|  | //! This file builds up the `ScopeTree`, which describes | 
|  | //! the parent links in the region hierarchy. | 
|  | //! | 
|  | //! For more information about how MIR-based region-checking works, | 
|  | //! see the [rustc dev guide]. | 
|  | //! | 
|  | //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/borrow_check.html | 
|  |  | 
|  | use std::mem; | 
|  |  | 
|  | use rustc_data_structures::fx::FxHashMap; | 
|  | use rustc_hir as hir; | 
|  | use rustc_hir::def::{CtorKind, DefKind, Res}; | 
|  | use rustc_hir::def_id::DefId; | 
|  | use rustc_hir::intravisit::{self, Visitor}; | 
|  | use rustc_hir::{Arm, Block, Expr, LetStmt, Pat, PatKind, Stmt}; | 
|  | use rustc_index::Idx; | 
|  | use rustc_middle::middle::region::*; | 
|  | use rustc_middle::ty::TyCtxt; | 
|  | use rustc_session::lint; | 
|  | use rustc_span::source_map; | 
|  | use tracing::debug; | 
|  |  | 
|  | #[derive(Debug, Copy, Clone)] | 
|  | struct Context { | 
|  | /// The scope that contains any new variables declared. | 
|  | var_parent: Option<Scope>, | 
|  |  | 
|  | /// Region parent of expressions, etc. | 
|  | parent: Option<Scope>, | 
|  | } | 
|  |  | 
|  | struct ScopeResolutionVisitor<'tcx> { | 
|  | tcx: TyCtxt<'tcx>, | 
|  |  | 
|  | // The generated scope tree. | 
|  | scope_tree: ScopeTree, | 
|  |  | 
|  | cx: Context, | 
|  |  | 
|  | extended_super_lets: FxHashMap<hir::ItemLocalId, Option<Scope>>, | 
|  | } | 
|  |  | 
|  | /// Records the lifetime of a local variable as `cx.var_parent` | 
|  | fn record_var_lifetime(visitor: &mut ScopeResolutionVisitor<'_>, var_id: hir::ItemLocalId) { | 
|  | match visitor.cx.var_parent { | 
|  | None => { | 
|  | // this can happen in extern fn declarations like | 
|  | // | 
|  | // extern fn isalnum(c: c_int) -> c_int | 
|  | } | 
|  | Some(parent_scope) => visitor.scope_tree.record_var_scope(var_id, parent_scope), | 
|  | } | 
|  | } | 
|  |  | 
|  | fn resolve_block<'tcx>( | 
|  | visitor: &mut ScopeResolutionVisitor<'tcx>, | 
|  | blk: &'tcx hir::Block<'tcx>, | 
|  | terminating: bool, | 
|  | ) { | 
|  | debug!("resolve_block(blk.hir_id={:?})", blk.hir_id); | 
|  |  | 
|  | let prev_cx = visitor.cx; | 
|  |  | 
|  | // We treat the tail expression in the block (if any) somewhat | 
|  | // differently from the statements. The issue has to do with | 
|  | // temporary lifetimes. Consider the following: | 
|  | // | 
|  | //    quux({ | 
|  | //        let inner = ... (&bar()) ...; | 
|  | // | 
|  | //        (... (&foo()) ...) // (the tail expression) | 
|  | //    }, other_argument()); | 
|  | // | 
|  | // Each of the statements within the block is a terminating | 
|  | // scope, and thus a temporary (e.g., the result of calling | 
|  | // `bar()` in the initializer expression for `let inner = ...;`) | 
|  | // will be cleaned up immediately after its corresponding | 
|  | // statement (i.e., `let inner = ...;`) executes. | 
|  | // | 
|  | // On the other hand, temporaries associated with evaluating the | 
|  | // tail expression for the block are assigned lifetimes so that | 
|  | // they will be cleaned up as part of the terminating scope | 
|  | // *surrounding* the block expression. Here, the terminating | 
|  | // scope for the block expression is the `quux(..)` call; so | 
|  | // those temporaries will only be cleaned up *after* both | 
|  | // `other_argument()` has run and also the call to `quux(..)` | 
|  | // itself has returned. | 
|  |  | 
|  | visitor.enter_node_scope_with_dtor(blk.hir_id.local_id, terminating); | 
|  | visitor.cx.var_parent = visitor.cx.parent; | 
|  |  | 
|  | { | 
|  | // This block should be kept approximately in sync with | 
|  | // `intravisit::walk_block`. (We manually walk the block, rather | 
|  | // than call `walk_block`, in order to maintain precise | 
|  | // index information.) | 
|  |  | 
|  | for (i, statement) in blk.stmts.iter().enumerate() { | 
|  | match statement.kind { | 
|  | hir::StmtKind::Let(LetStmt { els: Some(els), .. }) => { | 
|  | // Let-else has a special lexical structure for variables. | 
|  | // First we take a checkpoint of the current scope context here. | 
|  | let mut prev_cx = visitor.cx; | 
|  |  | 
