|  | //! Lints in the Rust compiler. | 
|  | //! | 
|  | //! This contains lints which can feasibly be implemented as their own | 
|  | //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the | 
|  | //! definitions of lints that are emitted directly inside the main compiler. | 
|  | //! | 
|  | //! To add a new lint to rustc, declare it here using [`declare_lint!`]. | 
|  | //! Then add code to emit the new lint in the appropriate circumstances. | 
|  | //! | 
|  | //! If you define a new [`EarlyLintPass`], you will also need to add it to the | 
|  | //! [`crate::early_lint_methods!`] invocation in `lib.rs`. | 
|  | //! | 
|  | //! If you define a new [`LateLintPass`], you will also need to add it to the | 
|  | //! [`crate::late_lint_methods!`] invocation in `lib.rs`. | 
|  |  | 
|  | use std::fmt::Write; | 
|  |  | 
|  | use ast::token::TokenKind; | 
|  | use rustc_abi::BackendRepr; | 
|  | use rustc_ast::tokenstream::{TokenStream, TokenTree}; | 
|  | use rustc_ast::visit::{FnCtxt, FnKind}; | 
|  | use rustc_ast::{self as ast, *}; | 
|  | use rustc_ast_pretty::pprust::expr_to_string; | 
|  | use rustc_attr_data_structures::{AttributeKind, find_attr}; | 
|  | use rustc_errors::{Applicability, LintDiagnostic}; | 
|  | use rustc_feature::GateIssue; | 
|  | use rustc_hir as hir; | 
|  | use rustc_hir::def::{DefKind, Res}; | 
|  | use rustc_hir::def_id::{CRATE_DEF_ID, DefId, LocalDefId}; | 
|  | use rustc_hir::intravisit::FnKind as HirFnKind; | 
|  | use rustc_hir::{Body, FnDecl, PatKind, PredicateOrigin}; | 
|  | use rustc_middle::bug; | 
|  | use rustc_middle::lint::LevelAndSource; | 
|  | use rustc_middle::ty::layout::LayoutOf; | 
|  | use rustc_middle::ty::print::with_no_trimmed_paths; | 
|  | use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt, Upcast, VariantDef}; | 
|  | use rustc_session::lint::FutureIncompatibilityReason; | 
|  | // hardwired lints from rustc_lint_defs | 
|  | pub use rustc_session::lint::builtin::*; | 
|  | use rustc_session::{declare_lint, declare_lint_pass, impl_lint_pass}; | 
|  | use rustc_span::edition::Edition; | 
|  | use rustc_span::source_map::Spanned; | 
|  | use rustc_span::{BytePos, DUMMY_SP, Ident, InnerSpan, Span, Symbol, kw, sym}; | 
|  | use rustc_target::asm::InlineAsmArch; | 
|  | use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt}; | 
|  | use rustc_trait_selection::traits::misc::type_allowed_to_implement_copy; | 
|  | use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _; | 
|  | use rustc_trait_selection::traits::{self}; | 
|  |  | 
|  | use crate::errors::BuiltinEllipsisInclusiveRangePatterns; | 
|  | use crate::lints::{ | 
|  | BuiltinAnonymousParams, BuiltinConstNoMangle, BuiltinDerefNullptr, BuiltinDoubleNegations, | 
|  | BuiltinDoubleNegationsAddParens, BuiltinEllipsisInclusiveRangePatternsLint, | 
|  | BuiltinExplicitOutlives, BuiltinExplicitOutlivesSuggestion, BuiltinFeatureIssueNote, | 
|  | BuiltinIncompleteFeatures, BuiltinIncompleteFeaturesHelp, BuiltinInternalFeatures, | 
|  | BuiltinKeywordIdents, BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc, | 
|  | BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns, | 
|  | BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasBounds, | 
|  | BuiltinUngatedAsyncFnTrackCaller, BuiltinUnpermittedTypeInit, BuiltinUnpermittedTypeInitSub, | 
|  | BuiltinUnreachablePub, BuiltinUnsafe, BuiltinUnstableFeatures, BuiltinUnusedDocComment, | 
|  | BuiltinUnusedDocCommentSub, BuiltinWhileTrue, InvalidAsmLabel, | 
|  | }; | 
|  | use crate::nonstandard_style::{MethodLateContext, method_context}; | 
|  | use crate::{ | 
|  | EarlyContext, EarlyLintPass, LateContext, LateLintPass, Level, LintContext, | 
|  | fluent_generated as fluent, | 
|  | }; | 
|  | declare_lint! { | 
|  | /// The `while_true` lint detects `while true { }`. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,no_run | 
|  | /// while true { | 
|  | /// | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// `while true` should be replaced with `loop`. A `loop` expression is | 
|  | /// the preferred way to write an infinite loop because it more directly | 
|  | /// expresses the intent of the loop. | 
|  | WHILE_TRUE, | 
|  | Warn, | 
|  | "suggest using `loop { }` instead of `while true { }`" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(WhileTrue => [WHILE_TRUE]); | 
|  |  | 
|  | impl EarlyLintPass for WhileTrue { | 
|  | #[inline] | 
|  | fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) { | 
|  | if let ast::ExprKind::While(cond, _, label) = &e.kind | 
|  | && let ast::ExprKind::Lit(token_lit) = cond.peel_parens().kind | 
|  | && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit | 
|  | && !cond.span.from_expansion() | 
|  | { | 
|  | let condition_span = e.span.with_hi(cond.span.hi()); | 
|  | let replace = format!( | 
|  | "{}loop", | 
|  | label.map_or_else(String::new, |label| format!("{}: ", label.ident,)) | 
|  | ); | 
|  | cx.emit_span_lint( | 
|  | WHILE_TRUE, | 
|  | condition_span, | 
|  | BuiltinWhileTrue { suggestion: condition_span, replace }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }` | 
|  | /// instead of `Struct { x }` in a pattern. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust | 
|  | /// struct Point { | 
|  | ///     x: i32, | 
|  | ///     y: i32, | 
|  | /// } | 
|  | /// | 
|  | /// | 
|  | /// fn main() { | 
|  | ///     let p = Point { | 
|  | ///         x: 5, | 
|  | ///         y: 5, | 
|  | ///     }; | 
|  | /// | 
|  | ///     match p { | 
|  | ///         Point { x: x, y: y } => (), | 
|  | ///     } | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// The preferred style is to avoid the repetition of specifying both the | 
|  | /// field name and the binding name if both identifiers are the same. | 
|  | NON_SHORTHAND_FIELD_PATTERNS, | 
|  | Warn, | 
|  | "using `Struct { x: x }` instead of `Struct { x }` in a pattern" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]); | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns { | 
|  | fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) { | 
|  | if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind { | 
|  | let variant = cx | 
|  | .typeck_results() | 
|  | .pat_ty(pat) | 
|  | .ty_adt_def() | 
|  | .expect("struct pattern type is not an ADT") | 
|  | .variant_of_res(cx.qpath_res(qpath, pat.hir_id)); | 
|  | for fieldpat in field_pats { | 
|  | if fieldpat.is_shorthand { | 
|  | continue; | 
|  | } | 
|  | if fieldpat.span.from_expansion() { | 
|  | // Don't lint if this is a macro expansion: macro authors | 
|  | // shouldn't have to worry about this kind of style issue | 
|  | // (Issue #49588) | 
|  | continue; | 
|  | } | 
|  | if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind { | 
|  | if cx.tcx.find_field_index(ident, variant) | 
|  | == Some(cx.typeck_results().field_index(fieldpat.hir_id)) | 
|  | { | 
|  | cx.emit_span_lint( | 
|  | NON_SHORTHAND_FIELD_PATTERNS, | 
|  | fieldpat.span, | 
|  | BuiltinNonShorthandFieldPatterns { | 
|  | ident, | 
|  | suggestion: fieldpat.span, | 
|  | prefix: binding_annot.prefix_str(), | 
|  | }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `unsafe_code` lint catches usage of `unsafe` code and other | 
|  | /// potentially unsound constructs like `no_mangle`, `export_name`, | 
|  | /// and `link_section`. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,compile_fail | 
|  | /// #![deny(unsafe_code)] | 
|  | /// fn main() { | 
|  | ///     unsafe { | 
|  | /// | 
|  | ///     } | 
|  | /// } | 
|  | /// | 
|  | /// #[no_mangle] | 
|  | /// fn func_0() { } | 
|  | /// | 
|  | /// #[export_name = "exported_symbol_name"] | 
|  | /// pub fn name_in_rust() { } | 
|  | /// | 
|  | /// #[no_mangle] | 
|  | /// #[link_section = ".example_section"] | 
|  | /// pub static VAR1: u32 = 1; | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// This lint is intended to restrict the usage of `unsafe` blocks and other | 
|  | /// constructs (including, but not limited to `no_mangle`, `link_section` | 
|  | /// and `export_name` attributes) wrong usage of which causes undefined | 
|  | /// behavior. | 
|  | UNSAFE_CODE, | 
|  | Allow, | 
|  | "usage of `unsafe` code and other potentially unsound constructs", | 
|  | @eval_always = true | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]); | 
|  |  | 
|  | impl UnsafeCode { | 
|  | fn report_unsafe( | 
|  | &self, | 
|  | cx: &EarlyContext<'_>, | 
|  | span: Span, | 
|  | decorate: impl for<'a> LintDiagnostic<'a, ()>, | 
|  | ) { | 
|  | // This comes from a macro that has `#[allow_internal_unsafe]`. | 
|  | if span.allows_unsafe() { | 
|  | return; | 
|  | } | 
|  |  | 
|  | cx.emit_span_lint(UNSAFE_CODE, span, decorate); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl EarlyLintPass for UnsafeCode { | 
|  | fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) { | 
|  | if attr.has_name(sym::allow_internal_unsafe) { | 
|  | self.report_unsafe(cx, attr.span, BuiltinUnsafe::AllowInternalUnsafe); | 
|  | } | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) { | 
|  | if let ast::ExprKind::Block(ref blk, _) = e.kind { | 
|  | // Don't warn about generated blocks; that'll just pollute the output. | 
|  | if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) { | 
|  | self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) { | 
|  | match it.kind { | 
|  | ast::ItemKind::Trait(box ast::Trait { safety: ast::Safety::Unsafe(_), .. }) => { | 
|  | self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait); | 
|  | } | 
|  |  | 
|  | ast::ItemKind::Impl(box ast::Impl { safety: ast::Safety::Unsafe(_), .. }) => { | 
|  | self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl); | 
|  | } | 
|  |  | 
|  | ast::ItemKind::Fn(..) => { | 
|  | if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) { | 
|  | self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn); | 
|  | } | 
|  |  | 
|  | if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) { | 
|  | self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn); | 
|  | } | 
|  |  | 
|  | if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) { | 
|  | self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn); | 
|  | } | 
|  | } | 
|  |  | 
|  | ast::ItemKind::Static(..) => { | 
|  | if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) { | 
|  | self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic); | 
|  | } | 
|  |  | 
|  | if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) { | 
|  | self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic); | 
|  | } | 
|  |  | 
|  | if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) { | 
|  | self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic); | 
|  | } | 
|  | } | 
|  |  | 
|  | ast::ItemKind::GlobalAsm(..) => { | 
|  | self.report_unsafe(cx, it.span, BuiltinUnsafe::GlobalAsm); | 
|  | } | 
|  |  | 
|  | ast::ItemKind::ForeignMod(ForeignMod { safety, .. }) => { | 
|  | if let Safety::Unsafe(_) = safety { | 
|  | self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeExternBlock); | 
|  | } | 
|  | } | 
|  |  | 
|  | _ => {} | 
|  | } | 
|  | } | 
|  |  | 
|  | fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) { | 
|  | if let ast::AssocItemKind::Fn(..) = it.kind { | 
|  | if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) { | 
|  | self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod); | 
|  | } | 
|  | if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) { | 
|  | self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) { | 
|  | if let FnKind::Fn( | 
|  | ctxt, | 
|  | _, | 
|  | ast::Fn { | 
|  | sig: ast::FnSig { header: ast::FnHeader { safety: ast::Safety::Unsafe(_), .. }, .. }, | 
|  | body, | 
|  | .. | 
|  | }, | 
|  | ) = fk | 
|  | { | 
|  | let decorator = match ctxt { | 
|  | FnCtxt::Foreign => return, | 
|  | FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn, | 
|  | FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod, | 
|  | FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod, | 
|  | }; | 
|  | self.report_unsafe(cx, span, decorator); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `missing_docs` lint detects missing documentation for public items. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,compile_fail | 
|  | /// #![deny(missing_docs)] | 
|  | /// pub fn foo() {} | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// This lint is intended to ensure that a library is well-documented. | 
|  | /// Items without documentation can be difficult for users to understand | 
|  | /// how to use properly. | 
|  | /// | 
|  | /// This lint is "allow" by default because it can be noisy, and not all | 
|  | /// projects may want to enforce everything to be documented. | 
|  | pub MISSING_DOCS, | 
|  | Allow, | 
|  | "detects missing documentation for public members", | 
|  | report_in_external_macro | 
|  | } | 
|  |  | 
|  | #[derive(Default)] | 
|  | pub struct MissingDoc; | 
|  |  | 
|  | impl_lint_pass!(MissingDoc => [MISSING_DOCS]); | 
|  |  | 
|  | fn has_doc(attr: &hir::Attribute) -> bool { | 
|  | if attr.is_doc_comment() { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if !attr.has_name(sym::doc) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if attr.value_str().is_some() { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if let Some(list) = attr.meta_item_list() { | 
