| pub use at::DefineOpaqueTypes; |
| pub use freshen::TypeFreshener; |
| pub use lexical_region_resolve::RegionResolutionError; |
| pub use relate::combine::CombineFields; |
| pub use relate::combine::ObligationEmittingRelation; |
| pub use relate::StructurallyRelateAliases; |
| pub use rustc_middle::ty::IntVarValue; |
| pub use BoundRegionConversionTime::*; |
| pub use RegionVariableOrigin::*; |
| pub use SubregionOrigin::*; |
| pub use ValuePairs::*; |
| |
| use crate::traits::{ |
| self, ObligationCause, ObligationInspector, PredicateObligations, TraitEngine, TraitEngineExt, |
| }; |
| use error_reporting::TypeErrCtxt; |
| use free_regions::RegionRelations; |
| use lexical_region_resolve::LexicalRegionResolutions; |
| use opaque_types::OpaqueTypeStorage; |
| use region_constraints::{GenericKind, VarInfos, VerifyBound}; |
| use region_constraints::{RegionConstraintCollector, RegionConstraintStorage}; |
| use rustc_data_structures::captures::Captures; |
| use rustc_data_structures::fx::FxIndexMap; |
| use rustc_data_structures::fx::{FxHashMap, FxHashSet}; |
| use rustc_data_structures::sync::Lrc; |
| use rustc_data_structures::undo_log::Rollback; |
| use rustc_data_structures::unify as ut; |
| use rustc_errors::{Diag, DiagCtxt, ErrorGuaranteed}; |
| use rustc_hir::def_id::{DefId, LocalDefId}; |
| use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues}; |
| use rustc_middle::infer::unify_key::ConstVariableValue; |
| use rustc_middle::infer::unify_key::EffectVarValue; |
| use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind, ToType}; |
| use rustc_middle::infer::unify_key::{ConstVidKey, EffectVidKey}; |
| use rustc_middle::mir::interpret::{ErrorHandled, EvalToValTreeResult}; |
| use rustc_middle::mir::ConstraintCategory; |
| use rustc_middle::traits::{select, DefiningAnchor}; |
| use rustc_middle::ty::error::{ExpectedFound, TypeError}; |
| use rustc_middle::ty::fold::BoundVarReplacerDelegate; |
| use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable}; |
| use rustc_middle::ty::relate::RelateResult; |
| use rustc_middle::ty::visit::TypeVisitableExt; |
| use rustc_middle::ty::{self, GenericParamDefKind, InferConst, InferTy, Ty, TyCtxt}; |
| use rustc_middle::ty::{ConstVid, EffectVid, FloatVid, IntVid, TyVid}; |
| use rustc_middle::ty::{GenericArg, GenericArgKind, GenericArgs, GenericArgsRef}; |
| use rustc_span::symbol::Symbol; |
| use rustc_span::Span; |
| use snapshot::undo_log::InferCtxtUndoLogs; |
| use std::cell::{Cell, RefCell}; |
| use std::fmt; |
| use type_variable::{TypeVariableOrigin, TypeVariableOriginKind}; |
| |
| pub mod at; |
| pub mod canonical; |
| pub mod error_reporting; |
| pub mod free_regions; |
| mod freshen; |
| mod lexical_region_resolve; |
| pub mod opaque_types; |
| pub mod outlives; |
| mod projection; |
| pub mod region_constraints; |
| mod relate; |
| pub mod resolve; |
| pub(crate) mod snapshot; |
| pub mod type_variable; |
| |
| #[must_use] |
| #[derive(Debug)] |
| pub struct InferOk<'tcx, T> { |
| pub value: T, |
| pub obligations: PredicateObligations<'tcx>, |
| } |
| pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>; |
| |
| pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result" |
| pub type FixupResult<T> = Result<T, FixupError>; // "fixup result" |
| |
| pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable< |
| ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>, |
| >; |
| |
| /// This type contains all the things within `InferCtxt` that sit within a |
| /// `RefCell` and are involved with taking/rolling back snapshots. Snapshot |
| /// operations are hot enough that we want only one call to `borrow_mut` per |
| /// call to `start_snapshot` and `rollback_to`. |
| #[derive(Clone)] |
| pub struct InferCtxtInner<'tcx> { |
| undo_log: InferCtxtUndoLogs<'tcx>, |
| |
| /// Cache for projections. |
| /// |
| /// This cache is snapshotted along with the infcx. |
| projection_cache: traits::ProjectionCacheStorage<'tcx>, |
| |
| /// We instantiate `UnificationTable` with `bounds<Ty>` because the types |
| /// that might instantiate a general type variable have an order, |
| /// represented by its upper and lower bounds. |
| type_variable_storage: type_variable::TypeVariableStorage<'tcx>, |
| |
| /// Map from const parameter variable to the kind of const it represents. |
| const_unification_storage: ut::UnificationTableStorage<ConstVidKey<'tcx>>, |
| |
| /// Map from integral variable to the kind of integer it represents. |
| int_unification_storage: ut::UnificationTableStorage<ty::IntVid>, |
| |
| /// Map from floating variable to the kind of float it represents. |
| float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>, |
| |
| /// Map from effect variable to the effect param it represents. |
| effect_unification_storage: ut::UnificationTableStorage<EffectVidKey<'tcx>>, |
| |
| /// Tracks the set of region variables and the constraints between them. |
| /// |
| /// This is initially `Some(_)` but when |
| /// `resolve_regions_and_report_errors` is invoked, this gets set to `None` |
| /// -- further attempts to perform unification, etc., may fail if new |
| /// region constraints would've been added. |
| region_constraint_storage: Option<RegionConstraintStorage<'tcx>>, |
| |
| /// A set of constraints that regionck must validate. |
| /// |
| /// Each constraint has the form `T:'a`, meaning "some type `T` must |