|  | visitor.enter_scope(Scope { | 
|  | local_id: blk.hir_id.local_id, | 
|  | data: ScopeData::Remainder(FirstStatementIndex::new(i)), | 
|  | }); | 
|  | visitor.cx.var_parent = visitor.cx.parent; | 
|  | visitor.visit_stmt(statement); | 
|  | // We need to back out temporarily to the last enclosing scope | 
|  | // for the `else` block, so that even the temporaries receiving | 
|  | // extended lifetime will be dropped inside this block. | 
|  | // We are visiting the `else` block in this order so that | 
|  | // the sequence of visits agree with the order in the default | 
|  | // `hir::intravisit` visitor. | 
|  | mem::swap(&mut prev_cx, &mut visitor.cx); | 
|  | resolve_block(visitor, els, true); | 
|  | // From now on, we continue normally. | 
|  | visitor.cx = prev_cx; | 
|  | } | 
|  | hir::StmtKind::Let(..) => { | 
|  | // Each declaration introduces a subscope for bindings | 
|  | // introduced by the declaration; this subscope covers a | 
|  | // suffix of the block. Each subscope in a block has the | 
|  | // previous subscope in the block as a parent, except for | 
|  | // the first such subscope, which has the block itself as a | 
|  | // parent. | 
|  | visitor.enter_scope(Scope { | 
|  | local_id: blk.hir_id.local_id, | 
|  | data: ScopeData::Remainder(FirstStatementIndex::new(i)), | 
|  | }); | 
|  | visitor.cx.var_parent = visitor.cx.parent; | 
|  | visitor.visit_stmt(statement) | 
|  | } | 
|  | hir::StmtKind::Item(..) => { | 
|  | // Don't create scopes for items, since they won't be | 
|  | // lowered to THIR and MIR. | 
|  | } | 
|  | hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => visitor.visit_stmt(statement), | 
|  | } | 
|  | } | 
|  | if let Some(tail_expr) = blk.expr { | 
|  | let local_id = tail_expr.hir_id.local_id; | 
|  | let edition = blk.span.edition(); | 
|  | let terminating = edition.at_least_rust_2024(); | 
|  | if !terminating | 
|  | && !visitor | 
|  | .tcx | 
|  | .lints_that_dont_need_to_run(()) | 
|  | .contains(&lint::LintId::of(lint::builtin::TAIL_EXPR_DROP_ORDER)) | 
|  | { | 
|  | // If this temporary scope will be changing once the codebase adopts Rust 2024, | 
|  | // and we are linting about possible semantic changes that would result, | 
|  | // then record this node-id in the field `backwards_incompatible_scope` | 
|  | // for future reference. | 
|  | visitor | 
|  | .scope_tree | 
|  | .backwards_incompatible_scope | 
|  | .insert(local_id, Scope { local_id, data: ScopeData::Node }); | 
|  | } | 
|  | resolve_expr(visitor, tail_expr, terminating); | 
|  | } | 
|  | } | 
|  |  | 
|  | visitor.cx = prev_cx; | 
|  | } | 
|  |  | 
|  | /// Resolve a condition from an `if` expression or match guard so that it is a terminating scope | 
|  | /// if it doesn't contain `let` expressions. | 
|  | fn resolve_cond<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, cond: &'tcx hir::Expr<'tcx>) { | 
|  | let terminate = match cond.kind { | 
|  | // Temporaries for `let` expressions must live into the success branch. | 
|  | hir::ExprKind::Let(_) => false, | 
|  | // Logical operator chains are handled in `resolve_expr`. Since logical operator chains in | 
|  | // conditions are lowered to control-flow rather than boolean temporaries, there's no | 
|  | // temporary to drop for logical operators themselves. `resolve_expr` will also recursively | 
|  | // wrap any operands in terminating scopes, other than `let` expressions (which we shouldn't | 
|  | // terminate) and other logical operators (which don't need a terminating scope, since their | 
|  | // operands will be terminated). Any temporaries that would need to be dropped will be | 
|  | // dropped before we leave this operator's scope; terminating them here would be redundant. | 
|  | hir::ExprKind::Binary( | 
|  | source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. }, | 
|  | _, | 
|  | _, | 
|  | ) => false, | 
|  | // Otherwise, conditions should always drop their temporaries. | 
|  | _ => true, | 
|  | }; | 
|  | resolve_expr(visitor, cond, terminate); | 
|  | } | 
|  |  | 
|  | fn resolve_arm<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, arm: &'tcx hir::Arm<'tcx>) { | 
|  | let prev_cx = visitor.cx; | 