|  | for meta in list { | 
|  | if meta.has_name(sym::hidden) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | false | 
|  | } | 
|  |  | 
|  | impl MissingDoc { | 
|  | fn check_missing_docs_attrs( | 
|  | &self, | 
|  | cx: &LateContext<'_>, | 
|  | def_id: LocalDefId, | 
|  | article: &'static str, | 
|  | desc: &'static str, | 
|  | ) { | 
|  | // Only check publicly-visible items, using the result from the privacy pass. | 
|  | // It's an option so the crate root can also use this function (it doesn't | 
|  | // have a `NodeId`). | 
|  | if def_id != CRATE_DEF_ID && !cx.effective_visibilities.is_exported(def_id) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | let attrs = cx.tcx.hir_attrs(cx.tcx.local_def_id_to_hir_id(def_id)); | 
|  | let has_doc = attrs.iter().any(has_doc); | 
|  | if !has_doc { | 
|  | cx.emit_span_lint( | 
|  | MISSING_DOCS, | 
|  | cx.tcx.def_span(def_id), | 
|  | BuiltinMissingDoc { article, desc }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for MissingDoc { | 
|  | fn check_crate(&mut self, cx: &LateContext<'_>) { | 
|  | self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate"); | 
|  | } | 
|  |  | 
|  | fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { | 
|  | // Previously the Impl and Use types have been excluded from missing docs, | 
|  | // so we will continue to exclude them for compatibility. | 
|  | // | 
|  | // The documentation on `ExternCrate` is not used at the moment so no need to warn for it. | 
|  | if let hir::ItemKind::Impl(..) | hir::ItemKind::Use(..) | hir::ItemKind::ExternCrate(..) = | 
|  | it.kind | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id()); | 
|  | self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc); | 
|  | } | 
|  |  | 
|  | fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) { | 
|  | let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id()); | 
|  |  | 
|  | self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc); | 
|  | } | 
|  |  | 
|  | fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) { | 
|  | let context = method_context(cx, impl_item.owner_id.def_id); | 
|  |  | 
|  | match context { | 
|  | // If the method is an impl for a trait, don't doc. | 
|  | MethodLateContext::TraitImpl => return, | 
|  | MethodLateContext::TraitAutoImpl => {} | 
|  | // If the method is an impl for an item with docs_hidden, don't doc. | 
|  | MethodLateContext::PlainImpl => { | 
|  | let parent = cx.tcx.hir_get_parent_item(impl_item.hir_id()); | 
|  | let impl_ty = cx.tcx.type_of(parent).instantiate_identity(); | 
|  | let outerdef = match impl_ty.kind() { | 
|  | ty::Adt(def, _) => Some(def.did()), | 
|  | ty::Foreign(def_id) => Some(*def_id), | 
|  | _ => None, | 
|  | }; | 
|  | let is_hidden = match outerdef { | 
|  | Some(id) => cx.tcx.is_doc_hidden(id), | 
|  | None => false, | 
|  | }; | 
|  | if is_hidden { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id()); | 
|  | self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc); | 
|  | } | 
|  |  | 
|  | fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) { | 
|  | let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id()); | 
|  | self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc); | 
|  | } | 
|  |  | 
|  | fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) { | 
|  | if !sf.is_positional() { | 
|  | self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field") | 
|  | } | 
|  | } | 
|  |  | 
|  | fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) { | 
|  | self.check_missing_docs_attrs(cx, v.def_id, "a", "variant"); | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `missing_copy_implementations` lint detects potentially-forgotten | 
|  | /// implementations of [`Copy`] for public types. | 
|  | /// | 
|  | /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,compile_fail | 
|  | /// #![deny(missing_copy_implementations)] | 
|  | /// pub struct Foo { | 
|  | ///     pub field: i32 | 
|  | /// } | 
|  | /// # fn main() {} | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Historically (before 1.0), types were automatically marked as `Copy` | 
|  | /// if possible. This was changed so that it required an explicit opt-in | 
|  | /// by implementing the `Copy` trait. As part of this change, a lint was | 
|  | /// added to alert if a copyable type was not marked `Copy`. | 
|  | /// | 
|  | /// This lint is "allow" by default because this code isn't bad; it is | 
|  | /// common to write newtypes like this specifically so that a `Copy` type | 
|  | /// is no longer `Copy`. `Copy` types can result in unintended copies of | 
|  | /// large data which can impact performance. | 
|  | pub MISSING_COPY_IMPLEMENTATIONS, | 
|  | Allow, | 
|  | "detects potentially-forgotten implementations of `Copy`" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]); | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations { | 
|  | fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { | 
|  | if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) { | 
|  | return; | 
|  | } | 
|  | let (def, ty) = match item.kind { | 
|  | hir::ItemKind::Struct(_, generics, _) => { | 
|  | if !generics.params.is_empty() { | 
|  | return; | 
|  | } | 
|  | let def = cx.tcx.adt_def(item.owner_id); | 
|  | (def, Ty::new_adt(cx.tcx, def, ty::List::empty())) | 
|  | } | 
|  | hir::ItemKind::Union(_, generics, _) => { | 
|  | if !generics.params.is_empty() { | 
|  | return; | 
|  | } | 
|  | let def = cx.tcx.adt_def(item.owner_id); | 
|  | (def, Ty::new_adt(cx.tcx, def, ty::List::empty())) | 
|  | } | 
|  | hir::ItemKind::Enum(_, generics, _) => { | 
|  | if !generics.params.is_empty() { | 
|  | return; | 
|  | } | 
|  | let def = cx.tcx.adt_def(item.owner_id); | 
|  | (def, Ty::new_adt(cx.tcx, def, ty::List::empty())) | 
|  | } | 
|  | _ => return, | 
|  | }; | 
|  | if def.has_dtor(cx.tcx) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the type contains a raw pointer, it may represent something like a handle, | 
|  | // and recommending Copy might be a bad idea. | 
|  | for field in def.all_fields() { | 
|  | let did = field.did; | 
|  | if cx.tcx.type_of(did).instantiate_identity().is_raw_ptr() { | 
|  | return; | 
|  | } | 
|  | } | 
|  | if cx.type_is_copy_modulo_regions(ty) { | 
|  | return; | 
|  | } | 
|  | if type_implements_negative_copy_modulo_regions(cx.tcx, ty, cx.typing_env()) { | 
|  | return; | 
|  | } | 
|  | if def.is_variant_list_non_exhaustive() | 
|  | || def.variants().iter().any(|variant| variant.is_field_list_non_exhaustive()) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We shouldn't recommend implementing `Copy` on stateful things, | 
|  | // such as iterators. | 
|  | if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator) | 
|  | && cx | 
|  | .tcx | 
|  | .infer_ctxt() | 
|  | .build(cx.typing_mode()) | 
|  | .type_implements_trait(iter_trait, [ty], cx.param_env) | 
|  | .must_apply_modulo_regions() | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Default value of clippy::trivially_copy_pass_by_ref | 
|  | const MAX_SIZE: u64 = 256; | 
|  |  | 
|  | if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) { | 
|  | if size > MAX_SIZE { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if type_allowed_to_implement_copy( | 
|  | cx.tcx, | 
|  | cx.param_env, | 
|  | ty, | 
|  | traits::ObligationCause::misc(item.span, item.owner_id.def_id), | 
|  | hir::Safety::Safe, | 
|  | ) | 
|  | .is_ok() | 
|  | { | 
|  | cx.emit_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check whether a `ty` has a negative `Copy` implementation, ignoring outlives constraints. | 
|  | fn type_implements_negative_copy_modulo_regions<'tcx>( | 
|  | tcx: TyCtxt<'tcx>, | 
|  | ty: Ty<'tcx>, | 
|  | typing_env: ty::TypingEnv<'tcx>, | 
|  | ) -> bool { | 
|  | let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env); | 
|  | let trait_ref = | 
|  | ty::TraitRef::new(tcx, tcx.require_lang_item(hir::LangItem::Copy, DUMMY_SP), [ty]); | 
|  | let pred = ty::TraitPredicate { trait_ref, polarity: ty::PredicatePolarity::Negative }; | 
|  | let obligation = traits::Obligation { | 
|  | cause: traits::ObligationCause::dummy(), | 
|  | param_env, | 
|  | recursion_depth: 0, | 
|  | predicate: pred.upcast(tcx), | 
|  | }; | 
|  | infcx.predicate_must_hold_modulo_regions(&obligation) | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `missing_debug_implementations` lint detects missing | 
|  | /// implementations of [`fmt::Debug`] for public types. | 
|  | /// | 
|  | /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,compile_fail | 
|  | /// #![deny(missing_debug_implementations)] | 
|  | /// pub struct Foo; | 
|  | /// # fn main() {} | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Having a `Debug` implementation on all types can assist with | 
|  | /// debugging, as it provides a convenient way to format and display a | 
|  | /// value. Using the `#[derive(Debug)]` attribute will automatically | 
|  | /// generate a typical implementation, or a custom implementation can be | 
|  | /// added by manually implementing the `Debug` trait. | 
|  | /// | 
|  | /// This lint is "allow" by default because adding `Debug` to all types can | 
|  | /// have a negative impact on compile time and code size. It also requires | 
|  | /// boilerplate to be added to every type, which can be an impediment. | 
|  | MISSING_DEBUG_IMPLEMENTATIONS, | 
|  | Allow, | 
|  | "detects missing implementations of Debug" | 
|  | } | 
|  |  | 
|  | #[derive(Default)] | 
|  | pub(crate) struct MissingDebugImplementations; | 
|  |  | 
|  | impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]); | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations { | 
|  | fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { | 
|  | if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | match item.kind { | 
|  | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {} | 
|  | _ => return, | 
|  | } | 
|  |  | 
|  | // Avoid listing trait impls if the trait is allowed. | 
|  | let LevelAndSource { level, .. } = | 
|  | cx.tcx.lint_level_at_node(MISSING_DEBUG_IMPLEMENTATIONS, item.hir_id()); | 
|  | if level == Level::Allow { | 
|  | return; | 
|  | } | 
|  |  | 
|  | let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else { return }; | 
|  |  | 
|  | let has_impl = cx | 
|  | .tcx | 
|  | .non_blanket_impls_for_ty(debug, cx.tcx.type_of(item.owner_id).instantiate_identity()) | 
|  | .next() | 
|  | .is_some(); | 
|  | if !has_impl { | 
|  | cx.emit_span_lint( | 
|  | MISSING_DEBUG_IMPLEMENTATIONS, | 
|  | item.span, | 
|  | BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `anonymous_parameters` lint detects anonymous parameters in trait | 
|  | /// definitions. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,edition2015,compile_fail | 
|  | /// #![deny(anonymous_parameters)] | 
|  | /// // edition 2015 | 
|  | /// pub trait Foo { | 
|  | ///     fn foo(usize); | 
|  | /// } | 
|  | /// fn main() {} | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// This syntax is mostly a historical accident, and can be worked around | 
|  | /// quite easily by adding an `_` pattern or a descriptive identifier: | 
|  | /// | 
|  | /// ```rust | 
|  | /// trait Foo { | 
|  | ///     fn foo(_: usize); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// This syntax is now a hard error in the 2018 edition. In the 2015 | 
|  | /// edition, this lint is "warn" by default. This lint | 
|  | /// enables the [`cargo fix`] tool with the `--edition` flag to | 
|  | /// automatically transition old code from the 2015 edition to 2018. The | 
|  | /// tool will run this lint and automatically apply the | 
|  | /// suggested fix from the compiler (which is to add `_` to each | 
|  | /// parameter). This provides a completely automated way to update old | 
|  | /// code for a new edition. See [issue #41686] for more details. | 
|  | /// | 
|  | /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686 | 
|  | /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html | 
|  | pub ANONYMOUS_PARAMETERS, | 
|  | Warn, | 
|  | "detects anonymous parameters", | 
|  | @future_incompatible = FutureIncompatibleInfo { | 
|  | reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018), | 
|  | reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>", | 
|  | }; | 
|  | } | 
|  |  | 
|  | declare_lint_pass!( | 
|  | /// Checks for use of anonymous parameters (RFC 1685). | 
|  | AnonymousParameters => [ANONYMOUS_PARAMETERS] | 
|  | ); | 
|  |  | 
|  | impl EarlyLintPass for AnonymousParameters { | 
|  | fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) { | 
|  | if cx.sess().edition() != Edition::Edition2015 { | 
|  | // This is a hard error in future editions; avoid linting and erroring | 
|  | return; | 
|  | } | 
|  | if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind { | 
|  | for arg in sig.decl.inputs.iter() { | 
|  | if let ast::PatKind::Missing = arg.pat.kind { | 
|  | let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span); | 
|  |  | 
|  | let (ty_snip, appl) = if let Ok(ref snip) = ty_snip { | 
|  | (snip.as_str(), Applicability::MachineApplicable) | 
|  | } else { | 
|  | ("<type>", Applicability::HasPlaceholders) | 