| /// outlive the lifetime 'a". These constraints derive from |
| /// instantiated type parameters. So if you had a struct defined |
| /// like the following: |
| /// ```ignore (illustrative) |
| /// struct Foo<T: 'static> { ... } |
| /// ``` |
| /// In some expression `let x = Foo { ... }`, it will |
| /// instantiate the type parameter `T` with a fresh type `$0`. At |
| /// the same time, it will record a region obligation of |
| /// `$0: 'static`. This will get checked later by regionck. (We |
| /// can't generally check these things right away because we have |
| /// to wait until types are resolved.) |
| /// |
| /// These are stored in a map keyed to the id of the innermost |
| /// enclosing fn body / static initializer expression. This is |
| /// because the location where the obligation was incurred can be |
| /// relevant with respect to which sublifetime assumptions are in |
| /// place. The reason that we store under the fn-id, and not |
| /// something more fine-grained, is so that it is easier for |
| /// regionck to be sure that it has found *all* the region |
| /// obligations (otherwise, it's easy to fail to walk to a |
| /// particular node-id). |
| /// |
| /// Before running `resolve_regions_and_report_errors`, the creator |
| /// of the inference context is expected to invoke |
| /// [`InferCtxt::process_registered_region_obligations`] |
| /// for each body-id in this map, which will process the |
| /// obligations within. This is expected to be done 'late enough' |
| /// that all type inference variables have been bound and so forth. |
| region_obligations: Vec<RegionObligation<'tcx>>, |
| |
| /// Caches for opaque type inference. |
| opaque_type_storage: OpaqueTypeStorage<'tcx>, |
| } |
| |
| impl<'tcx> InferCtxtInner<'tcx> { |
| fn new() -> InferCtxtInner<'tcx> { |
| InferCtxtInner { |
| undo_log: InferCtxtUndoLogs::default(), |
| |
| projection_cache: Default::default(), |
| type_variable_storage: type_variable::TypeVariableStorage::new(), |
| const_unification_storage: ut::UnificationTableStorage::new(), |
| int_unification_storage: ut::UnificationTableStorage::new(), |
| float_unification_storage: ut::UnificationTableStorage::new(), |
| effect_unification_storage: ut::UnificationTableStorage::new(), |
| region_constraint_storage: Some(RegionConstraintStorage::new()), |
| region_obligations: vec![], |
| opaque_type_storage: Default::default(), |
| } |
| } |
| |
| #[inline] |
| pub fn region_obligations(&self) -> &[RegionObligation<'tcx>] { |
| &self.region_obligations |
| } |
| |
| #[inline] |
| pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> { |
| self.projection_cache.with_log(&mut self.undo_log) |
| } |
| |
| #[inline] |
| fn try_type_variables_probe_ref( |
| &self, |
| vid: ty::TyVid, |
| ) -> Option<&type_variable::TypeVariableValue<'tcx>> { |
| // Uses a read-only view of the unification table, this way we don't |
| // need an undo log. |
| self.type_variable_storage.eq_relations_ref().try_probe_value(vid) |
| } |
| |
| #[inline] |
| fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> { |
| self.type_variable_storage.with_log(&mut self.undo_log) |
| } |
| |
| #[inline] |
| pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> { |
| self.opaque_type_storage.with_log(&mut self.undo_log) |
| } |
| |
| #[inline] |
| fn int_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::IntVid> { |
| self.int_unification_storage.with_log(&mut self.undo_log) |
| } |
| |
| #[inline] |
| fn float_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::FloatVid> { |
| self.float_unification_storage.with_log(&mut self.undo_log) |
| } |
| |
| #[inline] |
| fn const_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ConstVidKey<'tcx>> { |
| self.const_unification_storage.with_log(&mut self.undo_log) |
| } |
| |
| fn effect_unification_table(&mut self) -> UnificationTable<'_, 'tcx, EffectVidKey<'tcx>> { |
| self.effect_unification_storage.with_log(&mut self.undo_log) |
| } |
| |
| #[inline] |
| pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> { |
| self.region_constraint_storage |
| .as_mut() |
| .expect("region constraints already solved") |
| .with_log(&mut self.undo_log) |
| } |
| |
| // Iterates through the opaque type definitions without taking them; this holds the |
| // `InferCtxtInner` lock, so make sure to not do anything with `InferCtxt` side-effects |
| // while looping through this. |
| pub fn iter_opaque_types( |
| &self, |
| ) -> impl Iterator<Item = (ty::OpaqueTypeKey<'tcx>, ty::OpaqueHiddenType<'tcx>)> + '_ { |
| self.opaque_type_storage.opaque_types.iter().map(|(&k, v)| (k, v.hidden_type)) |
| } |
| } |
| |
| pub struct InferCtxt<'tcx> { |
| pub tcx: TyCtxt<'tcx>, |
| |
| /// The `DefId` of the item in whose context we are performing inference or typeck. |
| /// It is used to check whether an opaque type use is a defining use. |
| /// |
| /// If it is `DefiningAnchor::Bubble`, we can't resolve opaque types here and need to bubble up |
| /// the obligation. This frequently happens for |
| /// short lived InferCtxt within queries. The opaque type obligations are forwarded |
| /// to the outside until the end up in an `InferCtxt` for typeck or borrowck. |
| /// |
| /// Its default value is `DefiningAnchor::Bind(&[])`, which means no opaque types may be defined. |
| /// This way it is easier to catch errors that |
| /// might come up during inference or typeck. |
| pub defining_use_anchor: DefiningAnchor<'tcx>, |