|  |  | 
|  | visitor.enter_node_scope_with_dtor(arm.hir_id.local_id, true); | 
|  | visitor.cx.var_parent = visitor.cx.parent; | 
|  |  | 
|  | resolve_pat(visitor, arm.pat); | 
|  | if let Some(guard) = arm.guard { | 
|  | resolve_cond(visitor, guard); | 
|  | } | 
|  | resolve_expr(visitor, arm.body, false); | 
|  |  | 
|  | visitor.cx = prev_cx; | 
|  | } | 
|  |  | 
|  | #[tracing::instrument(level = "debug", skip(visitor))] | 
|  | fn resolve_pat<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, pat: &'tcx hir::Pat<'tcx>) { | 
|  | // If this is a binding then record the lifetime of that binding. | 
|  | if let PatKind::Binding(..) = pat.kind { | 
|  | record_var_lifetime(visitor, pat.hir_id.local_id); | 
|  | } | 
|  |  | 
|  | intravisit::walk_pat(visitor, pat); | 
|  | } | 
|  |  | 
|  | fn resolve_stmt<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, stmt: &'tcx hir::Stmt<'tcx>) { | 
|  | let stmt_id = stmt.hir_id.local_id; | 
|  | debug!("resolve_stmt(stmt.id={:?})", stmt_id); | 
|  |  | 
|  | if let hir::StmtKind::Let(LetStmt { super_: Some(_), .. }) = stmt.kind { | 
|  | // `super let` statement does not start a new scope, such that | 
|  | // | 
|  | //     { super let x = identity(&temp()); &x }.method(); | 
|  | // | 
|  | // behaves exactly as | 
|  | // | 
|  | //     (&identity(&temp()).method(); | 
|  | intravisit::walk_stmt(visitor, stmt); | 
|  | } else { | 
|  | // Every statement will clean up the temporaries created during | 
|  | // execution of that statement. Therefore each statement has an | 
|  | // associated destruction scope that represents the scope of the | 
|  | // statement plus its destructors, and thus the scope for which | 
|  | // regions referenced by the destructors need to survive. | 
|  |  | 
|  | let prev_parent = visitor.cx.parent; | 
|  | visitor.enter_node_scope_with_dtor(stmt_id, true); | 
|  |  | 
|  | intravisit::walk_stmt(visitor, stmt); | 
|  |  | 
|  | visitor.cx.parent = prev_parent; | 
|  | } | 
|  | } | 
|  |  | 
|  | #[tracing::instrument(level = "debug", skip(visitor))] | 
|  | fn resolve_expr<'tcx>( | 
|  | visitor: &mut ScopeResolutionVisitor<'tcx>, | 
|  | expr: &'tcx hir::Expr<'tcx>, | 
|  | terminating: bool, | 
|  | ) { | 
|  | let prev_cx = visitor.cx; | 
|  | visitor.enter_node_scope_with_dtor(expr.hir_id.local_id, terminating); | 
|  |  | 
|  | match expr.kind { | 
|  | // Conditional or repeating scopes are always terminating | 
|  | // scopes, meaning that temporaries cannot outlive them. | 
|  | // This ensures fixed size stacks. | 
|  | hir::ExprKind::Binary( | 
|  | source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. }, | 
|  | left, | 
|  | right, | 
|  | ) => { | 
|  | // expr is a short circuiting operator (|| or &&). As its | 
|  | // functionality can't be overridden by traits, it always | 
|  | // processes bool sub-expressions. bools are Copy and thus we | 
|  | // can drop any temporaries in evaluation (read) order | 
|  | // (with the exception of potentially failing let expressions). | 
|  | // We achieve this by enclosing the operands in a terminating | 
|  | // scope, both the LHS and the RHS. | 
|  |  | 
|  | // We optimize this a little in the presence of chains. | 
|  | // Chains like a && b && c get lowered to AND(AND(a, b), c). | 
|  | // In here, b and c are RHS, while a is the only LHS operand in | 
|  | // that chain. This holds true for longer chains as well: the | 
|  | // leading operand is always the only LHS operand that is not a | 
|  | // binop itself. Putting a binop like AND(a, b) into a | 
|  | // terminating scope is not useful, thus we only put the LHS | 
|  | // into a terminating scope if it is not a binop. | 
|  |  | 
|  | let terminate_lhs = match left.kind { | 
|  | // let expressions can create temporaries that live on | 
|  | hir::ExprKind::Let(_) => false, | 
|  | // binops already drop their temporaries, so there is no | 
|  | // need to put them into a terminating scope. | 
|  | // This is purely an optimization to reduce the number of | 
|  | // terminating scopes. | 
|  | hir::ExprKind::Binary( | 
|  | source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. }, | 