|  | }; | 
|  | cx.emit_span_lint( | 
|  | ANONYMOUS_PARAMETERS, | 
|  | arg.pat.span, | 
|  | BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) { | 
|  | use rustc_ast::token::CommentKind; | 
|  |  | 
|  | let mut attrs = attrs.iter().peekable(); | 
|  |  | 
|  | // Accumulate a single span for sugared doc comments. | 
|  | let mut sugared_span: Option<Span> = None; | 
|  |  | 
|  | while let Some(attr) = attrs.next() { | 
|  | let is_doc_comment = attr.is_doc_comment(); | 
|  | if is_doc_comment { | 
|  | sugared_span = | 
|  | Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi()))); | 
|  | } | 
|  |  | 
|  | if attrs.peek().is_some_and(|next_attr| next_attr.is_doc_comment()) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | let span = sugared_span.take().unwrap_or(attr.span); | 
|  |  | 
|  | if is_doc_comment || attr.has_name(sym::doc) { | 
|  | let sub = match attr.kind { | 
|  | AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => { | 
|  | BuiltinUnusedDocCommentSub::PlainHelp | 
|  | } | 
|  | AttrKind::DocComment(CommentKind::Block, _) => { | 
|  | BuiltinUnusedDocCommentSub::BlockHelp | 
|  | } | 
|  | }; | 
|  | cx.emit_span_lint( | 
|  | UNUSED_DOC_COMMENTS, | 
|  | span, | 
|  | BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl EarlyLintPass for UnusedDocComment { | 
|  | fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) { | 
|  | let kind = match stmt.kind { | 
|  | ast::StmtKind::Let(..) => "statements", | 
|  | // Disabled pending discussion in #78306 | 
|  | ast::StmtKind::Item(..) => return, | 
|  | // expressions will be reported by `check_expr`. | 
|  | ast::StmtKind::Empty | 
|  | | ast::StmtKind::Semi(_) | 
|  | | ast::StmtKind::Expr(_) | 
|  | | ast::StmtKind::MacCall(_) => return, | 
|  | }; | 
|  |  | 
|  | warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs()); | 
|  | } | 
|  |  | 
|  | fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) { | 
|  | if let Some(body) = &arm.body { | 
|  | let arm_span = arm.pat.span.with_hi(body.span.hi()); | 
|  | warn_if_doc(cx, arm_span, "match arms", &arm.attrs); | 
|  | } | 
|  | } | 
|  |  | 
|  | fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) { | 
|  | if let ast::PatKind::Struct(_, _, fields, _) = &pat.kind { | 
|  | for field in fields { | 
|  | warn_if_doc(cx, field.span, "pattern fields", &field.attrs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) { | 
|  | warn_if_doc(cx, expr.span, "expressions", &expr.attrs); | 
|  |  | 
|  | if let ExprKind::Struct(s) = &expr.kind { | 
|  | for field in &s.fields { | 
|  | warn_if_doc(cx, field.span, "expression fields", &field.attrs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) { | 
|  | warn_if_doc(cx, param.ident.span, "generic parameters", ¶m.attrs); | 
|  | } | 
|  |  | 
|  | fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) { | 
|  | warn_if_doc(cx, block.span, "blocks", block.attrs()); | 
|  | } | 
|  |  | 
|  | fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) { | 
|  | if let ast::ItemKind::ForeignMod(_) = item.kind { | 
|  | warn_if_doc(cx, item.span, "extern blocks", &item.attrs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `no_mangle_const_items` lint detects any `const` items with the | 
|  | /// [`no_mangle` attribute]. | 
|  | /// | 
|  | /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,compile_fail,edition2021 | 
|  | /// #[no_mangle] | 
|  | /// const FOO: i32 = 5; | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Constants do not have their symbols exported, and therefore, this | 
|  | /// probably means you meant to use a [`static`], not a [`const`]. | 
|  | /// | 
|  | /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html | 
|  | /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html | 
|  | NO_MANGLE_CONST_ITEMS, | 
|  | Deny, | 
|  | "const items will not have their symbols exported" | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `no_mangle_generic_items` lint detects generic items that must be | 
|  | /// mangled. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust | 
|  | /// #[unsafe(no_mangle)] | 
|  | /// fn foo<T>(t: T) {} | 
|  | /// | 
|  | /// #[unsafe(export_name = "bar")] | 
|  | /// fn bar<T>(t: T) {} | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// A function with generics must have its symbol mangled to accommodate | 
|  | /// the generic parameter. The [`no_mangle`] and [`export_name`] attributes | 
|  | /// have no effect in this situation, and should be removed. | 
|  | /// | 
|  | /// [`no_mangle`]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute | 
|  | /// [`export_name`]: https://doc.rust-lang.org/reference/abi.html#the-export_name-attribute | 
|  | NO_MANGLE_GENERIC_ITEMS, | 
|  | Warn, | 
|  | "generic items must be mangled" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]); | 
|  |  | 
|  | impl InvalidNoMangleItems { | 
|  | fn check_no_mangle_on_generic_fn( | 
|  | &self, | 
|  | cx: &LateContext<'_>, | 
|  | attr_span: Span, | 
|  | def_id: LocalDefId, | 
|  | ) { | 
|  | let generics = cx.tcx.generics_of(def_id); | 
|  | if generics.requires_monomorphization(cx.tcx) { | 
|  | cx.emit_span_lint( | 
|  | NO_MANGLE_GENERIC_ITEMS, | 
|  | cx.tcx.def_span(def_id), | 
|  | BuiltinNoMangleGeneric { suggestion: attr_span }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems { | 
|  | fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { | 
|  | let attrs = cx.tcx.hir_attrs(it.hir_id()); | 
|  | match it.kind { | 
|  | hir::ItemKind::Fn { .. } => { | 
|  | if let Some(attr_span) = | 
|  | find_attr!(attrs, AttributeKind::ExportName {span, ..} => *span) | 
|  | .or_else(|| find_attr!(attrs, AttributeKind::NoMangle(span) => *span)) | 
|  | { | 
|  | self.check_no_mangle_on_generic_fn(cx, attr_span, it.owner_id.def_id); | 
|  | } | 
|  | } | 
|  | hir::ItemKind::Const(..) => { | 
|  | if find_attr!(attrs, AttributeKind::NoMangle(..)) { | 
|  | // account for "pub const" (#45562) | 
|  | let start = cx | 
|  | .tcx | 
|  | .sess | 
|  | .source_map() | 
|  | .span_to_snippet(it.span) | 
|  | .map(|snippet| snippet.find("const").unwrap_or(0)) | 
|  | .unwrap_or(0) as u32; | 
|  | // `const` is 5 chars | 
|  | let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5)); | 
|  |  | 
|  | // Const items do not refer to a particular location in memory, and therefore | 
|  | // don't have anything to attach a symbol to | 
|  | cx.emit_span_lint( | 
|  | NO_MANGLE_CONST_ITEMS, | 
|  | it.span, | 
|  | BuiltinConstNoMangle { suggestion }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | _ => {} | 
|  | } | 
|  | } | 
|  |  | 
|  | fn check_impl_item(&mut self, cx: &LateContext<'_>, it: &hir::ImplItem<'_>) { | 
|  | let attrs = cx.tcx.hir_attrs(it.hir_id()); | 
|  | match it.kind { | 
|  | hir::ImplItemKind::Fn { .. } => { | 
|  | if let Some(attr_span) = | 
|  | find_attr!(attrs, AttributeKind::ExportName {span, ..} => *span) | 
|  | .or_else(|| find_attr!(attrs, AttributeKind::NoMangle(span) => *span)) | 
|  | { | 
|  | self.check_no_mangle_on_generic_fn(cx, attr_span, it.owner_id.def_id); | 
|  | } | 
|  | } | 
|  | _ => {} | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut | 
|  | /// T` because it is [undefined behavior]. | 
|  | /// | 
|  | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,compile_fail | 
|  | /// unsafe { | 
|  | ///     let y = std::mem::transmute::<&i32, &mut i32>(&5); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Certain assumptions are made about aliasing of data, and this transmute | 
|  | /// violates those assumptions. Consider using [`UnsafeCell`] instead. | 
|  | /// | 
|  | /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html | 
|  | MUTABLE_TRANSMUTES, | 
|  | Deny, | 
|  | "transmuting &T to &mut T is undefined behavior, even if the reference is unused" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]); | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for MutableTransmutes { | 
|  | fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) { | 
|  | if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) = | 
|  | get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind())) | 
|  | { | 
|  | if from_mutbl < to_mutbl { | 
|  | cx.emit_span_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes); | 
|  | } | 
|  | } | 
|  |  | 
|  | fn get_transmute_from_to<'tcx>( | 
|  | cx: &LateContext<'tcx>, | 
|  | expr: &hir::Expr<'_>, | 
|  | ) -> Option<(Ty<'tcx>, Ty<'tcx>)> { | 
|  | let def = if let hir::ExprKind::Path(ref qpath) = expr.kind { | 
|  | cx.qpath_res(qpath, expr.hir_id) | 
|  | } else { | 
|  | return None; | 
|  | }; | 
|  | if let Res::Def(DefKind::Fn, did) = def { | 
|  | if !def_id_is_transmute(cx, did) { | 
|  | return None; | 
|  | } | 
|  | let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx); | 
|  | let from = sig.inputs().skip_binder()[0]; | 
|  | let to = sig.output().skip_binder(); | 
|  | return Some((from, to)); | 
|  | } | 
|  | None | 
|  | } | 
|  |  | 
|  | fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool { | 
|  | cx.tcx.is_intrinsic(def_id, sym::transmute) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `unstable_features` lint detects uses of `#![feature]`. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,compile_fail | 
|  | /// #![deny(unstable_features)] | 
|  | /// #![feature(test)] | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// In larger nightly-based projects which | 
|  | /// | 
|  | /// * consist of a multitude of crates where a subset of crates has to compile on | 
|  | ///   stable either unconditionally or depending on a `cfg` flag to for example | 
|  | ///   allow stable users to depend on them, | 
|  | /// * don't use nightly for experimental features but for, e.g., unstable options only, | 
|  | /// | 
|  | /// this lint may come in handy to enforce policies of these kinds. | 
|  | UNSTABLE_FEATURES, | 
|  | Allow, | 
|  | "enabling unstable features" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!( | 
|  | /// Forbids using the `#[feature(...)]` attribute | 
|  | UnstableFeatures => [UNSTABLE_FEATURES] | 
|  | ); | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for UnstableFeatures { | 
|  | fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &hir::Attribute) { | 
|  | if attr.has_name(sym::feature) | 
|  | && let Some(items) = attr.meta_item_list() | 
|  | { | 
|  | for item in items { | 
|  | cx.emit_span_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `ungated_async_fn_track_caller` lint warns when the | 
|  | /// `#[track_caller]` attribute is used on an async function | 
|  | /// without enabling the corresponding unstable feature flag. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust | 
|  | /// #[track_caller] | 
|  | /// async fn foo() {} | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// The attribute must be used in conjunction with the | 
|  | /// [`async_fn_track_caller` feature flag]. Otherwise, the `#[track_caller]` | 
|  | /// annotation will function as a no-op. | 
|  | /// | 
|  | /// [`async_fn_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/async-fn-track-caller.html | 
|  | UNGATED_ASYNC_FN_TRACK_CALLER, | 
|  | Warn, | 
|  | "enabling track_caller on an async fn is a no-op unless the async_fn_track_caller feature is enabled" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!( | 
|  | /// Explains corresponding feature flag must be enabled for the `#[track_caller]` attribute to | 
|  | /// do anything | 
|  | UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER] | 
|  | ); | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller { | 
|  | fn check_fn( | 
|  | &mut self, | 
|  | cx: &LateContext<'_>, | 
|  | fn_kind: HirFnKind<'_>, | 
|  | _: &'tcx FnDecl<'_>, | 
|  | _: &'tcx Body<'_>, | 
|  | span: Span, | 
|  | def_id: LocalDefId, | 
|  | ) { | 
|  | if fn_kind.asyncness().is_async() | 
|  | && !cx.tcx.features().async_fn_track_caller() | 
|  | // Now, check if the function has the `#[track_caller]` attribute | 
|  | && let Some(attr_span) = find_attr!(cx.tcx.get_all_attrs(def_id), AttributeKind::TrackCaller(span) => *span) | 
|  | { | 
|  | cx.emit_span_lint( | 
|  | UNGATED_ASYNC_FN_TRACK_CALLER, | 
|  | attr_span, | 
|  | BuiltinUngatedAsyncFnTrackCaller { label: span, session: &cx.tcx.sess }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `unreachable_pub` lint triggers for `pub` items not reachable from other crates - that | 
|  | /// means neither directly accessible, nor reexported (with `pub use`), nor leaked through | 
|  | /// things like return types (which the [`unnameable_types`] lint can detect if desired). | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,compile_fail | 
|  | /// #![deny(unreachable_pub)] | 
|  | /// mod foo { | 
|  | ///     pub mod bar { | 
|  | /// | 
|  | ///     } | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// The `pub` keyword both expresses an intent for an item to be publicly available, and also | 
|  | /// signals to the compiler to make the item publicly accessible. The intent can only be | 
|  | /// satisfied, however, if all items which contain this item are *also* publicly accessible. | 
|  | /// Thus, this lint serves to identify situations where the intent does not match the reality. | 