| |
| /// Whether this inference context should care about region obligations in |
| /// the root universe. Most notably, this is used during hir typeck as region |
| /// solving is left to borrowck instead. |
| pub considering_regions: bool, |
| |
| /// If set, this flag causes us to skip the 'leak check' during |
| /// higher-ranked subtyping operations. This flag is a temporary one used |
| /// to manage the removal of the leak-check: for the time being, we still run the |
| /// leak-check, but we issue warnings. |
| skip_leak_check: bool, |
| |
| pub inner: RefCell<InferCtxtInner<'tcx>>, |
| |
| /// Once region inference is done, the values for each variable. |
| lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>, |
| |
| /// Caches the results of trait selection. This cache is used |
| /// for things that have to do with the parameters in scope. |
| pub selection_cache: select::SelectionCache<'tcx>, |
| |
| /// Caches the results of trait evaluation. |
| pub evaluation_cache: select::EvaluationCache<'tcx>, |
| |
| /// The set of predicates on which errors have been reported, to |
| /// avoid reporting the same error twice. |
| pub reported_trait_errors: |
| RefCell<FxIndexMap<Span, (Vec<ty::Predicate<'tcx>>, ErrorGuaranteed)>>, |
| |
| pub reported_signature_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>, |
| |
| /// When an error occurs, we want to avoid reporting "derived" |
| /// errors that are due to this original failure. Normally, we |
| /// handle this with the `err_count_on_creation` count, which |
| /// basically just tracks how many errors were reported when we |
| /// started type-checking a fn and checks to see if any new errors |
| /// have been reported since then. Not great, but it works. |
| /// |
| /// However, when errors originated in other passes -- notably |
| /// resolve -- this heuristic breaks down. Therefore, we have this |
| /// auxiliary flag that one can set whenever one creates a |
| /// type-error that is due to an error in a prior pass. |
| /// |
| /// Don't read this flag directly, call `is_tainted_by_errors()` |
| /// and `set_tainted_by_errors()`. |
| tainted_by_errors: Cell<Option<ErrorGuaranteed>>, |
| |
| /// Track how many errors were reported when this infcx is created. |
| /// If the number of errors increases, that's also a sign (like |
| /// `tainted_by_errors`) to avoid reporting certain kinds of errors. |
| // FIXME(matthewjasper) Merge into `tainted_by_errors` |
| err_count_on_creation: usize, |
| |
| /// What is the innermost universe we have created? Starts out as |
| /// `UniverseIndex::root()` but grows from there as we enter |
| /// universal quantifiers. |
| /// |
| /// N.B., at present, we exclude the universal quantifiers on the |
| /// item we are type-checking, and just consider those names as |
| /// part of the root universe. So this would only get incremented |
| /// when we enter into a higher-ranked (`for<..>`) type or trait |
| /// bound. |
| universe: Cell<ty::UniverseIndex>, |
| |
| /// During coherence we have to assume that other crates may add |
| /// additional impls which we currently don't know about. |
| /// |
| /// To deal with this evaluation, we should be conservative |
| /// and consider the possibility of impls from outside this crate. |
| /// This comes up primarily when resolving ambiguity. Imagine |
| /// there is some trait reference `$0: Bar` where `$0` is an |
| /// inference variable. If `intercrate` is true, then we can never |
| /// say for sure that this reference is not implemented, even if |
| /// there are *no impls at all for `Bar`*, because `$0` could be |
| /// bound to some type that in a downstream crate that implements |
| /// `Bar`. |
| /// |
| /// Outside of coherence, we set this to false because we are only |
| /// interested in types that the user could actually have written. |
| /// In other words, we consider `$0: Bar` to be unimplemented if |
| /// there is no type that the user could *actually name* that |
| /// would satisfy it. This avoids crippling inference, basically. |
| pub intercrate: bool, |
| |
| next_trait_solver: bool, |
| |
| pub obligation_inspector: Cell<Option<ObligationInspector<'tcx>>>, |
| } |
| |
| impl<'tcx> ty::InferCtxtLike for InferCtxt<'tcx> { |
| type Interner = TyCtxt<'tcx>; |
| |
| fn interner(&self) -> TyCtxt<'tcx> { |
| self.tcx |
| } |
| |
| fn universe_of_ty(&self, vid: TyVid) -> Option<ty::UniverseIndex> { |
| // FIXME(BoxyUwU): this is kind of jank and means that printing unresolved |
| // ty infers will give you the universe of the var it resolved to not the universe |
| // it actually had. It also means that if you have a `?0.1` and infer it to `u8` then |
| // try to print out `?0.1` it will just print `?0`. |
| match self.probe_ty_var(vid) { |
| Err(universe) => Some(universe), |
| Ok(_) => None, |
| } |
| } |
| |
| fn universe_of_ct(&self, ct: ConstVid) -> Option<ty::UniverseIndex> { |
| // Same issue as with `universe_of_ty` |
| match self.probe_const_var(ct) { |
| Err(universe) => Some(universe), |
| Ok(_) => None, |
| } |
| } |
| |
| fn universe_of_lt(&self, lt: ty::RegionVid) -> Option<ty::UniverseIndex> { |
| match self.inner.borrow_mut().unwrap_region_constraints().probe_value(lt) { |
| Err(universe) => Some(universe), |
| Ok(_) => None, |
| } |
| } |
| |
| fn root_ty_var(&self, vid: TyVid) -> TyVid { |
| self.root_var(vid) |
| } |
| |