|  | .., | 
|  | ) => false, | 
|  | // otherwise: mark it as terminating | 
|  | _ => true, | 
|  | }; | 
|  |  | 
|  | // `Let` expressions (in a let-chain) shouldn't be terminating, as their temporaries | 
|  | // should live beyond the immediate expression | 
|  | let terminate_rhs = !matches!(right.kind, hir::ExprKind::Let(_)); | 
|  |  | 
|  | resolve_expr(visitor, left, terminate_lhs); | 
|  | resolve_expr(visitor, right, terminate_rhs); | 
|  | } | 
|  | // Manually recurse over closures, because they are nested bodies | 
|  | // that share the parent environment. We handle const blocks in | 
|  | // `visit_inline_const`. | 
|  | hir::ExprKind::Closure(&hir::Closure { body, .. }) => { | 
|  | let body = visitor.tcx.hir_body(body); | 
|  | visitor.visit_body(body); | 
|  | } | 
|  | // Ordinarily, we can rely on the visit order of HIR intravisit | 
|  | // to correspond to the actual execution order of statements. | 
|  | // However, there's a weird corner case with compound assignment | 
|  | // operators (e.g. `a += b`). The evaluation order depends on whether | 
|  | // or not the operator is overloaded (e.g. whether or not a trait | 
|  | // like AddAssign is implemented). | 
|  | // | 
|  | // For primitive types (which, despite having a trait impl, don't actually | 
|  | // end up calling it), the evaluation order is right-to-left. For example, | 
|  | // the following code snippet: | 
|  | // | 
|  | //    let y = &mut 0; | 
|  | //    *{println!("LHS!"); y} += {println!("RHS!"); 1}; | 
|  | // | 
|  | // will print: | 
|  | // | 
|  | // RHS! | 
|  | // LHS! | 
|  | // | 
|  | // However, if the operator is used on a non-primitive type, | 
|  | // the evaluation order will be left-to-right, since the operator | 
|  | // actually get desugared to a method call. For example, this | 
|  | // nearly identical code snippet: | 
|  | // | 
|  | //     let y = &mut String::new(); | 
|  | //    *{println!("LHS String"); y} += {println!("RHS String"); "hi"}; | 
|  | // | 
|  | // will print: | 
|  | // LHS String | 
|  | // RHS String | 
|  | // | 
|  | // To determine the actual execution order, we need to perform | 
|  | // trait resolution. Fortunately, we don't need to know the actual execution order. | 
|  | hir::ExprKind::AssignOp(_, left_expr, right_expr) => { | 
|  | visitor.visit_expr(right_expr); | 
|  | visitor.visit_expr(left_expr); | 
|  | } | 
|  |  | 
|  | hir::ExprKind::If(cond, then, Some(otherwise)) => { | 
|  | let expr_cx = visitor.cx; | 
|  | let data = if expr.span.at_least_rust_2024() { | 
|  | ScopeData::IfThenRescope | 
|  | } else { | 
|  | ScopeData::IfThen | 
|  | }; | 
|  | visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data }); | 
|  | visitor.cx.var_parent = visitor.cx.parent; | 
|  | resolve_cond(visitor, cond); | 
|  | resolve_expr(visitor, then, true); | 
|  | visitor.cx = expr_cx; | 
|  | resolve_expr(visitor, otherwise, true); | 
|  | } | 
|  |  | 
|  | hir::ExprKind::If(cond, then, None) => { | 
|  | let expr_cx = visitor.cx; | 
|  | let data = if expr.span.at_least_rust_2024() { | 
|  | ScopeData::IfThenRescope | 
|  | } else { | 
|  | ScopeData::IfThen | 
|  | }; | 
|  | visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data }); | 
|  | visitor.cx.var_parent = visitor.cx.parent; | 
|  | resolve_cond(visitor, cond); | 
|  | resolve_expr(visitor, then, true); | 
|  | visitor.cx = expr_cx; | 
|  | } | 
|  |  | 
|  | hir::ExprKind::Loop(body, _, _, _) => { | 
|  | resolve_block(visitor, body, true); | 
|  | } | 
|  |  | 
|  | hir::ExprKind::DropTemps(expr) => { | 
|  | // `DropTemps(expr)` does not denote a conditional scope. | 
|  | // Rather, we want to achieve the same behavior as `{ let _t = expr; _t }`. | 
|  | resolve_expr(visitor, expr, true); | 
|  | } | 
|  |  | 
|  | _ => intravisit::walk_expr(visitor, expr), | 
|  | } | 
|  |  | 
|  | visitor.cx = prev_cx; | 
|  | } | 
|  |  | 
|  | #[derive(Copy, Clone, PartialEq, Eq, Debug)] | 
|  | enum LetKind { | 
|  | Regular, | 
|  | Super, | 
|  | } | 
|  |  | 
|  | fn resolve_local<'tcx>( | 
|  | visitor: &mut ScopeResolutionVisitor<'tcx>, | 
|  | pat: Option<&'tcx hir::Pat<'tcx>>, | 
