| //! See Rustc Guide chapters on [trait-resolution] and [trait-specialization] for more info on how |
| //! this works. |
| //! |
| //! [trait-resolution]: https://rust-lang.github.io/rustc-guide/traits/resolution.html |
| //! [trait-specialization]: https://rust-lang.github.io/rustc-guide/traits/specialization.html |
| |
| use crate::infer::{CombinedSnapshot, InferOk}; |
| use crate::hir::def_id::{DefId, LOCAL_CRATE}; |
| use crate::traits::{self, Normalized, SelectionContext, Obligation, ObligationCause}; |
| use crate::traits::IntercrateMode; |
| use crate::traits::select::IntercrateAmbiguityCause; |
| use crate::ty::{self, Ty, TyCtxt}; |
| use crate::ty::fold::TypeFoldable; |
| use crate::ty::subst::Subst; |
| use syntax::symbol::sym; |
| use syntax_pos::DUMMY_SP; |
| |
| /// Whether we do the orphan check relative to this crate or |
| /// to some remote crate. |
| #[derive(Copy, Clone, Debug)] |
| enum InCrate { |
| Local, |
| Remote |
| } |
| |
| #[derive(Debug, Copy, Clone)] |
| pub enum Conflict { |
| Upstream, |
| Downstream { used_to_be_broken: bool } |
| } |
| |
| pub struct OverlapResult<'tcx> { |
| pub impl_header: ty::ImplHeader<'tcx>, |
| pub intercrate_ambiguity_causes: Vec<IntercrateAmbiguityCause>, |
| |
| /// `true` if the overlap might've been permitted before the shift |
| /// to universes. |
| pub involves_placeholder: bool, |
| } |
| |
| pub fn add_placeholder_note(err: &mut errors::DiagnosticBuilder<'_>) { |
| err.note(&format!( |
| "this behavior recently changed as a result of a bug fix; \ |
| see rust-lang/rust#56105 for details" |
| )); |
| } |
| |
| /// If there are types that satisfy both impls, invokes `on_overlap` |
| /// with a suitably-freshened `ImplHeader` with those types |
| /// substituted. Otherwise, invokes `no_overlap`. |
| pub fn overlapping_impls<F1, F2, R>( |
| tcx: TyCtxt<'_>, |
| impl1_def_id: DefId, |
| impl2_def_id: DefId, |
| intercrate_mode: IntercrateMode, |
| on_overlap: F1, |
| no_overlap: F2, |
| ) -> R |
| where |
| F1: FnOnce(OverlapResult<'_>) -> R, |
| F2: FnOnce() -> R, |
| { |
| debug!("overlapping_impls(\ |
| impl1_def_id={:?}, \ |
| impl2_def_id={:?}, |
| intercrate_mode={:?})", |
| impl1_def_id, |
| impl2_def_id, |
| intercrate_mode); |
| |
| let overlaps = tcx.infer_ctxt().enter(|infcx| { |
| let selcx = &mut SelectionContext::intercrate(&infcx, intercrate_mode); |
| overlap(selcx, impl1_def_id, impl2_def_id).is_some() |
| }); |
| |
| if !overlaps { |
| return no_overlap(); |
| } |
| |
| // In the case where we detect an error, run the check again, but |
| // this time tracking intercrate ambuiguity causes for better |
| // diagnostics. (These take time and can lead to false errors.) |
| tcx.infer_ctxt().enter(|infcx| { |
| let selcx = &mut SelectionContext::intercrate(&infcx, intercrate_mode); |
| selcx.enable_tracking_intercrate_ambiguity_causes(); |
| on_overlap(overlap(selcx, impl1_def_id, impl2_def_id).unwrap()) |
| }) |
| } |
| |
| fn with_fresh_ty_vars<'cx, 'tcx>( |
| selcx: &mut SelectionContext<'cx, 'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| impl_def_id: DefId, |
| ) -> ty::ImplHeader<'tcx> { |
| let tcx = selcx.tcx(); |
| let impl_substs = selcx.infcx().fresh_substs_for_item(DUMMY_SP, impl_def_id); |
| |
| let header = ty::ImplHeader { |
| impl_def_id, |
| self_ty: tcx.type_of(impl_def_id).subst(tcx, impl_substs), |
| trait_ref: tcx.impl_trait_ref(impl_def_id).subst(tcx, impl_substs), |
| predicates: tcx.predicates_of(impl_def_id).instantiate(tcx, impl_substs).predicates, |
| }; |
| |
| let Normalized { value: mut header, obligations } = |
| traits::normalize(selcx, param_env, ObligationCause::dummy(), &header); |
| |
| header.predicates.extend(obligations.into_iter().map(|o| o.predicate)); |
| header |
| } |
| |
| /// Can both impl `a` and impl `b` be satisfied by a common type (including |
| /// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls. |
| fn overlap<'cx, 'tcx>( |
| selcx: &mut SelectionContext<'cx, 'tcx>, |
| a_def_id: DefId, |
| b_def_id: DefId, |