| fn probe_ty_var(&self, vid: TyVid) -> Option<Ty<'tcx>> { |
| self.probe_ty_var(vid).ok() |
| } |
| |
| fn opportunistic_resolve_lt_var(&self, vid: ty::RegionVid) -> Option<ty::Region<'tcx>> { |
| let re = self |
| .inner |
| .borrow_mut() |
| .unwrap_region_constraints() |
| .opportunistic_resolve_var(self.tcx, vid); |
| if *re == ty::ReVar(vid) { None } else { Some(re) } |
| } |
| |
| fn root_ct_var(&self, vid: ConstVid) -> ConstVid { |
| self.root_const_var(vid) |
| } |
| |
| fn probe_ct_var(&self, vid: ConstVid) -> Option<ty::Const<'tcx>> { |
| self.probe_const_var(vid).ok() |
| } |
| } |
| |
| /// See the `error_reporting` module for more details. |
| #[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)] |
| pub enum ValuePairs<'tcx> { |
| Regions(ExpectedFound<ty::Region<'tcx>>), |
| Terms(ExpectedFound<ty::Term<'tcx>>), |
| Aliases(ExpectedFound<ty::AliasTy<'tcx>>), |
| PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>), |
| PolySigs(ExpectedFound<ty::PolyFnSig<'tcx>>), |
| ExistentialTraitRef(ExpectedFound<ty::PolyExistentialTraitRef<'tcx>>), |
| ExistentialProjection(ExpectedFound<ty::PolyExistentialProjection<'tcx>>), |
| } |
| |
| impl<'tcx> ValuePairs<'tcx> { |
| pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> { |
| if let ValuePairs::Terms(ExpectedFound { expected, found }) = self |
| && let Some(expected) = expected.ty() |
| && let Some(found) = found.ty() |
| { |
| Some((expected, found)) |
| } else { |
| None |
| } |
| } |
| } |
| |
| /// The trace designates the path through inference that we took to |
| /// encounter an error or subtyping constraint. |
| /// |
| /// See the `error_reporting` module for more details. |
| #[derive(Clone, Debug)] |
| pub struct TypeTrace<'tcx> { |
| pub cause: ObligationCause<'tcx>, |
| pub values: ValuePairs<'tcx>, |
| } |
| |
| /// The origin of a `r1 <= r2` constraint. |
| /// |
| /// See `error_reporting` module for more details |
| #[derive(Clone, Debug)] |
| pub enum SubregionOrigin<'tcx> { |
| /// Arose from a subtyping relation |
| Subtype(Box<TypeTrace<'tcx>>), |
| |
| /// When casting `&'a T` to an `&'b Trait` object, |
| /// relating `'a` to `'b`. |
| RelateObjectBound(Span), |
| |
| /// Some type parameter was instantiated with the given type, |
| /// and that type must outlive some region. |
| RelateParamBound(Span, Ty<'tcx>, Option<Span>), |
| |
| /// The given region parameter was instantiated with a region |
| /// that must outlive some other region. |
| RelateRegionParamBound(Span), |
| |
| /// Creating a pointer `b` to contents of another reference. |
| Reborrow(Span), |
| |
| /// (&'a &'b T) where a >= b |
| ReferenceOutlivesReferent(Ty<'tcx>, Span), |
| |
| /// Comparing the signature and requirements of an impl method against |
| /// the containing trait. |
| CompareImplItemObligation { |
| span: Span, |
| impl_item_def_id: LocalDefId, |
| trait_item_def_id: DefId, |
| }, |
| |
| /// Checking that the bounds of a trait's associated type hold for a given impl. |
| CheckAssociatedTypeBounds { |
| parent: Box<SubregionOrigin<'tcx>>, |
| impl_item_def_id: LocalDefId, |
| trait_item_def_id: DefId, |
| }, |
| |
| AscribeUserTypeProvePredicate(Span), |
| } |
| |
| // `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger. |
| #[cfg(all(any(target_arch = "x86_64", target_arch = "aarch64"), target_pointer_width = "64"))] |
| static_assert_size!(SubregionOrigin<'_>, 32); |
| |
| impl<'tcx> SubregionOrigin<'tcx> { |
| pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> { |
| match self { |
| Self::Subtype(type_trace) => type_trace.cause.to_constraint_category(), |
| Self::AscribeUserTypeProvePredicate(span) => ConstraintCategory::Predicate(*span), |
| _ => ConstraintCategory::BoringNoLocation, |
| } |
| } |
| } |
| |
| /// Times when we replace bound regions with existentials: |
| #[derive(Clone, Copy, Debug)] |
| pub enum BoundRegionConversionTime { |
| /// when a fn is called |
| FnCall, |
| |
| /// when two higher-ranked types are compared |
| HigherRankedType, |
| |
| /// when projecting an associated type |
| AssocTypeProjection(DefId), |
| } |
| |
| /// Reasons to create a region inference variable. |
| /// |
| /// See `error_reporting` module for more details. |
| #[derive(Copy, Clone, Debug)] |
| pub enum RegionVariableOrigin { |
| /// Region variables created for ill-categorized reasons. |
| /// |
| /// They mostly indicate places in need of refactoring. |
| MiscVariable(Span), |
| |
| /// Regions created by a `&P` or `[...]` pattern. |
| PatternRegion(Span), |
| |
| /// Regions created by `&` operator. |
| /// |
| AddrOfRegion(Span), |
| /// Regions created as part of an autoref of a method receiver. |
| Autoref(Span), |
| |
| /// Regions created as part of an automatic coercion. |
| Coercion(Span), |
| |
| /// Region variables created as the values for early-bound regions. |
| /// |
| /// FIXME(@lcnr): This can also store a `DefId`, similar to |
| /// `TypeVariableOriginKind::TypeParameterDefinition`. |
| RegionParameterDefinition(Span, Symbol), |
| |
| /// Region variables created when instantiating a binder with |
| /// existential variables, e.g. when calling a function or method. |
| BoundRegion(Span, ty::BoundRegionKind, BoundRegionConversionTime), |
| |
| UpvarRegion(ty::UpvarId, Span), |
| |
| /// This origin is used for the inference variables that we create |
| /// during NLL region processing. |