|  | init: Option<&'tcx hir::Expr<'tcx>>, | 
|  | let_kind: LetKind, | 
|  | ) { | 
|  | debug!("resolve_local(pat={:?}, init={:?}, let_kind={:?})", pat, init, let_kind); | 
|  |  | 
|  | // As an exception to the normal rules governing temporary | 
|  | // lifetimes, initializers in a let have a temporary lifetime | 
|  | // of the enclosing block. This means that e.g., a program | 
|  | // like the following is legal: | 
|  | // | 
|  | //     let ref x = HashMap::new(); | 
|  | // | 
|  | // Because the hash map will be freed in the enclosing block. | 
|  | // | 
|  | // We express the rules more formally based on 3 grammars (defined | 
|  | // fully in the helpers below that implement them): | 
|  | // | 
|  | // 1. `E&`, which matches expressions like `&<rvalue>` that | 
|  | //    own a pointer into the stack. | 
|  | // | 
|  | // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref | 
|  | //    y)` that produce ref bindings into the value they are | 
|  | //    matched against or something (at least partially) owned by | 
|  | //    the value they are matched against. (By partially owned, | 
|  | //    I mean that creating a binding into a ref-counted or managed value | 
|  | //    would still count.) | 
|  | // | 
|  | // 3. `ET`, which matches both rvalues like `foo()` as well as places | 
|  | //    based on rvalues like `foo().x[2].y`. | 
|  | // | 
|  | // A subexpression `<rvalue>` that appears in a let initializer | 
|  | // `let pat [: ty] = expr` has an extended temporary lifetime if | 
|  | // any of the following conditions are met: | 
|  | // | 
|  | // A. `pat` matches `P&` and `expr` matches `ET` | 
|  | //    (covers cases where `pat` creates ref bindings into an rvalue | 
|  | //     produced by `expr`) | 
|  | // B. `ty` is a borrowed pointer and `expr` matches `ET` | 
|  | //    (covers cases where coercion creates a borrow) | 
|  | // C. `expr` matches `E&` | 
|  | //    (covers cases `expr` borrows an rvalue that is then assigned | 
|  | //     to memory (at least partially) owned by the binding) | 
|  | // | 
|  | // Here are some examples hopefully giving an intuition where each | 
|  | // rule comes into play and why: | 
|  | // | 
|  | // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)` | 
|  | // would have an extended lifetime, but not `foo()`. | 
|  | // | 
|  | // Rule B. `let x = &foo().x`. The rvalue `foo()` would have extended | 
|  | // lifetime. | 
|  | // | 
|  | // In some cases, multiple rules may apply (though not to the same | 
|  | // rvalue). For example: | 
|  | // | 
|  | //     let ref x = [&a(), &b()]; | 
|  | // | 
|  | // Here, the expression `[...]` has an extended lifetime due to rule | 
|  | // A, but the inner rvalues `a()` and `b()` have an extended lifetime | 
|  | // due to rule C. | 
|  |  | 
|  | if let_kind == LetKind::Super { | 
|  | if let Some(scope) = visitor.extended_super_lets.remove(&pat.unwrap().hir_id.local_id) { | 
|  | // This expression was lifetime-extended by a parent let binding. E.g. | 
|  | // | 
|  | //     let a = { | 
|  | //         super let b = temp(); | 
|  | //         &b | 
|  | //     }; | 
|  | // | 
|  | // (Which needs to behave exactly as: let a = &temp();) | 
|  | // | 
|  | // Processing of `let a` will have already decided to extend the lifetime of this | 
|  | // `super let` to its own var_scope. We use that scope. | 
|  | visitor.cx.var_parent = scope; | 
|  | } else { | 
|  | // This `super let` is not subject to lifetime extension from a parent let binding. E.g. | 
|  | // | 
|  | //     identity({ super let x = temp(); &x }).method(); | 
|  | // | 
|  | // (Which needs to behave exactly as: identity(&temp()).method();) | 
|  | // | 
|  | // Iterate up to the enclosing destruction scope to find the same scope that will also | 
|  | // be used for the result of the block itself. | 
|  | while let Some(s) = visitor.cx.var_parent { | 
|  | let parent = visitor.scope_tree.parent_map.get(&s).cloned(); | 
|  | if let Some(Scope { data: ScopeData::Destruction, .. }) = parent { | 
|  | break; | 
|  | } | 
|  | visitor.cx.var_parent = parent; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if let Some(expr) = init { | 