|  | /// | 
|  | /// If you wish the item to be accessible elsewhere within the crate, but not outside it, the | 
|  | /// `pub(crate)` visibility is recommended to be used instead. This more clearly expresses the | 
|  | /// intent that the item is only visible within its own crate. | 
|  | /// | 
|  | /// This lint is "allow" by default because it will trigger for a large amount of existing Rust code. | 
|  | /// Eventually it is desired for this to become warn-by-default. | 
|  | /// | 
|  | /// [`unnameable_types`]: #unnameable-types | 
|  | pub UNREACHABLE_PUB, | 
|  | Allow, | 
|  | "`pub` items not reachable from crate root" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!( | 
|  | /// Lint for items marked `pub` that aren't reachable from other crates. | 
|  | UnreachablePub => [UNREACHABLE_PUB] | 
|  | ); | 
|  |  | 
|  | impl UnreachablePub { | 
|  | fn perform_lint( | 
|  | &self, | 
|  | cx: &LateContext<'_>, | 
|  | what: &str, | 
|  | def_id: LocalDefId, | 
|  | vis_span: Span, | 
|  | exportable: bool, | 
|  | ) { | 
|  | let mut applicability = Applicability::MachineApplicable; | 
|  | if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id) | 
|  | { | 
|  | // prefer suggesting `pub(super)` instead of `pub(crate)` when possible, | 
|  | // except when `pub(super) == pub(crate)` | 
|  | let new_vis = if let Some(ty::Visibility::Restricted(restricted_did)) = | 
|  | cx.effective_visibilities.effective_vis(def_id).map(|effective_vis| { | 
|  | effective_vis.at_level(rustc_middle::middle::privacy::Level::Reachable) | 
|  | }) | 
|  | && let parent_parent = cx | 
|  | .tcx | 
|  | .parent_module_from_def_id(cx.tcx.parent_module_from_def_id(def_id).into()) | 
|  | && *restricted_did == parent_parent.to_local_def_id() | 
|  | && !restricted_did.to_def_id().is_crate_root() | 
|  | { | 
|  | "pub(super)" | 
|  | } else { | 
|  | "pub(crate)" | 
|  | }; | 
|  |  | 
|  | if vis_span.from_expansion() { | 
|  | applicability = Applicability::MaybeIncorrect; | 
|  | } | 
|  | let def_span = cx.tcx.def_span(def_id); | 
|  | cx.emit_span_lint( | 
|  | UNREACHABLE_PUB, | 
|  | def_span, | 
|  | BuiltinUnreachablePub { | 
|  | what, | 
|  | new_vis, | 
|  | suggestion: (vis_span, applicability), | 
|  | help: exportable, | 
|  | }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for UnreachablePub { | 
|  | fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { | 
|  | // Do not warn for fake `use` statements. | 
|  | if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind { | 
|  | return; | 
|  | } | 
|  | self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true); | 
|  | } | 
|  |  | 
|  | fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) { | 
|  | self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true); | 
|  | } | 
|  |  | 
|  | fn check_field_def(&mut self, _cx: &LateContext<'_>, _field: &hir::FieldDef<'_>) { | 
|  | // - If an ADT definition is reported then we don't need to check fields | 
|  | //   (as it would add unnecessary complexity to the source code, the struct | 
|  | //   definition is in the immediate proximity to give the "real" visibility). | 
|  | // - If an ADT is not reported because it's not `pub` - we don't need to | 
|  | //   check fields. | 
|  | // - If an ADT is not reported because it's reachable - we also don't need | 
|  | //   to check fields because then they are reachable by construction if they | 
|  | //   are pub. | 
|  | // | 
|  | // Therefore in no case we check the fields. | 
|  | // | 
|  | // cf. https://github.com/rust-lang/rust/pull/126013#issuecomment-2152839205 | 
|  | // cf. https://github.com/rust-lang/rust/pull/126040#issuecomment-2152944506 | 
|  | } | 
|  |  | 
|  | fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) { | 
|  | // Only lint inherent impl items. | 
|  | if cx.tcx.associated_item(impl_item.owner_id).trait_item_def_id.is_none() { | 
|  | self.perform_lint(cx, "item", impl_item.owner_id.def_id, impl_item.vis_span, false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `type_alias_bounds` lint detects bounds in type aliases. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust | 
|  | /// type SendVec<T: Send> = Vec<T>; | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Trait and lifetime bounds on generic parameters and in where clauses of | 
|  | /// type aliases are not checked at usage sites of the type alias. Moreover, | 
|  | /// they are not thoroughly checked for correctness at their definition site | 
|  | /// either similar to the aliased type. | 
|  | /// | 
|  | /// This is a known limitation of the type checker that may be lifted in a | 
|  | /// future edition. Permitting such bounds in light of this was unintentional. | 
|  | /// | 
|  | /// While these bounds may have secondary effects such as enabling the use of | 
|  | /// "shorthand" associated type paths[^1] and affecting the default trait | 
|  | /// object lifetime[^2] of trait object types passed to the type alias, this | 
|  | /// should not have been allowed until the aforementioned restrictions of the | 
|  | /// type checker have been lifted. | 
|  | /// | 
|  | /// Using such bounds is highly discouraged as they are actively misleading. | 
|  | /// | 
|  | /// [^1]: I.e., paths of the form `T::Assoc` where `T` is a type parameter | 
|  | /// bounded by trait `Trait` which defines an associated type called `Assoc` | 
|  | /// as opposed to a fully qualified path of the form `<T as Trait>::Assoc`. | 
|  | /// [^2]: <https://doc.rust-lang.org/reference/lifetime-elision.html#default-trait-object-lifetimes> | 
|  | TYPE_ALIAS_BOUNDS, | 
|  | Warn, | 
|  | "bounds in type aliases are not enforced" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(TypeAliasBounds => [TYPE_ALIAS_BOUNDS]); | 
|  |  | 
|  | impl TypeAliasBounds { | 
|  | pub(crate) fn affects_object_lifetime_defaults(pred: &hir::WherePredicate<'_>) -> bool { | 
|  | // Bounds of the form `T: 'a` with `T` type param affect object lifetime defaults. | 
|  | if let hir::WherePredicateKind::BoundPredicate(pred) = pred.kind | 
|  | && pred.bounds.iter().any(|bound| matches!(bound, hir::GenericBound::Outlives(_))) | 
|  | && pred.bound_generic_params.is_empty() // indeed, even if absent from the RHS | 
|  | && pred.bounded_ty.as_generic_param().is_some() | 
|  | { | 
|  | return true; | 
|  | } | 
|  | false | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds { | 
|  | fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { | 
|  | let hir::ItemKind::TyAlias(_, generics, hir_ty) = item.kind else { return }; | 
|  |  | 
|  | // There must not be a where clause. | 
|  | if generics.predicates.is_empty() { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Bounds of lazy type aliases and TAITs are respected. | 
|  | if cx.tcx.type_alias_is_lazy(item.owner_id) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // FIXME(generic_const_exprs): Revisit this before stabilization. | 
|  | // See also `tests/ui/const-generics/generic_const_exprs/type-alias-bounds.rs`. | 
|  | let ty = cx.tcx.type_of(item.owner_id).instantiate_identity(); | 
|  | if ty.has_type_flags(ty::TypeFlags::HAS_CT_PROJECTION) | 
|  | && cx.tcx.features().generic_const_exprs() | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // NOTE(inherent_associated_types): While we currently do take some bounds in type | 
|  | // aliases into consideration during IAT *selection*, we don't perform full use+def | 
|  | // site wfchecking for such type aliases. Therefore TAB should still trigger. | 
|  | // See also `tests/ui/associated-inherent-types/type-alias-bounds.rs`. | 
|  |  | 
|  | let mut where_spans = Vec::new(); | 
|  | let mut inline_spans = Vec::new(); | 
|  | let mut inline_sugg = Vec::new(); | 
|  |  | 
|  | for p in generics.predicates { | 
|  | let span = p.span; | 
|  | if p.kind.in_where_clause() { | 
|  | where_spans.push(span); | 
|  | } else { | 
|  | for b in p.kind.bounds() { | 
|  | inline_spans.push(b.span()); | 
|  | } | 
|  | inline_sugg.push((span, String::new())); | 
|  | } | 
|  | } | 
|  |  | 
|  | let mut ty = Some(hir_ty); | 
|  | let enable_feat_help = cx.tcx.sess.is_nightly_build(); | 
|  |  | 
|  | if let [.., label_sp] = *where_spans { | 
|  | cx.emit_span_lint( | 
|  | TYPE_ALIAS_BOUNDS, | 
|  | where_spans, | 
|  | BuiltinTypeAliasBounds { | 
|  | in_where_clause: true, | 
|  | label: label_sp, | 
|  | enable_feat_help, | 
|  | suggestions: vec![(generics.where_clause_span, String::new())], | 
|  | preds: generics.predicates, | 
|  | ty: ty.take(), | 
|  | }, | 
|  | ); | 
|  | } | 
|  | if let [.., label_sp] = *inline_spans { | 
|  | cx.emit_span_lint( | 
|  | TYPE_ALIAS_BOUNDS, | 
|  | inline_spans, | 
|  | BuiltinTypeAliasBounds { | 
|  | in_where_clause: false, | 
|  | label: label_sp, | 
|  | enable_feat_help, | 
|  | suggestions: inline_sugg, | 
|  | preds: generics.predicates, | 
|  | ty, | 
|  | }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | pub(crate) struct ShorthandAssocTyCollector { | 
|  | pub(crate) qselves: Vec<Span>, | 
|  | } | 
|  |  | 
|  | impl hir::intravisit::Visitor<'_> for ShorthandAssocTyCollector { | 
|  | fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, _: Span) { | 
|  | // Look for "type-parameter shorthand-associated-types". I.e., paths of the | 
|  | // form `T::Assoc` with `T` type param. These are reliant on trait bounds. | 
|  | if let hir::QPath::TypeRelative(qself, _) = qpath | 
|  | && qself.as_generic_param().is_some() | 
|  | { | 
|  | self.qselves.push(qself.span); | 
|  | } | 
|  | hir::intravisit::walk_qpath(self, qpath, id) | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `trivial_bounds` lint detects trait bounds that don't depend on | 
|  | /// any type parameters. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust | 
|  | /// #![feature(trivial_bounds)] | 
|  | /// pub struct A where i32: Copy; | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Usually you would not write a trait bound that you know is always | 
|  | /// true, or never true. However, when using macros, the macro may not | 
|  | /// know whether or not the constraint would hold or not at the time when | 
|  | /// generating the code. Currently, the compiler does not alert you if the | 
|  | /// constraint is always true, and generates an error if it is never true. | 
|  | /// The `trivial_bounds` feature changes this to be a warning in both | 
|  | /// cases, giving macros more freedom and flexibility to generate code, | 
|  | /// while still providing a signal when writing non-macro code that | 
|  | /// something is amiss. | 
|  | /// | 
|  | /// See [RFC 2056] for more details. This feature is currently only | 
|  | /// available on the nightly channel, see [tracking issue #48214]. | 
|  | /// | 
|  | /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md | 
|  | /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214 | 
|  | TRIVIAL_BOUNDS, | 
|  | Warn, | 
|  | "these bounds don't depend on an type parameters" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!( | 
|  | /// Lint for trait and lifetime bounds that don't depend on type parameters | 
|  | /// which either do nothing, or stop the item from being used. | 
|  | TrivialConstraints => [TRIVIAL_BOUNDS] | 
|  | ); | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for TrivialConstraints { | 
|  | fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) { | 
|  | use rustc_middle::ty::ClauseKind; | 
|  |  | 
|  | if cx.tcx.features().trivial_bounds() { | 
|  | let predicates = cx.tcx.predicates_of(item.owner_id); | 
|  | for &(predicate, span) in predicates.predicates { | 
|  | let predicate_kind_name = match predicate.kind().skip_binder() { | 
|  | ClauseKind::Trait(..) => "trait", | 
|  | ClauseKind::TypeOutlives(..) | | 
|  | ClauseKind::RegionOutlives(..) => "lifetime", | 
|  |  | 
|  | ClauseKind::UnstableFeature(_) | 
|  | // `ConstArgHasType` is never global as `ct` is always a param | 
|  | | ClauseKind::ConstArgHasType(..) | 
|  | // Ignore projections, as they can only be global | 
|  | // if the trait bound is global | 
|  | | ClauseKind::Projection(..) | 
|  | // Ignore bounds that a user can't type | 
|  | | ClauseKind::WellFormed(..) | 
|  | // FIXME(generic_const_exprs): `ConstEvaluatable` can be written | 
|  | | ClauseKind::ConstEvaluatable(..) | 
|  | // Users don't write this directly, only via another trait ref. | 
|  | | ty::ClauseKind::HostEffect(..) => continue, | 
|  | }; | 
|  | if predicate.is_global() { | 
|  | cx.emit_span_lint( | 
|  | TRIVIAL_BOUNDS, | 
|  | span, | 
|  | BuiltinTrivialBounds { predicate_kind_name, predicate }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `double_negations` lint detects expressions of the form `--x`. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust | 
|  | /// fn main() { | 
|  | ///     let x = 1; | 
|  | ///     let _b = --x; | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Negating something twice is usually the same as not negating it at all. | 
|  | /// However, a double negation in Rust can easily be confused with the | 
|  | /// prefix decrement operator that exists in many languages derived from C. | 
|  | /// Use `-(-x)` if you really wanted to negate the value twice. | 
|  | /// | 
|  | /// To decrement a value, use `x -= 1` instead. | 