| Nll(NllRegionVariableOrigin), |
| } |
| |
| #[derive(Copy, Clone, Debug)] |
| pub enum NllRegionVariableOrigin { |
| /// During NLL region processing, we create variables for free |
| /// regions that we encounter in the function signature and |
| /// elsewhere. This origin indices we've got one of those. |
| FreeRegion, |
| |
| /// "Universal" instantiation of a higher-ranked region (e.g., |
| /// from a `for<'a> T` binder). Meant to represent "any region". |
| Placeholder(ty::PlaceholderRegion), |
| |
| Existential { |
| /// If this is true, then this variable was created to represent a lifetime |
| /// bound in a `for` binder. For example, it might have been created to |
| /// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`. |
| /// Such variables are created when we are trying to figure out if there |
| /// is any valid instantiation of `'a` that could fit into some scenario. |
| /// |
| /// This is used to inform error reporting: in the case that we are trying to |
| /// determine whether there is any valid instantiation of a `'a` variable that meets |
| /// some constraint C, we want to blame the "source" of that `for` type, |
| /// rather than blaming the source of the constraint C. |
| from_forall: bool, |
| }, |
| } |
| |
| // FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`. |
| #[derive(Copy, Clone, Debug)] |
| pub enum FixupError { |
| UnresolvedIntTy(IntVid), |
| UnresolvedFloatTy(FloatVid), |
| UnresolvedTy(TyVid), |
| UnresolvedConst(ConstVid), |
| } |
| |
| /// See the `region_obligations` field for more information. |
| #[derive(Clone, Debug)] |
| pub struct RegionObligation<'tcx> { |
| pub sub_region: ty::Region<'tcx>, |
| pub sup_type: Ty<'tcx>, |
| pub origin: SubregionOrigin<'tcx>, |
| } |
| |
| impl fmt::Display for FixupError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| use self::FixupError::*; |
| |
| match *self { |
| UnresolvedIntTy(_) => write!( |
| f, |
| "cannot determine the type of this integer; \ |
| add a suffix to specify the type explicitly" |
| ), |
| UnresolvedFloatTy(_) => write!( |
| f, |
| "cannot determine the type of this number; \ |
| add a suffix to specify the type explicitly" |
| ), |
| UnresolvedTy(_) => write!(f, "unconstrained type"), |
| UnresolvedConst(_) => write!(f, "unconstrained const value"), |
| } |
| } |
| } |
| |
| /// Used to configure inference contexts before their creation. |
| pub struct InferCtxtBuilder<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| defining_use_anchor: DefiningAnchor<'tcx>, |
| considering_regions: bool, |
| skip_leak_check: bool, |
| /// Whether we are in coherence mode. |
| intercrate: bool, |
| /// Whether we should use the new trait solver in the local inference context, |
| /// which affects things like which solver is used in `predicate_may_hold`. |
| next_trait_solver: bool, |
| } |
| |
| #[extension(pub trait TyCtxtInferExt<'tcx>)] |
| impl<'tcx> TyCtxt<'tcx> { |
| fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> { |
| InferCtxtBuilder { |
| tcx: self, |
| defining_use_anchor: DefiningAnchor::Bind(ty::List::empty()), |
| considering_regions: true, |
| skip_leak_check: false, |
| intercrate: false, |
| next_trait_solver: self.next_trait_solver_globally(), |
| } |
| } |
| } |
| |
| impl<'tcx> InferCtxtBuilder<'tcx> { |
| /// Whenever the `InferCtxt` should be able to handle defining uses of opaque types, |
| /// you need to call this function. Otherwise the opaque type will be treated opaquely. |
| /// |
| /// It is only meant to be called in two places, for typeck |
| /// (via `Inherited::build`) and for the inference context used |
| /// in mir borrowck. |
| pub fn with_opaque_type_inference(mut self, defining_use_anchor: DefiningAnchor<'tcx>) -> Self { |
| self.defining_use_anchor = defining_use_anchor; |
| self |
| } |
| |
| pub fn with_next_trait_solver(mut self, next_trait_solver: bool) -> Self { |
| self.next_trait_solver = next_trait_solver; |
| self |
| } |
| |
| pub fn intercrate(mut self, intercrate: bool) -> Self { |
| self.intercrate = intercrate; |
| self |
| } |
| |
| pub fn ignoring_regions(mut self) -> Self { |
| self.considering_regions = false; |
| self |
| } |
| |
| pub fn skip_leak_check(mut self, skip_leak_check: bool) -> Self { |
| self.skip_leak_check = skip_leak_check; |
| self |
| } |
| |
| /// Given a canonical value `C` as a starting point, create an |
| /// inference context that contains each of the bound values |
| /// within instantiated as a fresh variable. The `f` closure is |
| /// invoked with the new infcx, along with the instantiated value |
| /// `V` and a instantiation `S`. This instantiation `S` maps from |
| /// the bound values in `C` to their instantiated values in `V` |
| /// (in other words, `S(C) = V`). |
| pub fn build_with_canonical<T>( |
| &mut self, |
| span: Span, |
| canonical: &Canonical<'tcx, T>, |
| ) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>) |
| where |
| T: TypeFoldable<TyCtxt<'tcx>>, |
| { |
| let infcx = self.build(); |
| let (value, args) = infcx.instantiate_canonical(span, canonical); |
| (infcx, value, args) |
| } |
| |
| pub fn build(&mut self) -> InferCtxt<'tcx> { |
| let InferCtxtBuilder { |
| tcx, |
| defining_use_anchor, |
| considering_regions, |
| skip_leak_check, |
| intercrate, |
| next_trait_solver, |
| } = *self; |
| InferCtxt { |
| tcx, |
| defining_use_anchor, |
| considering_regions, |
| skip_leak_check, |
| inner: RefCell::new(InferCtxtInner::new()), |
| lexical_region_resolutions: RefCell::new(None), |
| selection_cache: Default::default(), |
| evaluation_cache: Default::default(), |
| reported_trait_errors: Default::default(), |
| reported_signature_mismatch: Default::default(), |
| tainted_by_errors: Cell::new(None), |
| err_count_on_creation: tcx.dcx().err_count_excluding_lint_errs(), |
| universe: Cell::new(ty::UniverseIndex::ROOT), |
| intercrate, |
| next_trait_solver, |
| obligation_inspector: Cell::new(None), |
| } |
| } |
| } |
| |
| impl<'tcx, T> InferOk<'tcx, T> { |
| /// Extracts `value`, registering any obligations into `fulfill_cx`. |
| pub fn into_value_registering_obligations( |
| self, |
| infcx: &InferCtxt<'tcx>, |
| fulfill_cx: &mut dyn TraitEngine<'tcx>, |
| ) -> T { |
| let InferOk { value, obligations } = self; |
| fulfill_cx.register_predicate_obligations(infcx, obligations); |
| value |
| } |
| } |
| |
| impl<'tcx> InferOk<'tcx, ()> { |
| pub fn into_obligations(self) -> PredicateObligations<'tcx> { |
| self.obligations |
| } |
| } |
| |
| impl<'tcx> InferCtxt<'tcx> { |
| pub fn dcx(&self) -> &'tcx DiagCtxt { |
| self.tcx.dcx() |
| } |
| |
| pub fn next_trait_solver(&self) -> bool { |
| self.next_trait_solver |
| } |
| |
| /// Creates a `TypeErrCtxt` for emitting various inference errors. |
| /// During typeck, use `FnCtxt::err_ctxt` instead. |
| pub fn err_ctxt(&self) -> TypeErrCtxt<'_, 'tcx> { |
| TypeErrCtxt { |
| infcx: self, |
| sub_relations: Default::default(), |
| typeck_results: None, |
| fallback_has_occurred: false, |
| normalize_fn_sig: Box::new(|fn_sig| fn_sig), |
| autoderef_steps: Box::new(|ty| { |
| debug_assert!(false, "shouldn't be using autoderef_steps outside of typeck"); |
| vec![(ty, vec![])] |
| }), |
| } |
| } |
| |
| pub fn freshen<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T { |
| t.fold_with(&mut self.freshener()) |
| } |
| |
| /// Returns the origin of the type variable identified by `vid`, or `None` |
| /// if this is not a type variable. |
| /// |
| /// No attempt is made to resolve `ty`. |
| pub fn type_var_origin(&self, ty: Ty<'tcx>) -> Option<TypeVariableOrigin> { |
| match *ty.kind() { |
| ty::Infer(ty::TyVar(vid)) => { |
| Some(self.inner.borrow_mut().type_variables().var_origin(vid)) |
| } |
| _ => None, |
| } |
| } |
| |
| pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> { |
| freshen::TypeFreshener::new(self) |
| } |
| |
| pub fn unresolved_variables(&self) -> Vec<Ty<'tcx>> { |
| let mut inner = self.inner.borrow_mut(); |
| let mut vars: Vec<Ty<'_>> = inner |
| .type_variables() |
| .unresolved_variables() |
| .into_iter() |
| .map(|t| Ty::new_var(self.tcx, t)) |
| .collect(); |
| vars.extend( |
| (0..inner.int_unification_table().len()) |
| .map(|i| ty::IntVid::from_u32(i as u32)) |
| .filter(|&vid| inner.int_unification_table().probe_value(vid).is_none()) |
| .map(|v| Ty::new_int_var(self.tcx, v)), |
| ); |
| vars.extend( |
| (0..inner.float_unification_table().len()) |
| .map(|i| ty::FloatVid::from_u32(i as u32)) |
| .filter(|&vid| inner.float_unification_table().probe_value(vid).is_none()) |
| .map(|v| Ty::new_float_var(self.tcx, v)), |
| ); |
| vars |
| } |
| |
| pub fn unsolved_effects(&self) -> Vec<ty::Const<'tcx>> { |
| let mut inner = self.inner.borrow_mut(); |
| let mut table = inner.effect_unification_table(); |
| |
| (0..table.len()) |
| .map(|i| ty::EffectVid::from_usize(i)) |
| .filter(|&vid| table.probe_value(vid).is_unknown()) |
| .map(|v| { |
| ty::Const::new_infer(self.tcx, ty::InferConst::EffectVar(v), self.tcx.types.bool) |
| }) |
| .collect() |
| } |
| |
| fn combine_fields<'a>( |
| &'a self, |
| trace: TypeTrace<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| define_opaque_types: DefineOpaqueTypes, |
| ) -> CombineFields<'a, 'tcx> { |
| CombineFields { |
| infcx: self, |
| trace, |
| param_env, |
| obligations: PredicateObligations::new(), |
| define_opaque_types, |
| } |
| } |
| |
| pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, expected: T, actual: T) -> bool |
| where |
| T: at::ToTrace<'tcx>, |
| { |
| let origin = &ObligationCause::dummy(); |
| self.probe(|_| { |
| self.at(origin, param_env).sub(DefineOpaqueTypes::No, expected, actual).is_ok() |
| }) |
| } |
| |
| pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool |
| where |
| T: at::ToTrace<'tcx>, |
| { |
| let origin = &ObligationCause::dummy(); |
| self.probe(|_| self.at(origin, param_env).eq(DefineOpaqueTypes::No, a, b).is_ok()) |
| } |
| |
| #[instrument(skip(self), level = "debug")] |
| pub fn sub_regions( |
| &self, |
| origin: SubregionOrigin<'tcx>, |
| a: ty::Region<'tcx>, |
| b: ty::Region<'tcx>, |
| ) { |
| self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b); |
| } |
| |
| /// Require that the region `r` be equal to one of the regions in |
| /// the set `regions`. |
| #[instrument(skip(self), level = "debug")] |
| pub fn member_constraint( |
| &self, |
| key: ty::OpaqueTypeKey<'tcx>, |
| definition_span: Span, |
| hidden_ty: Ty<'tcx>, |
| region: ty::Region<'tcx>, |
| in_regions: &Lrc<Vec<ty::Region<'tcx>>>, |
| ) { |
| self.inner.borrow_mut().unwrap_region_constraints().member_constraint( |
| key, |
| definition_span, |
| hidden_ty, |
| region, |
| in_regions, |
| ); |
| } |
| |
| /// Processes a `Coerce` predicate from the fulfillment context. |
| /// This is NOT the preferred way to handle coercion, which is to |
| /// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`). |
| /// |
| /// This method here is actually a fallback that winds up being |
| /// invoked when `FnCtxt::coerce` encounters unresolved type variables |
| /// and records a coercion predicate. Presently, this method is equivalent |
| /// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up |
| /// actually requiring `a <: b`. This is of course a valid coercion, |
| /// but it's not as flexible as `FnCtxt::coerce` would be. |
| /// |
| /// (We may refactor this in the future, but there are a number of |
| /// practical obstacles. Among other things, `FnCtxt::coerce` presently |
| /// records adjustments that are required on the HIR in order to perform |
| /// the coercion, and we don't currently have a way to manage that.) |
| pub fn coerce_predicate( |
| &self, |
| cause: &ObligationCause<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| predicate: ty::PolyCoercePredicate<'tcx>, |
| ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> { |
| let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate { |
| a_is_expected: false, // when coercing from `a` to `b`, `b` is expected |
| a: p.a, |
| b: p.b, |
| }); |
| self.subtype_predicate(cause, param_env, subtype_predicate) |
| } |
| |
| pub fn subtype_predicate( |
| &self, |
| cause: &ObligationCause<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| predicate: ty::PolySubtypePredicate<'tcx>, |
| ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> { |
| // Check for two unresolved inference variables, in which case we can |
| // make no progress. This is partly a micro-optimization, but it's |
| // also an opportunity to "sub-unify" the variables. This isn't |
| // *necessary* to prevent cycles, because they would eventually be sub-unified |
| // anyhow during generalization, but it helps with diagnostics (we can detect |
| // earlier that they are sub-unified). |
| // |
| // Note that we can just skip the binders here because |
| // type variables can't (at present, at |
| // least) capture any of the things bound by this binder. |
| // |
| // Note that this sub here is not just for diagnostics - it has semantic |
| // effects as well. |
| let r_a = self.shallow_resolve(predicate.skip_binder().a); |
| let r_b = self.shallow_resolve(predicate.skip_binder().b); |
| match (r_a.kind(), r_b.kind()) { |
| (&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => { |
| return Err((a_vid, b_vid)); |
| } |
| _ => {} |
| } |
| |
| self.enter_forall(predicate, |ty::SubtypePredicate { a_is_expected, a, b }| { |
| if a_is_expected { |
| Ok(self.at(cause, param_env).sub(DefineOpaqueTypes::No, a, b)) |
| } else { |
| Ok(self.at(cause, param_env).sup(DefineOpaqueTypes::No, b, a)) |
| } |
| }) |
| } |
| |
| pub fn region_outlives_predicate( |
| &self, |
| cause: &traits::ObligationCause<'tcx>, |
| predicate: ty::PolyRegionOutlivesPredicate<'tcx>, |
| ) { |
| self.enter_forall(predicate, |ty::OutlivesPredicate(r_a, r_b)| { |
| let origin = SubregionOrigin::from_obligation_cause(cause, || { |
| RelateRegionParamBound(cause.span) |
| }); |
| self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b` |
| }) |
| } |
| |
| /// Number of type variables created so far. |
| pub fn num_ty_vars(&self) -> usize { |
| self.inner.borrow_mut().type_variables().num_vars() |
| } |
| |
| pub fn next_ty_var_id(&self, origin: TypeVariableOrigin) -> TyVid { |
| self.inner.borrow_mut().type_variables().new_var(self.universe(), origin) |
| } |
| |
| pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> { |
| Ty::new_var(self.tcx, self.next_ty_var_id(origin)) |
| } |
| |
| pub fn next_ty_var_id_in_universe( |
| &self, |
| origin: TypeVariableOrigin, |
| universe: ty::UniverseIndex, |
| ) -> TyVid { |
| self.inner.borrow_mut().type_variables().new_var(universe, origin) |
| } |
| |
| pub fn next_ty_var_in_universe( |
| &self, |
| origin: TypeVariableOrigin, |
| universe: ty::UniverseIndex, |
| ) -> Ty<'tcx> { |
| let vid = self.next_ty_var_id_in_universe(origin, universe); |
| Ty::new_var(self.tcx, vid) |
| } |
| |
| pub fn next_const_var(&self, ty: Ty<'tcx>, origin: ConstVariableOrigin) -> ty::Const<'tcx> { |
| ty::Const::new_var(self.tcx, self.next_const_var_id(origin), ty) |
| } |
| |
| pub fn next_const_var_in_universe( |
| &self, |
| ty: Ty<'tcx>, |
| origin: ConstVariableOrigin, |
| universe: ty::UniverseIndex, |
| ) -> ty::Const<'tcx> { |
| let vid = self |
| .inner |
| .borrow_mut() |
| .const_unification_table() |
| .new_key(ConstVariableValue::Unknown { origin, universe }) |
| .vid; |
| ty::Const::new_var(self.tcx, vid, ty) |
| } |
| |
| pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid { |
| self.inner |
| .borrow_mut() |
| .const_unification_table() |
| .new_key(ConstVariableValue::Unknown { origin, universe: self.universe() }) |
| .vid |
| } |
| |
| fn next_int_var_id(&self) -> IntVid { |
| self.inner.borrow_mut().int_unification_table().new_key(None) |
| } |
| |
| pub fn next_int_var(&self) -> Ty<'tcx> { |
| Ty::new_int_var(self.tcx, self.next_int_var_id()) |
| } |
| |
| fn next_float_var_id(&self) -> FloatVid { |
| self.inner.borrow_mut().float_unification_table().new_key(None) |
| } |
| |
| pub fn next_float_var(&self) -> Ty<'tcx> { |
| Ty::new_float_var(self.tcx, self.next_float_var_id()) |
| } |
| |
| /// Creates a fresh region variable with the next available index. |
| /// The variable will be created in the maximum universe created |