| ) -> Option<OverlapResult<'tcx>> { |
| debug!("overlap(a_def_id={:?}, b_def_id={:?})", a_def_id, b_def_id); |
| |
| selcx.infcx().probe(|snapshot| overlap_within_probe(selcx, a_def_id, b_def_id, snapshot)) |
| } |
| |
| fn overlap_within_probe( |
| selcx: &mut SelectionContext<'cx, 'tcx>, |
| a_def_id: DefId, |
| b_def_id: DefId, |
| snapshot: &CombinedSnapshot<'_, 'tcx>, |
| ) -> Option<OverlapResult<'tcx>> { |
| // For the purposes of this check, we don't bring any placeholder |
| // types into scope; instead, we replace the generic types with |
| // fresh type variables, and hence we do our evaluations in an |
| // empty environment. |
| let param_env = ty::ParamEnv::empty(); |
| |
| let a_impl_header = with_fresh_ty_vars(selcx, param_env, a_def_id); |
| let b_impl_header = with_fresh_ty_vars(selcx, param_env, b_def_id); |
| |
| debug!("overlap: a_impl_header={:?}", a_impl_header); |
| debug!("overlap: b_impl_header={:?}", b_impl_header); |
| |
| // Do `a` and `b` unify? If not, no overlap. |
| let obligations = match selcx.infcx().at(&ObligationCause::dummy(), param_env) |
| .eq_impl_headers(&a_impl_header, &b_impl_header) |
| { |
| Ok(InferOk { obligations, value: () }) => obligations, |
| Err(_) => return None |
| }; |
| |
| debug!("overlap: unification check succeeded"); |
| |
| // Are any of the obligations unsatisfiable? If so, no overlap. |
| let infcx = selcx.infcx(); |
| let opt_failing_obligation = |
| a_impl_header.predicates |
| .iter() |
| .chain(&b_impl_header.predicates) |
| .map(|p| infcx.resolve_vars_if_possible(p)) |
| .map(|p| Obligation { cause: ObligationCause::dummy(), |
| param_env, |
| recursion_depth: 0, |
| predicate: p }) |
| .chain(obligations) |
| .find(|o| !selcx.predicate_may_hold_fatal(o)); |
| // FIXME: the call to `selcx.predicate_may_hold_fatal` above should be ported |
| // to the canonical trait query form, `infcx.predicate_may_hold`, once |
| // the new system supports intercrate mode (which coherence needs). |
| |
| if let Some(failing_obligation) = opt_failing_obligation { |
| debug!("overlap: obligation unsatisfiable {:?}", failing_obligation); |
| return None |
| } |
| |
| let impl_header = selcx.infcx().resolve_vars_if_possible(&a_impl_header); |
| let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes(); |
| debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes); |
| |
| let involves_placeholder = match selcx.infcx().region_constraints_added_in_snapshot(snapshot) { |
| Some(true) => true, |
| _ => false, |
| }; |
| |
| Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder }) |
| } |
| |
| pub fn trait_ref_is_knowable<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| trait_ref: ty::TraitRef<'tcx>, |
| ) -> Option<Conflict> { |
| debug!("trait_ref_is_knowable(trait_ref={:?})", trait_ref); |
| if orphan_check_trait_ref(tcx, trait_ref, InCrate::Remote).is_ok() { |
| // A downstream or cousin crate is allowed to implement some |
| // substitution of this trait-ref. |
| |
| // A trait can be implementable for a trait ref by both the current |
| // crate and crates downstream of it. Older versions of rustc |
| // were not aware of this, causing incoherence (issue #43355). |
| let used_to_be_broken = |
| orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok(); |
| if used_to_be_broken { |
| debug!("trait_ref_is_knowable({:?}) - USED TO BE BROKEN", trait_ref); |
| } |
| return Some(Conflict::Downstream { used_to_be_broken }); |
| } |
| |
| if trait_ref_is_local_or_fundamental(tcx, trait_ref) { |
| // This is a local or fundamental trait, so future-compatibility |
| // is no concern. We know that downstream/cousin crates are not |
| // allowed to implement a substitution of this trait ref, which |
| // means impls could only come from dependencies of this crate, |
| // which we already know about. |
| return None; |
| } |
| |
| // This is a remote non-fundamental trait, so if another crate |
| // can be the "final owner" of a substitution of this trait-ref, |
| // they are allowed to implement it future-compatibly. |