|  | pub DOUBLE_NEGATIONS, | 
|  | Warn, | 
|  | "detects expressions of the form `--x`" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!( | 
|  | /// Lint for expressions of the form `--x` that can be confused with C's | 
|  | /// prefix decrement operator. | 
|  | DoubleNegations => [DOUBLE_NEGATIONS] | 
|  | ); | 
|  |  | 
|  | impl EarlyLintPass for DoubleNegations { | 
|  | #[inline] | 
|  | fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) { | 
|  | // only lint on the innermost `--` in a chain of `-` operators, | 
|  | // even if there are 3 or more negations | 
|  | if let ExprKind::Unary(UnOp::Neg, ref inner) = expr.kind | 
|  | && let ExprKind::Unary(UnOp::Neg, ref inner2) = inner.kind | 
|  | && !matches!(inner2.kind, ExprKind::Unary(UnOp::Neg, _)) | 
|  | // Don't lint if this jumps macro expansion boundary (Issue #143980) | 
|  | && expr.span.eq_ctxt(inner.span) | 
|  | { | 
|  | cx.emit_span_lint( | 
|  | DOUBLE_NEGATIONS, | 
|  | expr.span, | 
|  | BuiltinDoubleNegations { | 
|  | add_parens: BuiltinDoubleNegationsAddParens { | 
|  | start_span: inner.span.shrink_to_lo(), | 
|  | end_span: inner.span.shrink_to_hi(), | 
|  | }, | 
|  | }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint_pass!( | 
|  | /// Does nothing as a lint pass, but registers some `Lint`s | 
|  | /// which are used by other parts of the compiler. | 
|  | SoftLints => [ | 
|  | WHILE_TRUE, | 
|  | NON_SHORTHAND_FIELD_PATTERNS, | 
|  | UNSAFE_CODE, | 
|  | MISSING_DOCS, | 
|  | MISSING_COPY_IMPLEMENTATIONS, | 
|  | MISSING_DEBUG_IMPLEMENTATIONS, | 
|  | ANONYMOUS_PARAMETERS, | 
|  | UNUSED_DOC_COMMENTS, | 
|  | NO_MANGLE_CONST_ITEMS, | 
|  | NO_MANGLE_GENERIC_ITEMS, | 
|  | MUTABLE_TRANSMUTES, | 
|  | UNSTABLE_FEATURES, | 
|  | UNREACHABLE_PUB, | 
|  | TYPE_ALIAS_BOUNDS, | 
|  | TRIVIAL_BOUNDS, | 
|  | DOUBLE_NEGATIONS | 
|  | ] | 
|  | ); | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range | 
|  | /// pattern], which is deprecated. | 
|  | /// | 
|  | /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,edition2018 | 
|  | /// let x = 123; | 
|  | /// match x { | 
|  | ///     0...100 => {} | 
|  | ///     _ => {} | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// The `...` range pattern syntax was changed to `..=` to avoid potential | 
|  | /// confusion with the [`..` range expression]. Use the new form instead. | 
|  | /// | 
|  | /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html | 
|  | pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, | 
|  | Warn, | 
|  | "`...` range patterns are deprecated", | 
|  | @future_incompatible = FutureIncompatibleInfo { | 
|  | reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021), | 
|  | reference: "<https://doc.rust-lang.org/edition-guide/rust-2021/warnings-promoted-to-error.html>", | 
|  | }; | 
|  | } | 
|  |  | 
|  | #[derive(Default)] | 
|  | pub struct EllipsisInclusiveRangePatterns { | 
|  | /// If `Some(_)`, suppress all subsequent pattern | 
|  | /// warnings for better diagnostics. | 
|  | node_id: Option<ast::NodeId>, | 
|  | } | 
|  |  | 
|  | impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]); | 
|  |  | 
|  | impl EarlyLintPass for EllipsisInclusiveRangePatterns { | 
|  | fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) { | 
|  | if self.node_id.is_some() { | 
|  | // Don't recursively warn about patterns inside range endpoints. | 
|  | return; | 
|  | } | 
|  |  | 
|  | use self::ast::PatKind; | 
|  | use self::ast::RangeSyntax::DotDotDot; | 
|  |  | 
|  | /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span | 
|  | /// corresponding to the ellipsis. | 
|  | fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> { | 
|  | match &pat.kind { | 
|  | PatKind::Range( | 
|  | a, | 
|  | Some(b), | 
|  | Spanned { span, node: RangeEnd::Included(DotDotDot) }, | 
|  | ) => Some((a.as_deref(), b, *span)), | 
|  | _ => None, | 
|  | } | 
|  | } | 
|  |  | 
|  | let (parentheses, endpoints) = match &pat.kind { | 
|  | PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(subpat)), | 
|  | _ => (false, matches_ellipsis_pat(pat)), | 
|  | }; | 
|  |  | 
|  | if let Some((start, end, join)) = endpoints { | 
|  | if parentheses { | 
|  | self.node_id = Some(pat.id); | 
|  | let end = expr_to_string(end); | 
|  | let replace = match start { | 
|  | Some(start) => format!("&({}..={})", expr_to_string(start), end), | 
|  | None => format!("&(..={end})"), | 
|  | }; | 
|  | if join.edition() >= Edition::Edition2021 { | 
|  | cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns { | 
|  | span: pat.span, | 
|  | suggestion: pat.span, | 
|  | replace, | 
|  | }); | 
|  | } else { | 
|  | cx.emit_span_lint( | 
|  | ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, | 
|  | pat.span, | 
|  | BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise { | 
|  | suggestion: pat.span, | 
|  | replace, | 
|  | }, | 
|  | ); | 
|  | } | 
|  | } else { | 
|  | let replace = "..="; | 
|  | if join.edition() >= Edition::Edition2021 { | 
|  | cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns { | 
|  | span: pat.span, | 
|  | suggestion: join, | 
|  | replace: replace.to_string(), | 
|  | }); | 
|  | } else { | 
|  | cx.emit_span_lint( | 
|  | ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, | 
|  | join, | 
|  | BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise { | 
|  | suggestion: join, | 
|  | }, | 
|  | ); | 
|  | } | 
|  | }; | 
|  | } | 
|  | } | 
|  |  | 
|  | fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) { | 
|  | if let Some(node_id) = self.node_id { | 
|  | if pat.id == node_id { | 
|  | self.node_id = None | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `keyword_idents_2018` lint detects edition keywords being used as an | 
|  | /// identifier. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,edition2015,compile_fail | 
|  | /// #![deny(keyword_idents_2018)] | 
|  | /// // edition 2015 | 
|  | /// fn dyn() {} | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Rust [editions] allow the language to evolve without breaking | 
|  | /// backwards compatibility. This lint catches code that uses new keywords | 
|  | /// that are added to the language that are used as identifiers (such as a | 
|  | /// variable name, function name, etc.). If you switch the compiler to a | 
|  | /// new edition without updating the code, then it will fail to compile if | 
|  | /// you are using a new keyword as an identifier. | 
|  | /// | 
|  | /// You can manually change the identifiers to a non-keyword, or use a | 
|  | /// [raw identifier], for example `r#dyn`, to transition to a new edition. | 
|  | /// | 
|  | /// This lint solves the problem automatically. It is "allow" by default | 
|  | /// because the code is perfectly valid in older editions. The [`cargo | 
|  | /// fix`] tool with the `--edition` flag will switch this lint to "warn" | 
|  | /// and automatically apply the suggested fix from the compiler (which is | 
|  | /// to use a raw identifier). This provides a completely automated way to | 
|  | /// update old code for a new edition. | 
|  | /// | 
|  | /// [editions]: https://doc.rust-lang.org/edition-guide/ | 
|  | /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html | 
|  | /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html | 
|  | pub KEYWORD_IDENTS_2018, | 
|  | Allow, | 
|  | "detects edition keywords being used as an identifier", | 
|  | @future_incompatible = FutureIncompatibleInfo { | 
|  | reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018), | 
|  | reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>", | 
|  | }; | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `keyword_idents_2024` lint detects edition keywords being used as an | 
|  | /// identifier. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,edition2015,compile_fail | 
|  | /// #![deny(keyword_idents_2024)] | 
|  | /// // edition 2015 | 
|  | /// fn gen() {} | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Rust [editions] allow the language to evolve without breaking | 
|  | /// backwards compatibility. This lint catches code that uses new keywords | 
|  | /// that are added to the language that are used as identifiers (such as a | 
|  | /// variable name, function name, etc.). If you switch the compiler to a | 
|  | /// new edition without updating the code, then it will fail to compile if | 
|  | /// you are using a new keyword as an identifier. | 
|  | /// | 
|  | /// You can manually change the identifiers to a non-keyword, or use a | 
|  | /// [raw identifier], for example `r#gen`, to transition to a new edition. | 
|  | /// | 
|  | /// This lint solves the problem automatically. It is "allow" by default | 
|  | /// because the code is perfectly valid in older editions. The [`cargo | 
|  | /// fix`] tool with the `--edition` flag will switch this lint to "warn" | 
|  | /// and automatically apply the suggested fix from the compiler (which is | 
|  | /// to use a raw identifier). This provides a completely automated way to | 
|  | /// update old code for a new edition. | 
|  | /// | 
|  | /// [editions]: https://doc.rust-lang.org/edition-guide/ | 
|  | /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html | 
|  | /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html | 
|  | pub KEYWORD_IDENTS_2024, | 
|  | Allow, | 
|  | "detects edition keywords being used as an identifier", | 
|  | @future_incompatible = FutureIncompatibleInfo { | 
|  | reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024), | 
|  | reference: "<https://doc.rust-lang.org/edition-guide/rust-2024/gen-keyword.html>", | 
|  | }; | 
|  | } | 
|  |  | 
|  | declare_lint_pass!( | 
|  | /// Check for uses of edition keywords used as an identifier. | 
|  | KeywordIdents => [KEYWORD_IDENTS_2018, KEYWORD_IDENTS_2024] | 
|  | ); | 
|  |  | 
|  | struct UnderMacro(bool); | 
|  |  | 
|  | impl KeywordIdents { | 
|  | fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: &TokenStream) { | 
|  | // Check if the preceding token is `$`, because we want to allow `$async`, etc. | 
|  | let mut prev_dollar = false; | 
|  | for tt in tokens.iter() { | 
|  | match tt { | 
|  | // Only report non-raw idents. | 
|  | TokenTree::Token(token, _) => { | 
|  | if let Some((ident, token::IdentIsRaw::No)) = token.ident() { | 
|  | if !prev_dollar { | 
|  | self.check_ident_token(cx, UnderMacro(true), ident, ""); | 
|  | } | 
|  | } else if let Some((ident, token::IdentIsRaw::No)) = token.lifetime() { | 
|  | self.check_ident_token( | 
|  | cx, | 
|  | UnderMacro(true), | 
|  | ident.without_first_quote(), | 
|  | "'", | 
|  | ); | 
|  | } else if token.kind == TokenKind::Dollar { | 
|  | prev_dollar = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | TokenTree::Delimited(.., tts) => self.check_tokens(cx, tts), | 
|  | } | 
|  | prev_dollar = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | fn check_ident_token( | 
|  | &mut self, | 
|  | cx: &EarlyContext<'_>, | 
|  | UnderMacro(under_macro): UnderMacro, | 
|  | ident: Ident, | 
|  | prefix: &'static str, | 
|  | ) { | 
|  | let (lint, edition) = match ident.name { | 
|  | kw::Async | kw::Await | kw::Try => (KEYWORD_IDENTS_2018, Edition::Edition2018), | 
|  |  | 
|  | // rust-lang/rust#56327: Conservatively do not | 
|  | // attempt to report occurrences of `dyn` within | 
|  | // macro definitions or invocations, because `dyn` | 
|  | // can legitimately occur as a contextual keyword | 
|  | // in 2015 code denoting its 2018 meaning, and we | 
|  | // do not want rustfix to inject bugs into working | 
|  | // code by rewriting such occurrences. | 
|  | // | 
|  | // But if we see `dyn` outside of a macro, we know | 
|  | // its precise role in the parsed AST and thus are | 
|  | // assured this is truly an attempt to use it as | 
|  | // an identifier. | 
|  | kw::Dyn if !under_macro => (KEYWORD_IDENTS_2018, Edition::Edition2018), | 
|  |  | 
|  | kw::Gen => (KEYWORD_IDENTS_2024, Edition::Edition2024), | 
|  |  | 
|  | _ => return, | 
|  | }; | 
|  |  | 
|  | // Don't lint `r#foo`. | 
|  | if ident.span.edition() >= edition | 
|  | || cx.sess().psess.raw_identifier_spans.contains(ident.span) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | cx.emit_span_lint( | 
|  | lint, | 
|  | ident.span, | 
|  | BuiltinKeywordIdents { kw: ident, next: edition, suggestion: ident.span, prefix }, | 
|  | ); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl EarlyLintPass for KeywordIdents { | 
|  | fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) { | 
|  | self.check_tokens(cx, &mac_def.body.tokens); | 
|  | } | 
|  | fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) { | 
|  | self.check_tokens(cx, &mac.args.tokens); | 
|  | } | 
|  | fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: &Ident) { | 
|  | if ident.name.as_str().starts_with('\'') { | 
|  | self.check_ident_token(cx, UnderMacro(false), ident.without_first_quote(), "'"); | 
|  | } else { | 
|  | self.check_ident_token(cx, UnderMacro(false), *ident, ""); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]); | 
|  |  | 
|  | impl ExplicitOutlivesRequirements { | 
|  | fn lifetimes_outliving_lifetime<'tcx>( | 
|  | tcx: TyCtxt<'tcx>, | 
|  | inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>, | 