|  | record_rvalue_scope_if_borrow_expr(visitor, expr, visitor.cx.var_parent); | 
|  |  | 
|  | if let Some(pat) = pat { | 
|  | if is_binding_pat(pat) { | 
|  | visitor.scope_tree.record_rvalue_candidate( | 
|  | expr.hir_id, | 
|  | RvalueCandidate { | 
|  | target: expr.hir_id.local_id, | 
|  | lifetime: visitor.cx.var_parent, | 
|  | }, | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we visit the initializer first. | 
|  | // The correct order, as shared between drop_ranges and intravisitor, | 
|  | // is to walk initializer, followed by pattern bindings, finally followed by the `else` block. | 
|  | if let Some(expr) = init { | 
|  | visitor.visit_expr(expr); | 
|  | } | 
|  |  | 
|  | if let Some(pat) = pat { | 
|  | visitor.visit_pat(pat); | 
|  | } | 
|  |  | 
|  | /// Returns `true` if `pat` match the `P&` non-terminal. | 
|  | /// | 
|  | /// ```text | 
|  | ///     P& = ref X | 
|  | ///        | StructName { ..., P&, ... } | 
|  | ///        | VariantName(..., P&, ...) | 
|  | ///        | [ ..., P&, ... ] | 
|  | ///        | ( ..., P&, ... ) | 
|  | ///        | ... "|" P& "|" ... | 
|  | ///        | box P& | 
|  | ///        | P& if ... | 
|  | /// ``` | 
|  | fn is_binding_pat(pat: &hir::Pat<'_>) -> bool { | 
|  | // Note that the code below looks for *explicit* refs only, that is, it won't | 
|  | // know about *implicit* refs as introduced in #42640. | 
|  | // | 
|  | // This is not a problem. For example, consider | 
|  | // | 
|  | //      let (ref x, ref y) = (Foo { .. }, Bar { .. }); | 
|  | // | 
|  | // Due to the explicit refs on the left hand side, the below code would signal | 
|  | // that the temporary value on the right hand side should live until the end of | 
|  | // the enclosing block (as opposed to being dropped after the let is complete). | 
|  | // | 
|  | // To create an implicit ref, however, you must have a borrowed value on the RHS | 
|  | // already, as in this example (which won't compile before #42640): | 
|  | // | 
|  | //      let Foo { x, .. } = &Foo { x: ..., ... }; | 
|  | // | 
|  | // in place of | 
|  | // | 
|  | //      let Foo { ref x, .. } = Foo { ... }; | 
|  | // | 
|  | // In the former case (the implicit ref version), the temporary is created by the | 
|  | // & expression, and its lifetime would be extended to the end of the block (due | 
|  | // to a different rule, not the below code). | 
|  | match pat.kind { | 
|  | PatKind::Binding(hir::BindingMode(hir::ByRef::Yes(_), _), ..) => true, | 
|  |  | 
|  | PatKind::Struct(_, field_pats, _) => field_pats.iter().any(|fp| is_binding_pat(fp.pat)), | 
|  |  | 
|  | PatKind::Slice(pats1, pats2, pats3) => { | 
|  | pats1.iter().any(|p| is_binding_pat(p)) | 
|  | || pats2.iter().any(|p| is_binding_pat(p)) | 
|  | || pats3.iter().any(|p| is_binding_pat(p)) | 
|  | } | 
|  |  | 
|  | PatKind::Or(subpats) | 
|  | | PatKind::TupleStruct(_, subpats, _) | 
|  | | PatKind::Tuple(subpats, _) => subpats.iter().any(|p| is_binding_pat(p)), | 
|  |  | 
|  | PatKind::Box(subpat) | PatKind::Deref(subpat) | PatKind::Guard(subpat, _) => { | 
|  | is_binding_pat(subpat) | 
|  | } | 
|  |  | 
|  | PatKind::Ref(_, _) | 
|  | | PatKind::Binding(hir::BindingMode(hir::ByRef::No, _), ..) | 
|  | | PatKind::Missing | 
|  | | PatKind::Wild | 
|  | | PatKind::Never | 
|  | | PatKind::Expr(_) | 
|  | | PatKind::Range(_, _, _) | 
|  | | PatKind::Err(_) => false, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate: | 
|  | /// | 
|  | /// ```text | 
|  | ///     E& = & ET | 
|  | ///        | StructName { ..., f: E&, ... } | 
|  | ///        | [ ..., E&, ... ] | 
|  | ///        | ( ..., E&, ... ) | 
|  | ///        | {...; E&} | 
|  | ///        | { super let ... = E&; ... } | 
|  | ///        | if _ { ...; E& } else { ...; E& } | 
|  | ///        | match _ { ..., _ => E&, ... } | 
|  | ///        | box E& | 
|  | ///        | E& as ... | 
|  | ///        | ( E& ) | 
|  | /// ``` | 
|  | fn record_rvalue_scope_if_borrow_expr<'tcx>( | 
|  | visitor: &mut ScopeResolutionVisitor<'tcx>, | 
|  | expr: &hir::Expr<'_>, | 
|  | blk_id: Option<Scope>, | 
|  | ) { | 
|  | match expr.kind { | 
|  | hir::ExprKind::AddrOf(_, _, subexpr) => { | 
