blob: b6f0addd77107216c344fefa999de768462d56ba [file] [log] [blame]
//! See Rustc Guide chapters on [trait-resolution] and [trait-specialization] for more info on how
//! this works.
//!
//! [trait-resolution]: https://rust-lang.github.io/rustc-guide/traits/resolution.html
//! [trait-specialization]: https://rust-lang.github.io/rustc-guide/traits/specialization.html
use crate::infer::{CombinedSnapshot, InferOk};
use crate::hir::def_id::{DefId, LOCAL_CRATE};
use crate::traits::{self, Normalized, SelectionContext, Obligation, ObligationCause};
use crate::traits::IntercrateMode;
use crate::traits::select::IntercrateAmbiguityCause;
use crate::ty::{self, Ty, TyCtxt};
use crate::ty::fold::TypeFoldable;
use crate::ty::subst::Subst;
use syntax::symbol::sym;
use syntax_pos::DUMMY_SP;
/// Whether we do the orphan check relative to this crate or
/// to some remote crate.
#[derive(Copy, Clone, Debug)]
enum InCrate {
Local,
Remote
}
#[derive(Debug, Copy, Clone)]
pub enum Conflict {
Upstream,
Downstream { used_to_be_broken: bool }
}
pub struct OverlapResult<'tcx> {
pub impl_header: ty::ImplHeader<'tcx>,
pub intercrate_ambiguity_causes: Vec<IntercrateAmbiguityCause>,
/// `true` if the overlap might've been permitted before the shift
/// to universes.
pub involves_placeholder: bool,
}
pub fn add_placeholder_note(err: &mut errors::DiagnosticBuilder<'_>) {
err.note(&format!(
"this behavior recently changed as a result of a bug fix; \
see rust-lang/rust#56105 for details"
));
}
/// If there are types that satisfy both impls, invokes `on_overlap`
/// with a suitably-freshened `ImplHeader` with those types
/// substituted. Otherwise, invokes `no_overlap`.
pub fn overlapping_impls<F1, F2, R>(
tcx: TyCtxt<'_>,
impl1_def_id: DefId,
impl2_def_id: DefId,
intercrate_mode: IntercrateMode,
on_overlap: F1,
no_overlap: F2,
) -> R
where
F1: FnOnce(OverlapResult<'_>) -> R,
F2: FnOnce() -> R,
{
debug!("overlapping_impls(\
impl1_def_id={:?}, \
impl2_def_id={:?},
intercrate_mode={:?})",
impl1_def_id,
impl2_def_id,
intercrate_mode);
let overlaps = tcx.infer_ctxt().enter(|infcx| {
let selcx = &mut SelectionContext::intercrate(&infcx, intercrate_mode);
overlap(selcx, impl1_def_id, impl2_def_id).is_some()
});
if !overlaps {
return no_overlap();
}
// In the case where we detect an error, run the check again, but
// this time tracking intercrate ambuiguity causes for better
// diagnostics. (These take time and can lead to false errors.)
tcx.infer_ctxt().enter(|infcx| {
let selcx = &mut SelectionContext::intercrate(&infcx, intercrate_mode);
selcx.enable_tracking_intercrate_ambiguity_causes();
on_overlap(overlap(selcx, impl1_def_id, impl2_def_id).unwrap())
})
}
fn with_fresh_ty_vars<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
impl_def_id: DefId,
) -> ty::ImplHeader<'tcx> {
let tcx = selcx.tcx();
let impl_substs = selcx.infcx().fresh_substs_for_item(DUMMY_SP, impl_def_id);
let header = ty::ImplHeader {
impl_def_id,
self_ty: tcx.type_of(impl_def_id).subst(tcx, impl_substs),
trait_ref: tcx.impl_trait_ref(impl_def_id).subst(tcx, impl_substs),
predicates: tcx.predicates_of(impl_def_id).instantiate(tcx, impl_substs).predicates,
};
let Normalized { value: mut header, obligations } =
traits::normalize(selcx, param_env, ObligationCause::dummy(), &header);
header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
header
}
/// Can both impl `a` and impl `b` be satisfied by a common type (including
/// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls.
fn overlap<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
a_def_id: DefId,
b_def_id: DefId,
) -> Option<OverlapResult<'tcx>> {
debug!("overlap(a_def_id={:?}, b_def_id={:?})", a_def_id, b_def_id);
selcx.infcx().probe(|snapshot| overlap_within_probe(selcx, a_def_id, b_def_id, snapshot))
}
fn overlap_within_probe(
selcx: &mut SelectionContext<'cx, 'tcx>,
a_def_id: DefId,
b_def_id: DefId,
snapshot: &CombinedSnapshot<'_, 'tcx>,
) -> Option<OverlapResult<'tcx>> {
// For the purposes of this check, we don't bring any placeholder
// types into scope; instead, we replace the generic types with
// fresh type variables, and hence we do our evaluations in an
// empty environment.