|  | item: LocalDefId, | 
|  | lifetime: LocalDefId, | 
|  | ) -> Vec<ty::Region<'tcx>> { | 
|  | let item_generics = tcx.generics_of(item); | 
|  |  | 
|  | inferred_outlives | 
|  | .filter_map(|(clause, _)| match clause.kind().skip_binder() { | 
|  | ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a.kind() { | 
|  | ty::ReEarlyParam(ebr) | 
|  | if item_generics.region_param(ebr, tcx).def_id == lifetime.to_def_id() => | 
|  | { | 
|  | Some(b) | 
|  | } | 
|  | _ => None, | 
|  | }, | 
|  | _ => None, | 
|  | }) | 
|  | .collect() | 
|  | } | 
|  |  | 
|  | fn lifetimes_outliving_type<'tcx>( | 
|  | inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>, | 
|  | index: u32, | 
|  | ) -> Vec<ty::Region<'tcx>> { | 
|  | inferred_outlives | 
|  | .filter_map(|(clause, _)| match clause.kind().skip_binder() { | 
|  | ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => { | 
|  | a.is_param(index).then_some(b) | 
|  | } | 
|  | _ => None, | 
|  | }) | 
|  | .collect() | 
|  | } | 
|  |  | 
|  | fn collect_outlives_bound_spans<'tcx>( | 
|  | &self, | 
|  | tcx: TyCtxt<'tcx>, | 
|  | bounds: &hir::GenericBounds<'_>, | 
|  | inferred_outlives: &[ty::Region<'tcx>], | 
|  | predicate_span: Span, | 
|  | item: DefId, | 
|  | ) -> Vec<(usize, Span)> { | 
|  | use rustc_middle::middle::resolve_bound_vars::ResolvedArg; | 
|  |  | 
|  | let item_generics = tcx.generics_of(item); | 
|  |  | 
|  | bounds | 
|  | .iter() | 
|  | .enumerate() | 
|  | .filter_map(|(i, bound)| { | 
|  | let hir::GenericBound::Outlives(lifetime) = bound else { | 
|  | return None; | 
|  | }; | 
|  |  | 
|  | let is_inferred = match tcx.named_bound_var(lifetime.hir_id) { | 
|  | Some(ResolvedArg::EarlyBound(def_id)) => inferred_outlives | 
|  | .iter() | 
|  | .any(|r| matches!(r.kind(), ty::ReEarlyParam(ebr) if { item_generics.region_param(ebr, tcx).def_id == def_id.to_def_id() })), | 
|  | _ => false, | 
|  | }; | 
|  |  | 
|  | if !is_inferred { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | let span = bound.span().find_ancestor_inside(predicate_span)?; | 
|  | if span.in_external_macro(tcx.sess.source_map()) { | 
|  | return None; | 
|  | } | 
|  |  | 
|  | Some((i, span)) | 
|  | }) | 
|  | .collect() | 
|  | } | 
|  |  | 
|  | fn consolidate_outlives_bound_spans( | 
|  | &self, | 
|  | lo: Span, | 
|  | bounds: &hir::GenericBounds<'_>, | 
|  | bound_spans: Vec<(usize, Span)>, | 
|  | ) -> Vec<Span> { | 
|  | if bounds.is_empty() { | 
|  | return Vec::new(); | 
|  | } | 
|  | if bound_spans.len() == bounds.len() { | 
|  | let (_, last_bound_span) = bound_spans[bound_spans.len() - 1]; | 
|  | // If all bounds are inferable, we want to delete the colon, so | 
|  | // start from just after the parameter (span passed as argument) | 
|  | vec![lo.to(last_bound_span)] | 
|  | } else { | 
|  | let mut merged = Vec::new(); | 
|  | let mut last_merged_i = None; | 
|  |  | 
|  | let mut from_start = true; | 
|  | for (i, bound_span) in bound_spans { | 
|  | match last_merged_i { | 
|  | // If the first bound is inferable, our span should also eat the leading `+`. | 
|  | None if i == 0 => { | 
|  | merged.push(bound_span.to(bounds[1].span().shrink_to_lo())); | 
|  | last_merged_i = Some(0); | 
|  | } | 
|  | // If consecutive bounds are inferable, merge their spans | 
|  | Some(h) if i == h + 1 => { | 
|  | if let Some(tail) = merged.last_mut() { | 
|  | // Also eat the trailing `+` if the first | 
|  | // more-than-one bound is inferable | 
|  | let to_span = if from_start && i < bounds.len() { | 
|  | bounds[i + 1].span().shrink_to_lo() | 
|  | } else { | 
|  | bound_span | 
|  | }; | 
|  | *tail = tail.to(to_span); | 
|  | last_merged_i = Some(i); | 
|  | } else { | 
|  | bug!("another bound-span visited earlier"); | 
|  | } | 
|  | } | 
|  | _ => { | 
|  | // When we find a non-inferable bound, subsequent inferable bounds | 
|  | // won't be consecutive from the start (and we'll eat the leading | 
|  | // `+` rather than the trailing one) | 
|  | from_start = false; | 
|  | merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span)); | 
|  | last_merged_i = Some(i); | 
|  | } | 
|  | } | 
|  | } | 
|  | merged | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements { | 
|  | fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) { | 
|  | use rustc_middle::middle::resolve_bound_vars::ResolvedArg; | 
|  |  | 
|  | let def_id = item.owner_id.def_id; | 
|  | if let hir::ItemKind::Struct(_, generics, _) | 
|  | | hir::ItemKind::Enum(_, generics, _) | 
|  | | hir::ItemKind::Union(_, generics, _) = item.kind | 
|  | { | 
|  | let inferred_outlives = cx.tcx.inferred_outlives_of(def_id); | 
|  | if inferred_outlives.is_empty() { | 
|  | return; | 
|  | } | 
|  |  | 
|  | let ty_generics = cx.tcx.generics_of(def_id); | 
|  | let num_where_predicates = generics | 
|  | .predicates | 
|  | .iter() | 
|  | .filter(|predicate| predicate.kind.in_where_clause()) | 
|  | .count(); | 
|  |  | 
|  | let mut bound_count = 0; | 
|  | let mut lint_spans = Vec::new(); | 
|  | let mut where_lint_spans = Vec::new(); | 
|  | let mut dropped_where_predicate_count = 0; | 
|  | for (i, where_predicate) in generics.predicates.iter().enumerate() { | 
|  | let (relevant_lifetimes, bounds, predicate_span, in_where_clause) = | 
|  | match where_predicate.kind { | 
|  | hir::WherePredicateKind::RegionPredicate(predicate) => { | 
|  | if let Some(ResolvedArg::EarlyBound(region_def_id)) = | 
|  | cx.tcx.named_bound_var(predicate.lifetime.hir_id) | 
|  | { | 
|  | ( | 
|  | Self::lifetimes_outliving_lifetime( | 
|  | cx.tcx, | 
|  | // don't warn if the inferred span actually came from the predicate we're looking at | 
|  | // this happens if the type is recursively defined | 
|  | inferred_outlives.iter().filter(|(_, span)| { | 
|  | !where_predicate.span.contains(*span) | 
|  | }), | 
|  | item.owner_id.def_id, | 
|  | region_def_id, | 
|  | ), | 
|  | &predicate.bounds, | 
|  | where_predicate.span, | 
|  | predicate.in_where_clause, | 
|  | ) | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | hir::WherePredicateKind::BoundPredicate(predicate) => { | 
|  | // FIXME we can also infer bounds on associated types, | 
|  | // and should check for them here. | 
|  | match predicate.bounded_ty.kind { | 
|  | hir::TyKind::Path(hir::QPath::Resolved(None, path)) => { | 
|  | let Res::Def(DefKind::TyParam, def_id) = path.res else { | 
|  | continue; | 
|  | }; | 
|  | let index = ty_generics.param_def_id_to_index[&def_id]; | 
|  | ( | 
|  | Self::lifetimes_outliving_type( | 
|  | // don't warn if the inferred span actually came from the predicate we're looking at | 
|  | // this happens if the type is recursively defined | 
|  | inferred_outlives.iter().filter(|(_, span)| { | 
|  | !where_predicate.span.contains(*span) | 
|  | }), | 
|  | index, | 
|  | ), | 
|  | &predicate.bounds, | 
|  | where_predicate.span, | 
|  | predicate.origin == PredicateOrigin::WhereClause, | 
|  | ) | 
|  | } | 
|  | _ => { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | _ => continue, | 
|  | }; | 
|  | if relevant_lifetimes.is_empty() { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | let bound_spans = self.collect_outlives_bound_spans( | 
|  | cx.tcx, | 
|  | bounds, | 
|  | &relevant_lifetimes, | 
|  | predicate_span, | 
|  | item.owner_id.to_def_id(), | 
|  | ); | 
|  | bound_count += bound_spans.len(); | 
|  |  | 
|  | let drop_predicate = bound_spans.len() == bounds.len(); | 
|  | if drop_predicate && in_where_clause { | 
|  | dropped_where_predicate_count += 1; | 
|  | } | 
|  |  | 
|  | if drop_predicate { | 
|  | if !in_where_clause { | 
|  | lint_spans.push(predicate_span); | 
|  | } else if predicate_span.from_expansion() { | 
|  | // Don't try to extend the span if it comes from a macro expansion. | 
|  | where_lint_spans.push(predicate_span); | 
|  | } else if i + 1 < num_where_predicates { | 
|  | // If all the bounds on a predicate were inferable and there are | 
|  | // further predicates, we want to eat the trailing comma. | 
|  | let next_predicate_span = generics.predicates[i + 1].span; | 
|  | if next_predicate_span.from_expansion() { | 
|  | where_lint_spans.push(predicate_span); | 
|  | } else { | 
|  | where_lint_spans | 
|  | .push(predicate_span.to(next_predicate_span.shrink_to_lo())); | 
|  | } | 
|  | } else { | 
|  | // Eat the optional trailing comma after the last predicate. | 
|  | let where_span = generics.where_clause_span; | 
|  | if where_span.from_expansion() { | 
|  | where_lint_spans.push(predicate_span); | 
|  | } else { | 
|  | where_lint_spans.push(predicate_span.to(where_span.shrink_to_hi())); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | where_lint_spans.extend(self.consolidate_outlives_bound_spans( | 
|  | predicate_span.shrink_to_lo(), | 
|  | bounds, | 
|  | bound_spans, | 
|  | )); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all predicates in where clause are inferable, drop the entire clause | 
|  | // (including the `where`) | 
|  | if generics.has_where_clause_predicates | 
|  | && dropped_where_predicate_count == num_where_predicates | 
|  | { | 
|  | let where_span = generics.where_clause_span; | 
|  | // Extend the where clause back to the closing `>` of the | 
|  | // generics, except for tuple struct, which have the `where` | 
|  | // after the fields of the struct. | 
|  | let full_where_span = | 
|  | if let hir::ItemKind::Struct(_, _, hir::VariantData::Tuple(..)) = item.kind { | 
|  | where_span | 
|  | } else { | 
|  | generics.span.shrink_to_hi().to(where_span) | 
|  | }; | 
|  |  | 
|  | // Due to macro expansions, the `full_where_span` might not actually contain all | 
|  | // predicates. | 
|  | if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) { | 
|  | lint_spans.push(full_where_span); | 
|  | } else { | 
|  | lint_spans.extend(where_lint_spans); | 
|  | } | 
|  | } else { | 
|  | lint_spans.extend(where_lint_spans); | 
|  | } | 
|  |  | 
|  | if !lint_spans.is_empty() { | 
|  | // Do not automatically delete outlives requirements from macros. | 
|  | let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions()) | 
|  | { | 
|  | Applicability::MachineApplicable | 
|  | } else { | 
|  | Applicability::MaybeIncorrect | 
|  | }; | 
|  |  | 
|  | // Due to macros, there might be several predicates with the same span | 
|  | // and we only want to suggest removing them once. | 
|  | lint_spans.sort_unstable(); | 
|  | lint_spans.dedup(); | 
|  |  | 
|  | cx.emit_span_lint( | 
|  | EXPLICIT_OUTLIVES_REQUIREMENTS, | 
|  | lint_spans.clone(), | 
|  | BuiltinExplicitOutlives { | 
|  | count: bound_count, | 
|  | suggestion: BuiltinExplicitOutlivesSuggestion { | 
|  | spans: lint_spans, | 
|  | applicability, | 
|  | }, | 
|  | }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `incomplete_features` lint detects unstable features enabled with | 
|  | /// the [`feature` attribute] that may function improperly in some or all | 
|  | /// cases. | 
|  | /// | 
|  | /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/ | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust | 
|  | /// #![feature(generic_const_exprs)] | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Although it is encouraged for people to experiment with unstable | 
|  | /// features, some of them are known to be incomplete or faulty. This lint | 
|  | /// is a signal that the feature has not yet been finished, and you may | 
|  | /// experience problems with it. | 
|  | pub INCOMPLETE_FEATURES, | 
|  | Warn, | 
|  | "incomplete features that may function improperly in some or all cases" | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `internal_features` lint detects unstable features enabled with | 
|  | /// the [`feature` attribute] that are internal to the compiler or standard | 
|  | /// library. | 
|  | /// | 
|  | /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/ | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust | 
|  | /// #![feature(rustc_attrs)] | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// These features are an implementation detail of the compiler and standard | 
|  | /// library and are not supposed to be used in user code. | 
|  | pub INTERNAL_FEATURES, | 
|  | Warn, | 
|  | "internal features are not supposed to be used" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!( | 
|  | /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/unstable.rs`. | 
|  | IncompleteInternalFeatures => [INCOMPLETE_FEATURES, INTERNAL_FEATURES] | 
|  | ); | 
|  |  | 
|  | impl EarlyLintPass for IncompleteInternalFeatures { | 
|  | fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) { | 
|  | let features = cx.builder.features(); | 
|  | let lang_features = | 
|  | features.enabled_lang_features().iter().map(|feat| (feat.gate_name, feat.attr_sp)); | 
|  | let lib_features = | 
|  | features.enabled_lib_features().iter().map(|feat| (feat.gate_name, feat.attr_sp)); | 
|  |  | 
|  | lang_features | 
|  | .chain(lib_features) | 
|  | .filter(|(name, _)| features.incomplete(*name) || features.internal(*name)) | 
|  | .for_each(|(name, span)| { | 
|  | if features.incomplete(name) { | 
|  | let note = rustc_feature::find_feature_issue(name, GateIssue::Language) | 
|  | .map(|n| BuiltinFeatureIssueNote { n }); | 
|  | let help = | 