|  | record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); | 
|  | visitor.scope_tree.record_rvalue_candidate( | 
|  | subexpr.hir_id, | 
|  | RvalueCandidate { target: subexpr.hir_id.local_id, lifetime: blk_id }, | 
|  | ); | 
|  | } | 
|  | hir::ExprKind::Struct(_, fields, _) => { | 
|  | for field in fields { | 
|  | record_rvalue_scope_if_borrow_expr(visitor, field.expr, blk_id); | 
|  | } | 
|  | } | 
|  | hir::ExprKind::Array(subexprs) | hir::ExprKind::Tup(subexprs) => { | 
|  | for subexpr in subexprs { | 
|  | record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); | 
|  | } | 
|  | } | 
|  | hir::ExprKind::Cast(subexpr, _) => { | 
|  | record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id) | 
|  | } | 
|  | hir::ExprKind::Block(block, _) => { | 
|  | if let Some(subexpr) = block.expr { | 
|  | record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); | 
|  | } | 
|  | for stmt in block.stmts { | 
|  | if let hir::StmtKind::Let(local) = stmt.kind | 
|  | && let Some(_) = local.super_ | 
|  | { | 
|  | visitor.extended_super_lets.insert(local.pat.hir_id.local_id, blk_id); | 
|  | } | 
|  | } | 
|  | } | 
|  | hir::ExprKind::If(_, then_block, else_block) => { | 
|  | record_rvalue_scope_if_borrow_expr(visitor, then_block, blk_id); | 
|  | if let Some(else_block) = else_block { | 
|  | record_rvalue_scope_if_borrow_expr(visitor, else_block, blk_id); | 
|  | } | 
|  | } | 
|  | hir::ExprKind::Match(_, arms, _) => { | 
|  | for arm in arms { | 
|  | record_rvalue_scope_if_borrow_expr(visitor, arm.body, blk_id); | 
|  | } | 
|  | } | 
|  | hir::ExprKind::Call(func, args) => { | 
|  | // Recurse into tuple constructors, such as `Some(&temp())`. | 
|  | // | 
|  | // That way, there is no difference between `Some(..)` and `Some { 0: .. }`, | 
|  | // even though the former is syntactically a function call. | 
|  | if let hir::ExprKind::Path(path) = &func.kind | 
|  | && let hir::QPath::Resolved(None, path) = path | 
|  | && let Res::SelfCtor(_) | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) = path.res | 
|  | { | 
|  | for arg in args { | 
|  | record_rvalue_scope_if_borrow_expr(visitor, arg, blk_id); | 
|  | } | 
|  | } | 
|  | } | 
|  | _ => {} | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> ScopeResolutionVisitor<'tcx> { | 
|  | /// Records the current parent (if any) as the parent of `child_scope`. | 
|  | fn record_child_scope(&mut self, child_scope: Scope) { | 
|  | let parent = self.cx.parent; | 
|  | self.scope_tree.record_scope_parent(child_scope, parent); | 
|  | } | 
|  |  | 
|  | /// Records the current parent (if any) as the parent of `child_scope`, | 
|  | /// and sets `child_scope` as the new current parent. | 
|  | fn enter_scope(&mut self, child_scope: Scope) { | 
|  | self.record_child_scope(child_scope); | 
|  | self.cx.parent = Some(child_scope); | 
|  | } | 
|  |  | 
|  | fn enter_node_scope_with_dtor(&mut self, id: hir::ItemLocalId, terminating: bool) { | 
|  | // If node was previously marked as a terminating scope during the | 
|  | // recursive visit of its parent node in the HIR, then we need to | 
|  | // account for the destruction scope representing the scope of | 
|  | // the destructors that run immediately after it completes. | 
|  | if terminating { | 
|  | self.enter_scope(Scope { local_id: id, data: ScopeData::Destruction }); | 
|  | } | 
|  | self.enter_scope(Scope { local_id: id, data: ScopeData::Node }); | 
|  | } | 
|  |  | 
|  | fn enter_body(&mut self, hir_id: hir::HirId, f: impl FnOnce(&mut Self)) { | 
|  | let outer_cx = self.cx; | 
|  |  | 
|  | self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::CallSite }); | 
|  | self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::Arguments }); | 
|  |  | 
|  | f(self); | 
|  |  | 
|  | // Restore context we had at the start. | 
|  | self.cx = outer_cx; | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> Visitor<'tcx> for ScopeResolutionVisitor<'tcx> { | 
|  | fn visit_block(&mut self, b: &'tcx Block<'tcx>) { | 
|  | resolve_block(self, b, false); | 
|  | } | 
|  |  | 
|  | fn visit_body(&mut self, body: &hir::Body<'tcx>) { | 
|  | let body_id = body.id(); | 
|  | let owner_id = self.tcx.hir_body_owner_def_id(body_id); | 
|  |  | 
|  | debug!( | 
|  | "visit_body(id={:?}, span={:?}, body.id={:?}, cx.parent={:?})", | 
|  | owner_id, | 
|  | self.tcx.sess.source_map().span_to_diagnostic_string(body.value.span), | 
|  | body_id, | 
|  | self.cx.parent | 
|  | ); | 
|  |  | 
|  | self.enter_body(body.value.hir_id, |this| { | 
|  | if this.tcx.hir_body_owner_kind(owner_id).is_fn_or_closure() { | 
|  | // The arguments and `self` are parented to the fn. | 
|  | this.cx.var_parent = this.cx.parent; | 
|  | for param in body.params { | 
|  | this.visit_pat(param.pat); | 
|  | } | 
|  |  | 
|  | // The body of the every fn is a root scope. | 
|  | resolve_expr(this, body.value, true); | 
|  | } else { | 
|  | // Only functions have an outer terminating (drop) scope, while | 
|  | // temporaries in constant initializers may be 'static, but only | 
|  | // according to rvalue lifetime semantics, using the same | 
|  | // syntactical rules used for let initializers. | 
|  | // | 
|  | // e.g., in `let x = &f();`, the temporary holding the result from | 
|  | // the `f()` call lives for the entirety of the surrounding block. | 
|  | // | 
|  | // Similarly, `const X: ... = &f();` would have the result of `f()` | 
|  | // live for `'static`, implying (if Drop restrictions on constants | 
|  | // ever get lifted) that the value *could* have a destructor, but | 
|  | // it'd get leaked instead of the destructor running during the | 
|  | // evaluation of `X` (if at all allowed by CTFE). | 
|  | // | 
|  | // However, `const Y: ... = g(&f());`, like `let y = g(&f());`, | 
|  | // would *not* let the `f()` temporary escape into an outer scope | 
|  | // (i.e., `'static`), which means that after `g` returns, it drops, | 
|  | // and all the associated destruction scope rules apply. | 
|  | this.cx.var_parent = None; | 
|  | this.enter_scope(Scope { | 
|  | local_id: body.value.hir_id.local_id, | 
|  | data: ScopeData::Destruction, | 
|  | }); | 
|  | resolve_local(this, None, Some(body.value), LetKind::Regular); | 
|  | } | 
|  | }) | 
|  | } | 
|  |  | 
|  | fn visit_arm(&mut self, a: &'tcx Arm<'tcx>) { | 
|  | resolve_arm(self, a); | 
|  | } | 
|  | fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) { | 
|  | resolve_pat(self, p); | 
|  | } | 
|  | fn visit_stmt(&mut self, s: &'tcx Stmt<'tcx>) { | 
|  | resolve_stmt(self, s); | 
|  | } | 
|  | fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) { | 
|  | resolve_expr(self, ex, false); | 
|  | } | 
|  | fn visit_local(&mut self, l: &'tcx LetStmt<'tcx>) { | 
|  | let let_kind = match l.super_ { | 
|  | Some(_) => LetKind::Super, | 
|  | None => LetKind::Regular, | 
|  | }; | 
|  | resolve_local(self, Some(l.pat), l.init, let_kind); | 
|  | } | 
|  | fn visit_inline_const(&mut self, c: &'tcx hir::ConstBlock) { | 
|  | let body = self.tcx.hir_body(c.body); | 
|  | self.visit_body(body); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body; | 
|  | /// in the case of closures, this will be redirected to the enclosing function. | 
|  | /// | 
|  | /// Performance: This is a query rather than a simple function to enable | 
|  | /// re-use in incremental scenarios. We may sometimes need to rerun the | 
|  | /// type checker even when the HIR hasn't changed, and in those cases | 
|  | /// we can avoid reconstructing the region scope tree. | 
|  | pub(crate) fn region_scope_tree(tcx: TyCtxt<'_>, def_id: DefId) -> &ScopeTree { | 
|  | let typeck_root_def_id = tcx.typeck_root_def_id(def_id); | 
|  | if typeck_root_def_id != def_id { | 
|  | return tcx.region_scope_tree(typeck_root_def_id); | 
|  | } | 
|  |  | 
|  | let scope_tree = if let Some(body) = tcx.hir_maybe_body_owned_by(def_id.expect_local()) { | 
|  | let mut visitor = ScopeResolutionVisitor { | 
|  | tcx, | 
|  | scope_tree: ScopeTree::default(), | 
|  | cx: Context { parent: None, var_parent: None }, | 
|  | extended_super_lets: Default::default(), | 
|  | }; | 
|  |  | 
|  | visitor.scope_tree.root_body = Some(body.value.hir_id); | 
|  | visitor.visit_body(&body); | 
|  | visitor.scope_tree | 
|  | } else { | 
|  | ScopeTree::default() | 
|  | }; | 
|  |  | 
|  | tcx.arena.alloc(scope_tree) | 
|  | } |