| // |
| // However, if we are a final owner, then nobody else can be, |
| // and if we are an intermediate owner, then we don't care |
| // about future-compatibility, which means that we're OK if |
| // we are an owner. |
| if orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok() { |
| debug!("trait_ref_is_knowable: orphan check passed"); |
| return None; |
| } else { |
| debug!("trait_ref_is_knowable: nonlocal, nonfundamental, unowned"); |
| return Some(Conflict::Upstream); |
| } |
| } |
| |
| pub fn trait_ref_is_local_or_fundamental<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| trait_ref: ty::TraitRef<'tcx>, |
| ) -> bool { |
| trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental) |
| } |
| |
| pub enum OrphanCheckErr<'tcx> { |
| NoLocalInputType, |
| UncoveredTy(Ty<'tcx>), |
| } |
| |
| /// Checks the coherence orphan rules. `impl_def_id` should be the |
| /// `DefId` of a trait impl. To pass, either the trait must be local, or else |
| /// two conditions must be satisfied: |
| /// |
| /// 1. All type parameters in `Self` must be "covered" by some local type constructor. |
| /// 2. Some local type must appear in `Self`. |
| pub fn orphan_check( |
| tcx: TyCtxt<'_>, |
| impl_def_id: DefId, |
| ) -> Result<(), OrphanCheckErr<'_>> { |
| debug!("orphan_check({:?})", impl_def_id); |
| |
| // We only except this routine to be invoked on implementations |
| // of a trait, not inherent implementations. |
| let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap(); |
| debug!("orphan_check: trait_ref={:?}", trait_ref); |
| |
| // If the *trait* is local to the crate, ok. |
| if trait_ref.def_id.is_local() { |
| debug!("trait {:?} is local to current crate", |
| trait_ref.def_id); |
| return Ok(()); |
| } |
| |
| orphan_check_trait_ref(tcx, trait_ref, InCrate::Local) |
| } |
| |
| /// Checks whether a trait-ref is potentially implementable by a crate. |
| /// |
| /// The current rule is that a trait-ref orphan checks in a crate C: |
| /// |
| /// 1. Order the parameters in the trait-ref in subst order - Self first, |
| /// others linearly (e.g., `<U as Foo<V, W>>` is U < V < W). |
| /// 2. Of these type parameters, there is at least one type parameter |
| /// in which, walking the type as a tree, you can reach a type local |
| /// to C where all types in-between are fundamental types. Call the |
| /// first such parameter the "local key parameter". |
| /// - e.g., `Box<LocalType>` is OK, because you can visit LocalType |
| /// going through `Box`, which is fundamental. |
| /// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for |
| /// the same reason. |
| /// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's |
| /// not local), `Vec<LocalType>` is bad, because `Vec<->` is between |
| /// the local type and the type parameter. |
| /// 3. Every type parameter before the local key parameter is fully known in C. |
| /// - e.g., `impl<T> T: Trait<LocalType>` is bad, because `T` might be |
| /// an unknown type. |
| /// - but `impl<T> LocalType: Trait<T>` is OK, because `LocalType` |
| /// occurs before `T`. |
| /// 4. Every type in the local key parameter not known in C, going |
| /// through the parameter's type tree, must appear only as a subtree of |
| /// a type local to C, with only fundamental types between the type |
| /// local to C and the local key parameter. |
| /// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`) |
| /// is bad, because the only local type with `T` as a subtree is |
| /// `LocalType<T>`, and `Vec<->` is between it and the type parameter. |
| /// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because |
| /// the second occurrence of `T` is not a subtree of *any* local type. |
| /// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of |
| /// `LocalType<Vec<T>>`, which is local and has no types between it and |
| /// the type parameter. |
| /// |
| /// The orphan rules actually serve several different purposes: |
| /// |
| /// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where |