|  | HAS_MIN_FEATURES.contains(&name).then_some(BuiltinIncompleteFeaturesHelp); | 
|  |  | 
|  | cx.emit_span_lint( | 
|  | INCOMPLETE_FEATURES, | 
|  | span, | 
|  | BuiltinIncompleteFeatures { name, note, help }, | 
|  | ); | 
|  | } else { | 
|  | cx.emit_span_lint(INTERNAL_FEATURES, span, BuiltinInternalFeatures { name }); | 
|  | } | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization]; | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `invalid_value` lint detects creating a value that is not valid, | 
|  | /// such as a null reference. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,no_run | 
|  | /// # #![allow(unused)] | 
|  | /// unsafe { | 
|  | ///     let x: &'static i32 = std::mem::zeroed(); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// In some situations the compiler can detect that the code is creating | 
|  | /// an invalid value, which should be avoided. | 
|  | /// | 
|  | /// In particular, this lint will check for improper use of | 
|  | /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and | 
|  | /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The | 
|  | /// lint should provide extra information to indicate what the problem is | 
|  | /// and a possible solution. | 
|  | /// | 
|  | /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html | 
|  | /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html | 
|  | /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html | 
|  | /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init | 
|  | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html | 
|  | pub INVALID_VALUE, | 
|  | Warn, | 
|  | "an invalid value is being created (such as a null reference)" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(InvalidValue => [INVALID_VALUE]); | 
|  |  | 
|  | /// Information about why a type cannot be initialized this way. | 
|  | pub struct InitError { | 
|  | pub(crate) message: String, | 
|  | /// Spans from struct fields and similar that can be obtained from just the type. | 
|  | pub(crate) span: Option<Span>, | 
|  | /// Used to report a trace through adts. | 
|  | pub(crate) nested: Option<Box<InitError>>, | 
|  | } | 
|  | impl InitError { | 
|  | fn spanned(self, span: Span) -> InitError { | 
|  | Self { span: Some(span), ..self } | 
|  | } | 
|  |  | 
|  | fn nested(self, nested: impl Into<Option<InitError>>) -> InitError { | 
|  | assert!(self.nested.is_none()); | 
|  | Self { nested: nested.into().map(Box::new), ..self } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'a> From<&'a str> for InitError { | 
|  | fn from(s: &'a str) -> Self { | 
|  | s.to_owned().into() | 
|  | } | 
|  | } | 
|  | impl From<String> for InitError { | 
|  | fn from(message: String) -> Self { | 
|  | Self { message, span: None, nested: None } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for InvalidValue { | 
|  | fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) { | 
|  | #[derive(Debug, Copy, Clone, PartialEq)] | 
|  | enum InitKind { | 
|  | Zeroed, | 
|  | Uninit, | 
|  | } | 
|  |  | 
|  | /// Test if this constant is all-0. | 
|  | fn is_zero(expr: &hir::Expr<'_>) -> bool { | 
|  | use hir::ExprKind::*; | 
|  | use rustc_ast::LitKind::*; | 
|  | match &expr.kind { | 
|  | Lit(lit) => { | 
|  | if let Int(i, _) = lit.node { | 
|  | i == 0 | 
|  | } else { | 
|  | false | 
|  | } | 
|  | } | 
|  | Tup(tup) => tup.iter().all(is_zero), | 
|  | _ => false, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine if this expression is a "dangerous initialization". | 
|  | fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> { | 
|  | if let hir::ExprKind::Call(path_expr, args) = expr.kind { | 
|  | // Find calls to `mem::{uninitialized,zeroed}` methods. | 
|  | if let hir::ExprKind::Path(ref qpath) = path_expr.kind { | 
|  | let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?; | 
|  | match cx.tcx.get_diagnostic_name(def_id) { | 
|  | Some(sym::mem_zeroed) => return Some(InitKind::Zeroed), | 
|  | Some(sym::mem_uninitialized) => return Some(InitKind::Uninit), | 
|  | Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed), | 
|  | _ => {} | 
|  | } | 
|  | } | 
|  | } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind { | 
|  | // Find problematic calls to `MaybeUninit::assume_init`. | 
|  | let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?; | 
|  | if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) { | 
|  | // This is a call to *some* method named `assume_init`. | 
|  | // See if the `self` parameter is one of the dangerous constructors. | 
|  | if let hir::ExprKind::Call(path_expr, _) = receiver.kind { | 
|  | if let hir::ExprKind::Path(ref qpath) = path_expr.kind { | 
|  | let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?; | 
|  | match cx.tcx.get_diagnostic_name(def_id) { | 
|  | Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed), | 
|  | Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit), | 
|  | _ => {} | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | None | 
|  | } | 
|  |  | 
|  | fn variant_find_init_error<'tcx>( | 
|  | cx: &LateContext<'tcx>, | 
|  | ty: Ty<'tcx>, | 
|  | variant: &VariantDef, | 
|  | args: ty::GenericArgsRef<'tcx>, | 
|  | descr: &str, | 
|  | init: InitKind, | 
|  | ) -> Option<InitError> { | 
|  | let mut field_err = variant.fields.iter().find_map(|field| { | 
|  | ty_find_init_error(cx, field.ty(cx.tcx, args), init).map(|mut err| { | 
|  | if !field.did.is_local() { | 
|  | err | 
|  | } else if err.span.is_none() { | 
|  | err.span = Some(cx.tcx.def_span(field.did)); | 
|  | write!(&mut err.message, " (in this {descr})").unwrap(); | 
|  | err | 
|  | } else { | 
|  | InitError::from(format!("in this {descr}")) | 
|  | .spanned(cx.tcx.def_span(field.did)) | 
|  | .nested(err) | 
|  | } | 
|  | }) | 
|  | }); | 
|  |  | 
|  | // Check if this ADT has a constrained layout (like `NonNull` and friends). | 
|  | if let Ok(layout) = cx.tcx.layout_of(cx.typing_env().as_query_input(ty)) { | 
|  | if let BackendRepr::Scalar(scalar) | BackendRepr::ScalarPair(scalar, _) = | 
|  | &layout.backend_repr | 
|  | { | 
|  | let range = scalar.valid_range(cx); | 
|  | let msg = if !range.contains(0) { | 
|  | "must be non-null" | 
|  | } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) { | 
|  | // Prefer reporting on the fields over the entire struct for uninit, | 
|  | // as the information bubbles out and it may be unclear why the type can't | 
|  | // be null from just its outside signature. | 
|  |  | 
|  | "must be initialized inside its custom valid range" | 
|  | } else { | 
|  | return field_err; | 
|  | }; | 
|  | if let Some(field_err) = &mut field_err { | 
|  | // Most of the time, if the field error is the same as the struct error, | 
|  | // the struct error only happens because of the field error. | 
|  | if field_err.message.contains(msg) { | 
|  | field_err.message = format!("because {}", field_err.message); | 
|  | } | 
|  | } | 
|  | return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err)); | 
|  | } | 
|  | } | 
|  | field_err | 
|  | } | 
|  |  | 
|  | /// Return `Some` only if we are sure this type does *not* | 
|  | /// allow zero initialization. | 
|  | fn ty_find_init_error<'tcx>( | 
|  | cx: &LateContext<'tcx>, | 
|  | ty: Ty<'tcx>, | 
|  | init: InitKind, | 
|  | ) -> Option<InitError> { | 
|  | let ty = cx.tcx.try_normalize_erasing_regions(cx.typing_env(), ty).unwrap_or(ty); | 
|  |  | 
|  | match ty.kind() { | 
|  | // Primitive types that don't like 0 as a value. | 
|  | ty::Ref(..) => Some("references must be non-null".into()), | 
|  | ty::Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()), | 
|  | ty::FnPtr(..) => Some("function pointers must be non-null".into()), | 
|  | ty::Never => Some("the `!` type has no valid value".into()), | 
|  | ty::RawPtr(ty, _) if matches!(ty.kind(), ty::Dynamic(..)) => | 
|  | // raw ptr to dyn Trait | 
|  | { | 
|  | Some("the vtable of a wide raw pointer must be non-null".into()) | 
|  | } | 
|  | // Primitive types with other constraints. | 
|  | ty::Bool if init == InitKind::Uninit => { | 
|  | Some("booleans must be either `true` or `false`".into()) | 
|  | } | 
|  | ty::Char if init == InitKind::Uninit => { | 
|  | Some("characters must be a valid Unicode codepoint".into()) | 
|  | } | 
|  | ty::Int(_) | ty::Uint(_) if init == InitKind::Uninit => { | 
|  | Some("integers must be initialized".into()) | 
|  | } | 
|  | ty::Float(_) if init == InitKind::Uninit => { | 
|  | Some("floats must be initialized".into()) | 
|  | } | 
|  | ty::RawPtr(_, _) if init == InitKind::Uninit => { | 
|  | Some("raw pointers must be initialized".into()) | 
|  | } | 
|  | // Recurse and checks for some compound types. (but not unions) | 
|  | ty::Adt(adt_def, args) if !adt_def.is_union() => { | 
|  | // Handle structs. | 
|  | if adt_def.is_struct() { | 
|  | return variant_find_init_error( | 
|  | cx, | 
|  | ty, | 
|  | adt_def.non_enum_variant(), | 
|  | args, | 
|  | "struct field", | 
|  | init, | 
|  | ); | 
|  | } | 
|  | // And now, enums. | 
|  | let span = cx.tcx.def_span(adt_def.did()); | 
|  | let mut potential_variants = adt_def.variants().iter().filter_map(|variant| { | 
|  | let definitely_inhabited = match variant | 
|  | .inhabited_predicate(cx.tcx, *adt_def) | 
|  | .instantiate(cx.tcx, args) | 
|  | .apply_any_module(cx.tcx, cx.typing_env()) | 
|  | { | 
|  | // Entirely skip uninhabited variants. | 
|  | Some(false) => return None, | 
|  | // Forward the others, but remember which ones are definitely inhabited. | 
|  | Some(true) => true, | 
|  | None => false, | 
|  | }; | 
|  | Some((variant, definitely_inhabited)) | 
|  | }); | 
|  | let Some(first_variant) = potential_variants.next() else { | 
|  | return Some( | 
|  | InitError::from("enums with no inhabited variants have no valid value") | 
|  | .spanned(span), | 
|  | ); | 
|  | }; | 
|  | // So we have at least one potentially inhabited variant. Might we have two? | 
|  | let Some(second_variant) = potential_variants.next() else { | 
|  | // There is only one potentially inhabited variant. So we can recursively | 
|  | // check that variant! | 
|  | return variant_find_init_error( | 
|  | cx, | 
|  | ty, | 
|  | first_variant.0, | 
|  | args, | 
|  | "field of the only potentially inhabited enum variant", | 
|  | init, | 
|  | ); | 
|  | }; | 
|  | // So we have at least two potentially inhabited variants. If we can prove that | 
|  | // we have at least two *definitely* inhabited variants, then we have a tag and | 
|  | // hence leaving this uninit is definitely disallowed. (Leaving it zeroed could | 
|  | // be okay, depending on which variant is encoded as zero tag.) | 
|  | if init == InitKind::Uninit { | 
|  | let definitely_inhabited = (first_variant.1 as usize) | 
|  | + (second_variant.1 as usize) | 
|  | + potential_variants | 
|  | .filter(|(_variant, definitely_inhabited)| *definitely_inhabited) | 
|  | .count(); | 
|  | if definitely_inhabited > 1 { | 
|  | return Some(InitError::from( | 
|  | "enums with multiple inhabited variants have to be initialized to a variant", | 
|  | ).spanned(span)); | 
|  | } | 
|  | } | 
|  | // We couldn't find anything wrong here. | 
|  | None | 
|  | } | 
|  | ty::Tuple(..) => { | 
|  | // Proceed recursively, check all fields. | 
|  | ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init)) | 
|  | } | 
|  | ty::Array(ty, len) => { | 
|  | if matches!(len.try_to_target_usize(cx.tcx), Some(v) if v > 0) { | 
|  | // Array length known at array non-empty -- recurse. | 
|  | ty_find_init_error(cx, *ty, init) | 
|  | } else { | 
|  | // Empty array or size unknown. | 
|  | None | 
|  | } | 
|  | } | 
|  | // Conservative fallback. | 
|  | _ => None, | 
|  | } | 
|  | } | 
|  |  | 
|  | if let Some(init) = is_dangerous_init(cx, expr) { | 
|  | // This conjures an instance of a type out of nothing, | 
|  | // using zeroed or uninitialized memory. | 
|  | // We are extremely conservative with what we warn about. | 
|  | let conjured_ty = cx.typeck_results().expr_ty(expr); | 
|  | if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) { | 
|  | let msg = match init { | 
|  | InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed, | 
|  | InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_uninit, | 
|  | }; | 
|  | let sub = BuiltinUnpermittedTypeInitSub { err }; | 
|  | cx.emit_span_lint( | 
|  | INVALID_VALUE, | 
|  | expr.span, | 
|  | BuiltinUnpermittedTypeInit { | 
|  | msg, | 
|  | ty: conjured_ty, | 
|  | label: expr.span, | 
|  | sub, | 
|  | tcx: cx.tcx, | 
|  | }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `deref_nullptr` lint detects when a null pointer is dereferenced, | 
|  | /// which causes [undefined behavior]. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,no_run | 
|  | /// # #![allow(unused)] | 
|  | /// use std::ptr; | 
|  | /// unsafe { | 
|  | ///     let x = &*ptr::null::<i32>(); | 
|  | ///     let x = ptr::addr_of!(*ptr::null::<i32>()); | 
|  | ///     let x = *(0 as *const i32); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Dereferencing a null pointer causes [undefined behavior] if it is accessed | 
|  | /// (loaded from or stored to). | 
|  | /// | 
|  | /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html | 
|  | pub DEREF_NULLPTR, | 
|  | Warn, | 