let param_env = ty::ParamEnv::empty();
let a_impl_header = with_fresh_ty_vars(selcx, param_env, a_def_id);
let b_impl_header = with_fresh_ty_vars(selcx, param_env, b_def_id);
debug!("overlap: a_impl_header={:?}", a_impl_header);
debug!("overlap: b_impl_header={:?}", b_impl_header);
// Do `a` and `b` unify? If not, no overlap.
let obligations = match selcx.infcx().at(&ObligationCause::dummy(), param_env)
.eq_impl_headers(&a_impl_header, &b_impl_header)
{
Ok(InferOk { obligations, value: () }) => obligations,
Err(_) => return None
};
debug!("overlap: unification check succeeded");
// Are any of the obligations unsatisfiable? If so, no overlap.
let infcx = selcx.infcx();
let opt_failing_obligation =
a_impl_header.predicates
.iter()
.chain(&b_impl_header.predicates)
.map(|p| infcx.resolve_vars_if_possible(p))
.map(|p| Obligation { cause: ObligationCause::dummy(),
param_env,
recursion_depth: 0,
predicate: p })
.chain(obligations)
.find(|o| !selcx.predicate_may_hold_fatal(o));
// FIXME: the call to `selcx.predicate_may_hold_fatal` above should be ported
// to the canonical trait query form, `infcx.predicate_may_hold`, once
// the new system supports intercrate mode (which coherence needs).
if let Some(failing_obligation) = opt_failing_obligation {
debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
return None
}
let impl_header = selcx.infcx().resolve_vars_if_possible(&a_impl_header);
let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes();
debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
let involves_placeholder = match selcx.infcx().region_constraints_added_in_snapshot(snapshot) {
Some(true) => true,
_ => false,
};
Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder })
}
pub fn trait_ref_is_knowable<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
) -> Option<Conflict> {
debug!("trait_ref_is_knowable(trait_ref={:?})", trait_ref);
if orphan_check_trait_ref(tcx, trait_ref, InCrate::Remote).is_ok() {
// A downstream or cousin crate is allowed to implement some
// substitution of this trait-ref.
// A trait can be implementable for a trait ref by both the current
// crate and crates downstream of it. Older versions of rustc
// were not aware of this, causing incoherence (issue #43355).
let used_to_be_broken =
orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok();
if used_to_be_broken {
debug!("trait_ref_is_knowable({:?}) - USED TO BE BROKEN", trait_ref);
}
return Some(Conflict::Downstream { used_to_be_broken });
}
if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
// This is a local or fundamental trait, so future-compatibility
// is no concern. We know that downstream/cousin crates are not
// allowed to implement a substitution of this trait ref, which
// means impls could only come from dependencies of this crate,
// which we already know about.
return None;
}
// This is a remote non-fundamental trait, so if another crate
// can be the "final owner" of a substitution of this trait-ref,
// they are allowed to implement it future-compatibly.
//
// However, if we are a final owner, then nobody else can be,
// and if we are an intermediate owner, then we don't care
// about future-compatibility, which means that we're OK if
// we are an owner.
if orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok() {
debug!("trait_ref_is_knowable: orphan check passed");
return None;
} else {
debug!("trait_ref_is_knowable: nonlocal, nonfundamental, unowned");
return Some(Conflict::Upstream);
}
}
pub fn trait_ref_is_local_or_fundamental<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
) -> bool {
trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental)
}
pub enum OrphanCheckErr<'tcx> {
NoLocalInputType,
UncoveredTy(Ty<'tcx>),
}
/// Checks the coherence orphan rules. `impl_def_id` should be the
/// `DefId` of a trait impl. To pass, either the trait must be local, or else
/// two conditions must be satisfied:
///
/// 1. All type parameters in `Self` must be "covered" by some local type constructor.
/// 2. Some local type must appear in `Self`.
pub fn orphan_check(
tcx: TyCtxt<'_>,
impl_def_id: DefId,
) -> Result<(), OrphanCheckErr<'_>> {
debug!("orphan_check({:?})", impl_def_id);
// We only except this routine to be invoked on implementations
// of a trait, not inherent implementations.
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
debug!("orphan_check: trait_ref={:?}", trait_ref);
// If the *trait* is local to the crate, ok.
if trait_ref.def_id.is_local() {
debug!("trait {:?} is local to current crate",
trait_ref.def_id);
return Ok(());
}
orphan_check_trait_ref(tcx, trait_ref, InCrate::Local)
}
/// Checks whether a trait-ref is potentially implementable by a crate.
///
/// The current rule is that a trait-ref orphan checks in a crate C:
///
/// 1. Order the parameters in the trait-ref in subst order - Self first,
/// others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
/// 2. Of these type parameters, there is at least one type parameter
/// in which, walking the type as a tree, you can reach a type local
/// to C where all types in-between are fundamental types. Call the
/// first such parameter the "local key parameter".
/// - e.g., `Box<LocalType>` is OK, because you can visit LocalType
/// going through `Box`, which is fundamental.
/// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
/// the same reason.
/// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
/// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
/// the local type and the type parameter.
/// 3. Every type parameter before the local key parameter is fully known in C.
/// - e.g., `impl<T> T: Trait<LocalType>` is bad, because `T` might be
/// an unknown type.
/// - but `impl<T> LocalType: Trait<T>` is OK, because `LocalType`
/// occurs before `T`.
/// 4. Every type in the local key parameter not known in C, going
/// through the parameter's type tree, must appear only as a subtree of
/// a type local to C, with only fundamental types between the type
/// local to C and the local key parameter.
/// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
/// is bad, because the only local type with `T` as a subtree is
/// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
/// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
/// the second occurrence of `T` is not a subtree of *any* local type.
/// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
/// `LocalType<Vec<T>>`, which is local and has no types between it and
/// the type parameter.
///
/// The orphan rules actually serve several different purposes:
///
/// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where
/// every type local to one crate is unknown in the other) can't implement
/// the same trait-ref. This follows because it can be seen that no such
/// type can orphan-check in 2 such crates.
///
/// To check that a local impl follows the orphan rules, we check it in
/// InCrate::Local mode, using type parameters for the "generic" types.
///
/// 2. They ground negative reasoning for coherence. If a user wants to
/// write both a conditional blanket impl and a specific impl, we need to
/// make sure they do not overlap. For example, if we write
/// ```
/// impl<T> IntoIterator for Vec<T>
/// impl<T: Iterator> IntoIterator for T
/// ```
/// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
/// We can observe that this holds in the current crate, but we need to make
/// sure this will also hold in all unknown crates (both "independent" crates,
/// which we need for link-safety, and also child crates, because we don't want
/// child crates to get error for impl conflicts in a *dependency*).
///
/// For that, we only allow negative reasoning if, for every assignment to the
/// inference variables, every unknown crate would get an orphan error if they
/// try to implement this trait-ref. To check for this, we use InCrate::Remote
/// mode. That is sound because we already know all the impls from known crates.
///
/// 3. For non-#[fundamental] traits, they guarantee that parent crates can
/// add "non-blanket" impls without breaking negative reasoning in dependent
/// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
///
/// For that, we only a allow crate to perform negative reasoning on
/// non-local-non-#[fundamental] only if there's a local key parameter as per (2).
///
/// Because we never perform negative reasoning generically (coherence does
/// not involve type parameters), this can be interpreted as doing the full
/// orphan check (using InCrate::Local mode), substituting non-local known
/// types for all inference variables.
///
/// This allows for crates to future-compatibly add impls as long as they
/// can't apply to types with a key parameter in a child crate - applying
/// the rules, this basically means that every type parameter in the impl
/// must appear behind a non-fundamental type (because this is not a
/// type-system requirement, crate owners might also go for "semantic
/// future-compatibility" involving things such as sealed traits, but
/// the above requirement is sufficient, and is necessary in "open world"
/// cases).
///
/// Note that this function is never called for types that have both type
/// parameters and inference variables.
fn orphan_check_trait_ref<'tcx>(
tcx: TyCtxt<'_>,
trait_ref: ty::TraitRef<'tcx>,
in_crate: InCrate,
) -> Result<(), OrphanCheckErr<'tcx>> {
debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})",
trait_ref, in_crate);
if trait_ref.needs_infer() && trait_ref.needs_subst() {
bug!("can't orphan check a trait ref with both params and inference variables {:?}",
trait_ref);
}
if tcx.features().re_rebalance_coherence {
// Given impl<P1..=Pn> Trait<T1..=Tn> for T0, an impl is valid only
// if at least one of the following is true:
//
// - Trait is a local trait
// (already checked in orphan_check prior to calling this function)
// - All of
// - At least one of the types T0..=Tn must be a local type.
// Let Ti be the first such type.
// - No uncovered type parameters P1..=Pn may appear in T0..Ti (excluding Ti)
//
for input_ty in trait_ref.input_types() {
debug!("orphan_check_trait_ref: check ty `{:?}`", input_ty);
if ty_is_local(tcx, input_ty, in_crate) {
debug!("orphan_check_trait_ref: ty_is_local `{:?}`", input_ty);
return Ok(());
} else if let ty::Param(_) = input_ty.sty {
debug!("orphan_check_trait_ref: uncovered ty: `{:?}`", input_ty);
return Err(OrphanCheckErr::UncoveredTy(input_ty))
}
}
// If we exit above loop, never found a local type.
debug!("orphan_check_trait_ref: no local type");
Err(OrphanCheckErr::NoLocalInputType)
} else {
// First, create an ordered iterator over all the type
// parameters to the trait, with the self type appearing
// first. Find the first input type that either references a
// type parameter OR some local type.
for input_ty in trait_ref.input_types() {
if ty_is_local(tcx, input_ty, in_crate) {
debug!("orphan_check_trait_ref: ty_is_local `{:?}`", input_ty);
// First local input type. Check that there are no
// uncovered type parameters.
let uncovered_tys = uncovered_tys(tcx, input_ty, in_crate);
for uncovered_ty in uncovered_tys {
if let Some(param) = uncovered_ty.walk()
.find(|t| is_possibly_remote_type(t, in_crate))
{
debug!("orphan_check_trait_ref: uncovered type `{:?}`", param);
return Err(OrphanCheckErr::UncoveredTy(param));
}
}
// OK, found local type, all prior types upheld invariant.
return Ok(());
}
// Otherwise, enforce invariant that there are no type
// parameters reachable.
if let Some(param) = input_ty.walk()
.find(|t| is_possibly_remote_type(t, in_crate))
{
debug!("orphan_check_trait_ref: uncovered type `{:?}`", param);
return Err(OrphanCheckErr::UncoveredTy(param));
}
}
// If we exit above loop, never found a local type.
debug!("orphan_check_trait_ref: no local type");
Err(OrphanCheckErr::NoLocalInputType)
}
}
fn uncovered_tys<'tcx>(tcx: TyCtxt<'_>, ty: Ty<'tcx>, in_crate: InCrate) -> Vec<Ty<'tcx>> {
if ty_is_local_constructor(ty, in_crate) {
vec![]
} else if fundamental_ty(ty) {
ty.walk_shallow()
.flat_map(|t| uncovered_tys(tcx, t, in_crate))
.collect()
} else {
vec![ty]
}
}
fn is_possibly_remote_type(ty: Ty<'_>, _in_crate: InCrate) -> bool {
match ty.sty {
ty::Projection(..) | ty::Param(..) => true,
_ => false,
}
}
fn ty_is_local(tcx: TyCtxt<'_>, ty: Ty<'_>, in_crate: InCrate) -> bool {
ty_is_local_constructor(ty, in_crate) ||
fundamental_ty(ty) && ty.walk_shallow().any(|t| ty_is_local(tcx, t, in_crate))
}
fn fundamental_ty(ty: Ty<'_>) -> bool {
match ty.sty {
ty::Ref(..) => true,
ty::Adt(def, _) => def.is_fundamental(),
_ => false
}
}
fn def_id_is_local(def_id: DefId, in_crate: InCrate) -> bool {
match in_crate {
// The type is local to *this* crate - it will not be
// local in any other crate.
InCrate::Remote => false,
InCrate::Local => def_id.is_local()
}
}
fn ty_is_local_constructor(ty: Ty<'_>, in_crate: InCrate) -> bool {
debug!("ty_is_local_constructor({:?})", ty);
match ty.sty {
ty::Bool |
ty::Char |
ty::Int(..) |
ty::Uint(..) |
ty::Float(..) |
ty::Str |
ty::FnDef(..) |
ty::FnPtr(_) |
ty::Array(..) |
ty::Slice(..) |
ty::RawPtr(..) |
ty::Ref(..) |
ty::Never |
ty::Tuple(..) |
ty::Param(..) |
ty::Projection(..) => {
false
}
ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match in_crate {
InCrate::Local => false,
// The inference variable might be unified with a local
// type in that remote crate.
InCrate::Remote => true,
},
ty::Adt(def, _) => def_id_is_local(def.did, in_crate),
ty::Foreign(did) => def_id_is_local(did, in_crate),
ty::Dynamic(ref tt, ..) => {
if let Some(principal) = tt.principal() {
def_id_is_local(principal.def_id(), in_crate)
} else {
false
}
}
ty::Error => true,
ty::UnnormalizedProjection(..) |
ty::Closure(..) |
ty::Generator(..) |
ty::GeneratorWitness(..) |
ty::Opaque(..) => {
bug!("ty_is_local invoked on unexpected type: {:?}", ty)
}
}
}