| /// every type local to one crate is unknown in the other) can't implement |
| /// the same trait-ref. This follows because it can be seen that no such |
| /// type can orphan-check in 2 such crates. |
| /// |
| /// To check that a local impl follows the orphan rules, we check it in |
| /// InCrate::Local mode, using type parameters for the "generic" types. |
| /// |
| /// 2. They ground negative reasoning for coherence. If a user wants to |
| /// write both a conditional blanket impl and a specific impl, we need to |
| /// make sure they do not overlap. For example, if we write |
| /// ``` |
| /// impl<T> IntoIterator for Vec<T> |
| /// impl<T: Iterator> IntoIterator for T |
| /// ``` |
| /// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0. |
| /// We can observe that this holds in the current crate, but we need to make |
| /// sure this will also hold in all unknown crates (both "independent" crates, |
| /// which we need for link-safety, and also child crates, because we don't want |
| /// child crates to get error for impl conflicts in a *dependency*). |
| /// |
| /// For that, we only allow negative reasoning if, for every assignment to the |
| /// inference variables, every unknown crate would get an orphan error if they |
| /// try to implement this trait-ref. To check for this, we use InCrate::Remote |
| /// mode. That is sound because we already know all the impls from known crates. |
| /// |
| /// 3. For non-#[fundamental] traits, they guarantee that parent crates can |
| /// add "non-blanket" impls without breaking negative reasoning in dependent |
| /// crates. This is the "rebalancing coherence" (RFC 1023) restriction. |
| /// |
| /// For that, we only a allow crate to perform negative reasoning on |
| /// non-local-non-#[fundamental] only if there's a local key parameter as per (2). |
| /// |
| /// Because we never perform negative reasoning generically (coherence does |
| /// not involve type parameters), this can be interpreted as doing the full |
| /// orphan check (using InCrate::Local mode), substituting non-local known |
| /// types for all inference variables. |
| /// |
| /// This allows for crates to future-compatibly add impls as long as they |
| /// can't apply to types with a key parameter in a child crate - applying |
| /// the rules, this basically means that every type parameter in the impl |
| /// must appear behind a non-fundamental type (because this is not a |
| /// type-system requirement, crate owners might also go for "semantic |
| /// future-compatibility" involving things such as sealed traits, but |
| /// the above requirement is sufficient, and is necessary in "open world" |
| /// cases). |
| /// |
| /// Note that this function is never called for types that have both type |
| /// parameters and inference variables. |
| fn orphan_check_trait_ref<'tcx>( |
| tcx: TyCtxt<'_>, |
| trait_ref: ty::TraitRef<'tcx>, |
| in_crate: InCrate, |
| ) -> Result<(), OrphanCheckErr<'tcx>> { |
| debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})", |
| trait_ref, in_crate); |
| |
| if trait_ref.needs_infer() && trait_ref.needs_subst() { |
| bug!("can't orphan check a trait ref with both params and inference variables {:?}", |
| trait_ref); |
| } |
| |
| if tcx.features().re_rebalance_coherence { |
| // Given impl<P1..=Pn> Trait<T1..=Tn> for T0, an impl is valid only |
| // if at least one of the following is true: |
| // |
| // - Trait is a local trait |
| // (already checked in orphan_check prior to calling this function) |
| // - All of |
| // - At least one of the types T0..=Tn must be a local type. |
| // Let Ti be the first such type. |
| // - No uncovered type parameters P1..=Pn may appear in T0..Ti (excluding Ti) |
| // |
| for input_ty in trait_ref.input_types() { |
| debug!("orphan_check_trait_ref: check ty `{:?}`", input_ty); |
| if ty_is_local(tcx, input_ty, in_crate) { |
| debug!("orphan_check_trait_ref: ty_is_local `{:?}`", input_ty); |
| return Ok(()); |
| } else if let ty::Param(_) = input_ty.sty { |
| debug!("orphan_check_trait_ref: uncovered ty: `{:?}`", input_ty); |
| return Err(OrphanCheckErr::UncoveredTy(input_ty)) |
| } |
| } |
| // If we exit above loop, never found a local type. |
| debug!("orphan_check_trait_ref: no local type"); |
| Err(OrphanCheckErr::NoLocalInputType) |
| } else { |
| // First, create an ordered iterator over all the type |
| // parameters to the trait, with the self type appearing |
| // first. Find the first input type that either references a |
| // type parameter OR some local type. |
| for input_ty in trait_ref.input_types() { |
| if ty_is_local(tcx, input_ty, in_crate) { |
| debug!("orphan_check_trait_ref: ty_is_local `{:?}`", input_ty); |
| |
| // First local input type. Check that there are no |
| // uncovered type parameters. |
| let uncovered_tys = uncovered_tys(tcx, input_ty, in_crate); |
| for uncovered_ty in uncovered_tys { |
| if let Some(param) = uncovered_ty.walk() |
| .find(|t| is_possibly_remote_type(t, in_crate)) |
| { |
| debug!("orphan_check_trait_ref: uncovered type `{:?}`", param); |
| return Err(OrphanCheckErr::UncoveredTy(param)); |
| } |
| } |
| |
| // OK, found local type, all prior types upheld invariant. |
| return Ok(()); |
| } |
| |
| // Otherwise, enforce invariant that there are no type |
| // parameters reachable. |
| if let Some(param) = input_ty.walk() |
| .find(|t| is_possibly_remote_type(t, in_crate)) |
| { |
| debug!("orphan_check_trait_ref: uncovered type `{:?}`", param); |
| return Err(OrphanCheckErr::UncoveredTy(param)); |
| } |
| } |
| // If we exit above loop, never found a local type. |
| debug!("orphan_check_trait_ref: no local type"); |
| Err(OrphanCheckErr::NoLocalInputType) |
| } |
| } |
| |
| fn uncovered_tys<'tcx>(tcx: TyCtxt<'_>, ty: Ty<'tcx>, in_crate: InCrate) -> Vec<Ty<'tcx>> { |
| if ty_is_local_constructor(ty, in_crate) { |
| vec![] |
| } else if fundamental_ty(ty) { |
| ty.walk_shallow() |
| .flat_map(|t| uncovered_tys(tcx, t, in_crate)) |
| .collect() |
| } else { |
| vec![ty] |
| } |
| } |
| |
| fn is_possibly_remote_type(ty: Ty<'_>, _in_crate: InCrate) -> bool { |
| match ty.sty { |
| ty::Projection(..) | ty::Param(..) => true, |
| _ => false, |
| } |
| } |
| |
| fn ty_is_local(tcx: TyCtxt<'_>, ty: Ty<'_>, in_crate: InCrate) -> bool { |
| ty_is_local_constructor(ty, in_crate) || |
| fundamental_ty(ty) && ty.walk_shallow().any(|t| ty_is_local(tcx, t, in_crate)) |
| } |
| |
| fn fundamental_ty(ty: Ty<'_>) -> bool { |
| match ty.sty { |
| ty::Ref(..) => true, |
| ty::Adt(def, _) => def.is_fundamental(), |
| _ => false |
| } |
| } |
| |
| fn def_id_is_local(def_id: DefId, in_crate: InCrate) -> bool { |
| match in_crate { |
| // The type is local to *this* crate - it will not be |
| // local in any other crate. |
| InCrate::Remote => false, |
| InCrate::Local => def_id.is_local() |
| } |
| } |
| |
| fn ty_is_local_constructor(ty: Ty<'_>, in_crate: InCrate) -> bool { |
| debug!("ty_is_local_constructor({:?})", ty); |
| |
| match ty.sty { |
| ty::Bool | |
| ty::Char | |
| ty::Int(..) | |
| ty::Uint(..) | |
| ty::Float(..) | |
| ty::Str | |
| ty::FnDef(..) | |
| ty::FnPtr(_) | |
| ty::Array(..) | |
| ty::Slice(..) | |
| ty::RawPtr(..) | |
| ty::Ref(..) | |
| ty::Never | |
| ty::Tuple(..) | |
| ty::Param(..) | |
| ty::Projection(..) => { |
| false |
| } |
| |
| ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match in_crate { |
| InCrate::Local => false, |
| // The inference variable might be unified with a local |
| // type in that remote crate. |
| InCrate::Remote => true, |
| }, |
| |
| ty::Adt(def, _) => def_id_is_local(def.did, in_crate), |
| ty::Foreign(did) => def_id_is_local(did, in_crate), |
| |
| ty::Dynamic(ref tt, ..) => { |
| if let Some(principal) = tt.principal() { |
| def_id_is_local(principal.def_id(), in_crate) |
| } else { |
| false |
| } |
| } |
| |
| ty::Error => true, |
| |
| ty::UnnormalizedProjection(..) | |
| ty::Closure(..) | |
| ty::Generator(..) | |
| ty::GeneratorWitness(..) | |
| ty::Opaque(..) => { |
| bug!("ty_is_local invoked on unexpected type: {:?}", ty) |
| } |
| } |
| } |