|  | "detects when an null pointer is dereferenced" | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]); | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for DerefNullPtr { | 
|  | fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) { | 
|  | /// test if expression is a null ptr | 
|  | fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool { | 
|  | match &expr.kind { | 
|  | hir::ExprKind::Cast(expr, ty) => { | 
|  | if let hir::TyKind::Ptr(_) = ty.kind { | 
|  | return is_zero(expr) || is_null_ptr(cx, expr); | 
|  | } | 
|  | } | 
|  | // check for call to `core::ptr::null` or `core::ptr::null_mut` | 
|  | hir::ExprKind::Call(path, _) => { | 
|  | if let hir::ExprKind::Path(ref qpath) = path.kind { | 
|  | if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() { | 
|  | return matches!( | 
|  | cx.tcx.get_diagnostic_name(def_id), | 
|  | Some(sym::ptr_null | sym::ptr_null_mut) | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  | _ => {} | 
|  | } | 
|  | false | 
|  | } | 
|  |  | 
|  | /// test if expression is the literal `0` | 
|  | fn is_zero(expr: &hir::Expr<'_>) -> bool { | 
|  | match &expr.kind { | 
|  | hir::ExprKind::Lit(lit) => { | 
|  | if let LitKind::Int(a, _) = lit.node { | 
|  | return a == 0; | 
|  | } | 
|  | } | 
|  | _ => {} | 
|  | } | 
|  | false | 
|  | } | 
|  |  | 
|  | if let hir::ExprKind::Unary(hir::UnOp::Deref, expr_deref) = expr.kind | 
|  | && is_null_ptr(cx, expr_deref) | 
|  | { | 
|  | if let hir::Node::Expr(hir::Expr { | 
|  | kind: hir::ExprKind::AddrOf(hir::BorrowKind::Raw, ..), | 
|  | .. | 
|  | }) = cx.tcx.parent_hir_node(expr.hir_id) | 
|  | { | 
|  | // `&raw *NULL` is ok. | 
|  | } else { | 
|  | cx.emit_span_lint( | 
|  | DEREF_NULLPTR, | 
|  | expr.span, | 
|  | BuiltinDerefNullptr { label: expr.span }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `named_asm_labels` lint detects the use of named labels in the | 
|  | /// inline `asm!` macro. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,compile_fail | 
|  | /// # #![feature(asm_experimental_arch)] | 
|  | /// use std::arch::asm; | 
|  | /// | 
|  | /// fn main() { | 
|  | ///     unsafe { | 
|  | ///         asm!("foo: bar"); | 
|  | ///     } | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// LLVM is allowed to duplicate inline assembly blocks for any | 
|  | /// reason, for example when it is in a function that gets inlined. Because | 
|  | /// of this, GNU assembler [local labels] *must* be used instead of labels | 
|  | /// with a name. Using named labels might cause assembler or linker errors. | 
|  | /// | 
|  | /// See the explanation in [Rust By Example] for more details. | 
|  | /// | 
|  | /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels | 
|  | /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels | 
|  | pub NAMED_ASM_LABELS, | 
|  | Deny, | 
|  | "named labels in inline assembly", | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `binary_asm_labels` lint detects the use of numeric labels containing only binary | 
|  | /// digits in the inline `asm!` macro. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,ignore (fails on non-x86_64) | 
|  | /// #![cfg(target_arch = "x86_64")] | 
|  | /// | 
|  | /// use std::arch::asm; | 
|  | /// | 
|  | /// fn main() { | 
|  | ///     unsafe { | 
|  | ///         asm!("0: jmp 0b"); | 
|  | ///     } | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// This will produce: | 
|  | /// | 
|  | /// ```text | 
|  | /// error: avoid using labels containing only the digits `0` and `1` in inline assembly | 
|  | ///  --> <source>:7:15 | 
|  | ///   | | 
|  | /// 7 |         asm!("0: jmp 0b"); | 
|  | ///   |               ^ use a different label that doesn't start with `0` or `1` | 
|  | ///   | | 
|  | ///   = help: start numbering with `2` instead | 
|  | ///   = note: an LLVM bug makes these labels ambiguous with a binary literal number on x86 | 
|  | ///   = note: see <https://github.com/llvm/llvm-project/issues/99547> for more information | 
|  | ///   = note: `#[deny(binary_asm_labels)]` on by default | 
|  | /// ``` | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// An [LLVM bug] causes this code to fail to compile because it interprets the `0b` as a binary | 
|  | /// literal instead of a reference to the previous local label `0`. To work around this bug, | 
|  | /// don't use labels that could be confused with a binary literal. | 
|  | /// | 
|  | /// This behavior is platform-specific to x86 and x86-64. | 
|  | /// | 
|  | /// See the explanation in [Rust By Example] for more details. | 
|  | /// | 
|  | /// [LLVM bug]: https://github.com/llvm/llvm-project/issues/99547 | 
|  | /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels | 
|  | pub BINARY_ASM_LABELS, | 
|  | Deny, | 
|  | "labels in inline assembly containing only 0 or 1 digits", | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(AsmLabels => [NAMED_ASM_LABELS, BINARY_ASM_LABELS]); | 
|  |  | 
|  | #[derive(Debug, Clone, Copy, PartialEq, Eq)] | 
|  | enum AsmLabelKind { | 
|  | Named, | 
|  | FormatArg, | 
|  | Binary, | 
|  | } | 
|  |  | 
|  | impl<'tcx> LateLintPass<'tcx> for AsmLabels { | 
|  | fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) { | 
|  | if let hir::Expr { | 
|  | kind: | 
|  | hir::ExprKind::InlineAsm(hir::InlineAsm { | 
|  | asm_macro: asm_macro @ (AsmMacro::Asm | AsmMacro::NakedAsm), | 
|  | template_strs, | 
|  | options, | 
|  | .. | 
|  | }), | 
|  | .. | 
|  | } = expr | 
|  | { | 
|  | // Non-generic naked functions are allowed to define arbitrary | 
|  | // labels. | 
|  | if *asm_macro == AsmMacro::NakedAsm { | 
|  | let def_id = expr.hir_id.owner.def_id; | 
|  | if !cx.tcx.generics_of(def_id).requires_monomorphization(cx.tcx) { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // asm with `options(raw)` does not do replacement with `{` and `}`. | 
|  | let raw = options.contains(InlineAsmOptions::RAW); | 
|  |  | 
|  | for (template_sym, template_snippet, template_span) in template_strs.iter() { | 
|  | let template_str = template_sym.as_str(); | 
|  | let find_label_span = |needle: &str| -> Option<Span> { | 
|  | if let Some(template_snippet) = template_snippet { | 
|  | let snippet = template_snippet.as_str(); | 
|  | if let Some(pos) = snippet.find(needle) { | 
|  | let end = pos | 
|  | + snippet[pos..] | 
|  | .find(|c| c == ':') | 
|  | .unwrap_or(snippet[pos..].len() - 1); | 
|  | let inner = InnerSpan::new(pos, end); | 
|  | return Some(template_span.from_inner(inner)); | 
|  | } | 
|  | } | 
|  |  | 
|  | None | 
|  | }; | 
|  |  | 
|  | // diagnostics are emitted per-template, so this is created here as opposed to the outer loop | 
|  | let mut spans = Vec::new(); | 
|  |  | 
|  | // A semicolon might not actually be specified as a separator for all targets, but | 
|  | // it seems like LLVM accepts it always. | 
|  | let statements = template_str.split(|c| matches!(c, '\n' | ';')); | 
|  | for statement in statements { | 
|  | // If there's a comment, trim it from the statement | 
|  | let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]); | 
|  |  | 
|  | // In this loop, if there is ever a non-label, no labels can come after it. | 
|  | let mut start_idx = 0; | 
|  | 'label_loop: for (idx, _) in statement.match_indices(':') { | 
|  | let possible_label = statement[start_idx..idx].trim(); | 
|  | let mut chars = possible_label.chars(); | 
|  |  | 
|  | let Some(start) = chars.next() else { | 
|  | // Empty string means a leading ':' in this section, which is not a | 
|  | // label. | 
|  | break 'label_loop; | 
|  | }; | 
|  |  | 
|  | // Whether a { bracket has been seen and its } hasn't been found yet. | 
|  | let mut in_bracket = false; | 
|  | let mut label_kind = AsmLabelKind::Named; | 
|  |  | 
|  | // A label can also start with a format arg, if it's not a raw asm block. | 
|  | if !raw && start == '{' { | 
|  | in_bracket = true; | 
|  | label_kind = AsmLabelKind::FormatArg; | 
|  | } else if matches!(start, '0' | '1') { | 
|  | // Binary labels have only the characters `0` or `1`. | 
|  | label_kind = AsmLabelKind::Binary; | 
|  | } else if !(start.is_ascii_alphabetic() || matches!(start, '.' | '_')) { | 
|  | // Named labels start with ASCII letters, `.` or `_`. | 
|  | // anything else is not a label | 
|  | break 'label_loop; | 
|  | } | 
|  |  | 
|  | for c in chars { | 
|  | // Inside a template format arg, any character is permitted for the | 
|  | // puproses of label detection because we assume that it can be | 
|  | // replaced with some other valid label string later. `options(raw)` | 
|  | // asm blocks cannot have format args, so they are excluded from this | 
|  | // special case. | 
|  | if !raw && in_bracket { | 
|  | if c == '{' { | 
|  | // Nested brackets are not allowed in format args, this cannot | 
|  | // be a label. | 
|  | break 'label_loop; | 
|  | } | 
|  |  | 
|  | if c == '}' { | 
|  | // The end of the format arg. | 
|  | in_bracket = false; | 
|  | } | 
|  | } else if !raw && c == '{' { | 
|  | // Start of a format arg. | 
|  | in_bracket = true; | 
|  | label_kind = AsmLabelKind::FormatArg; | 
|  | } else { | 
|  | let can_continue = match label_kind { | 
|  | // Format arg labels are considered to be named labels for the purposes | 
|  | // of continuing outside of their {} pair. | 
|  | AsmLabelKind::Named | AsmLabelKind::FormatArg => { | 
|  | c.is_ascii_alphanumeric() || matches!(c, '_' | '$') | 
|  | } | 
|  | AsmLabelKind::Binary => matches!(c, '0' | '1'), | 
|  | }; | 
|  |  | 
|  | if !can_continue { | 
|  | // The potential label had an invalid character inside it, it | 
|  | // cannot be a label. | 
|  | break 'label_loop; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all characters passed the label checks, this is a label. | 
|  | spans.push((find_label_span(possible_label), label_kind)); | 
|  | start_idx = idx + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (span, label_kind) in spans { | 
|  | let missing_precise_span = span.is_none(); | 
|  | let span = span.unwrap_or(*template_span); | 
|  | match label_kind { | 
|  | AsmLabelKind::Named => { | 
|  | cx.emit_span_lint( | 
|  | NAMED_ASM_LABELS, | 
|  | span, | 
|  | InvalidAsmLabel::Named { missing_precise_span }, | 
|  | ); | 
|  | } | 
|  | AsmLabelKind::FormatArg => { | 
|  | cx.emit_span_lint( | 
|  | NAMED_ASM_LABELS, | 
|  | span, | 
|  | InvalidAsmLabel::FormatArg { missing_precise_span }, | 
|  | ); | 
|  | } | 
|  | // the binary asm issue only occurs when using intel syntax on x86 targets | 
|  | AsmLabelKind::Binary | 
|  | if !options.contains(InlineAsmOptions::ATT_SYNTAX) | 
|  | && matches!( | 
|  | cx.tcx.sess.asm_arch, | 
|  | Some(InlineAsmArch::X86 | InlineAsmArch::X86_64) | None | 
|  | ) => | 
|  | { | 
|  | cx.emit_span_lint( | 
|  | BINARY_ASM_LABELS, | 
|  | span, | 
|  | InvalidAsmLabel::Binary { missing_precise_span, span }, | 
|  | ) | 
|  | } | 
|  | // No lint on anything other than x86 | 
|  | AsmLabelKind::Binary => (), | 
|  | }; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | declare_lint! { | 
|  | /// The `special_module_name` lint detects module | 
|  | /// declarations for files that have a special meaning. | 
|  | /// | 
|  | /// ### Example | 
|  | /// | 
|  | /// ```rust,compile_fail | 
|  | /// mod lib; | 
|  | /// | 
|  | /// fn main() { | 
|  | ///     lib::run(); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// {{produces}} | 
|  | /// | 
|  | /// ### Explanation | 
|  | /// | 
|  | /// Cargo recognizes `lib.rs` and `main.rs` as the root of a | 
|  | /// library or binary crate, so declaring them as modules | 
|  | /// will lead to miscompilation of the crate unless configured | 
|  | /// explicitly. | 
|  | /// | 
|  | /// To access a library from a binary target within the same crate, | 
|  | /// use `your_crate_name::` as the path instead of `lib::`: | 
|  | /// | 
|  | /// ```rust,compile_fail | 
|  | /// // bar/src/lib.rs | 
|  | /// fn run() { | 
|  | ///     // ... | 
|  | /// } | 
|  | /// | 
|  | /// // bar/src/main.rs | 
|  | /// fn main() { | 
|  | ///     bar::run(); | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// Binary targets cannot be used as libraries and so declaring | 
|  | /// one as a module is not allowed. | 
|  | pub SPECIAL_MODULE_NAME, | 
|  | Warn, | 
|  | "module declarations for files with a special meaning", | 
|  | } | 
|  |  | 
|  | declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]); | 
|  |  | 
|  | impl EarlyLintPass for SpecialModuleName { | 
|  | fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) { | 
|  | for item in &krate.items { | 
|  | if let ast::ItemKind::Mod( | 
|  | _, | 
|  | ident, | 
|  | ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No, _, _), | 
|  | ) = item.kind | 
|  | { | 
|  | if item.attrs.iter().any(|a| a.has_name(sym::path)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | match ident.name.as_str() { | 
|  | "lib" => cx.emit_span_lint( | 
|  | SPECIAL_MODULE_NAME, | 
|  | item.span, | 
|  | BuiltinSpecialModuleNameUsed::Lib, | 
|  | ), | 
|  | "main" => cx.emit_span_lint( | 
|  | SPECIAL_MODULE_NAME, | 
|  | item.span, | 
|  | BuiltinSpecialModuleNameUsed::Main, | 
|  | ), | 
|  | _ => continue, | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } |