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::INFINITY)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::MAX)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-2.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-1.0)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-f32::MIN_POSITIVE)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-max_subnorm())); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-min_subnorm())); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&-0.0)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.0)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&min_subnorm())); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&max_subnorm())); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::MIN_POSITIVE)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&0.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.0)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&1.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&2.5)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::MAX)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&f32::INFINITY)); |
| assert_eq!(Ordering::Less, (-q_nan()).total_cmp(&s_nan())); |
| |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::INFINITY)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::MAX)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-2.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-1.0)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-f32::MIN_POSITIVE)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-max_subnorm())); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-min_subnorm())); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&-0.0)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.0)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&min_subnorm())); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&max_subnorm())); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::MIN_POSITIVE)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&0.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.0)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&1.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&2.5)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::MAX)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&f32::INFINITY)); |
| assert_eq!(Ordering::Less, (-s_nan()).total_cmp(&s_nan())); |
| } |
| |
| #[test] |
| fn test_algebraic() { |
| let a: f32 = 123.0; |
| let b: f32 = 456.0; |
| |
| // Check that individual operations match their primitive counterparts. |
| // |
| // This is a check of current implementations and does NOT imply any form of |
| // guarantee about future behavior. The compiler reserves the right to make |
| // these operations inexact matches in the future. |
| let eps_add = if cfg!(miri) { 1e-3 } else { 0.0 }; |
| let eps_mul = if cfg!(miri) { 1e-1 } else { 0.0 }; |
| let eps_div = if cfg!(miri) { 1e-4 } else { 0.0 }; |
| |
| assert_approx_eq!(a.algebraic_add(b), a + b, eps_add); |
| assert_approx_eq!(a.algebraic_sub(b), a - b, eps_add); |
| assert_approx_eq!(a.algebraic_mul(b), a * b, eps_mul); |
| assert_approx_eq!(a.algebraic_div(b), a / b, eps_div); |
| assert_approx_eq!(a.algebraic_rem(b), a % b, eps_div); |
| } |