| /// thus far, allowing it to name any region created thus far. |
| pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> { |
| self.next_region_var_in_universe(origin, self.universe()) |
| } |
| |
| /// Creates a fresh region variable with the next available index |
| /// in the given universe; typically, you can use |
| /// `next_region_var` and just use the maximal universe. |
| pub fn next_region_var_in_universe( |
| &self, |
| origin: RegionVariableOrigin, |
| universe: ty::UniverseIndex, |
| ) -> ty::Region<'tcx> { |
| let region_var = |
| self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin); |
| ty::Region::new_var(self.tcx, region_var) |
| } |
| |
| /// Return the universe that the region `r` was created in. For |
| /// most regions (e.g., `'static`, named regions from the user, |
| /// etc) this is the root universe U0. For inference variables or |
| /// placeholders, however, it will return the universe which they |
| /// are associated. |
| pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex { |
| self.inner.borrow_mut().unwrap_region_constraints().universe(r) |
| } |
| |
| /// Number of region variables created so far. |
| pub fn num_region_vars(&self) -> usize { |
| self.inner.borrow_mut().unwrap_region_constraints().num_region_vars() |
| } |
| |
| /// Just a convenient wrapper of `next_region_var` for using during NLL. |
| #[instrument(skip(self), level = "debug")] |
| pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> { |
| self.next_region_var(RegionVariableOrigin::Nll(origin)) |
| } |
| |
| /// Just a convenient wrapper of `next_region_var` for using during NLL. |
| #[instrument(skip(self), level = "debug")] |
| pub fn next_nll_region_var_in_universe( |
| &self, |
| origin: NllRegionVariableOrigin, |
| universe: ty::UniverseIndex, |
| ) -> ty::Region<'tcx> { |
| self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe) |
| } |
| |
| pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> { |
| match param.kind { |
| GenericParamDefKind::Lifetime => { |
| // Create a region inference variable for the given |
| // region parameter definition. |
| self.next_region_var(RegionParameterDefinition(span, param.name)).into() |
| } |
| GenericParamDefKind::Type { .. } => { |
| // Create a type inference variable for the given |
| // type parameter definition. The generic parameters are |
| // for actual parameters that may be referred to by |
| // the default of this type parameter, if it exists. |
| // e.g., `struct Foo<A, B, C = (A, B)>(...);` when |
| // used in a path such as `Foo::<T, U>::new()` will |
| // use an inference variable for `C` with `[T, U]` |
| // as the generic parameters for the default, `(T, U)`. |
| let ty_var_id = self.inner.borrow_mut().type_variables().new_var( |
| self.universe(), |
| TypeVariableOrigin { |
| kind: TypeVariableOriginKind::TypeParameterDefinition( |
| param.name, |
| param.def_id, |
| ), |
| span, |
| }, |
| ); |
| |
| Ty::new_var(self.tcx, ty_var_id).into() |
| } |
| GenericParamDefKind::Const { is_host_effect, .. } => { |
| if is_host_effect { |
| return self.var_for_effect(param); |
| } |
| let origin = ConstVariableOrigin { |
| kind: ConstVariableOriginKind::ConstParameterDefinition( |
| param.name, |
| param.def_id, |
| ), |
| span, |
| }; |
| let const_var_id = self |
| .inner |
| .borrow_mut() |
| .const_unification_table() |
| .new_key(ConstVariableValue::Unknown { origin, universe: self.universe() }) |
| .vid; |
| ty::Const::new_var( |
| self.tcx, |
| const_var_id, |
| self.tcx |
| .type_of(param.def_id) |
| .no_bound_vars() |
| .expect("const parameter types cannot be generic"), |
| ) |
| .into() |
| } |
| } |
| } |
| |
| pub fn var_for_effect(&self, param: &ty::GenericParamDef) -> GenericArg<'tcx> { |
| let effect_vid = |
| self.inner.borrow_mut().effect_unification_table().new_key(EffectVarValue::Unknown).vid; |
| let ty = self |
| .tcx |
| .type_of(param.def_id) |
| .no_bound_vars() |
| .expect("const parameter types cannot be generic"); |
| debug_assert_eq!(self.tcx.types.bool, ty); |
| ty::Const::new_infer(self.tcx, ty::InferConst::EffectVar(effect_vid), ty).into() |
| } |
| |
| /// Given a set of generics defined on a type or impl, returns the generic parameters mapping each |
| /// type/region parameter to a fresh inference variable. |
| pub fn fresh_args_for_item(&self, span: Span, def_id: DefId) -> GenericArgsRef<'tcx> { |
| GenericArgs::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param)) |
| } |
| |
| /// Returns `true` if errors have been reported since this infcx was |
| /// created. This is sometimes used as a heuristic to skip |
| /// reporting errors that often occur as a result of earlier |
| /// errors, but where it's hard to be 100% sure (e.g., unresolved |
| /// inference variables, regionck errors). |
| #[must_use = "this method does not have any side effects"] |
| pub fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> { |
| if let Some(guar) = self.tainted_by_errors.get() { |
| Some(guar) |
| } else if self.dcx().err_count_excluding_lint_errs() > self.err_count_on_creation { |
| // Errors reported since this infcx was made. Lint errors are |
| // excluded to avoid some being swallowed in the presence of |
| // non-lint errors. (It's arguable whether or not this exclusion is |
| // important.) |
| let guar = self.dcx().has_errors().unwrap(); |
| self.set_tainted_by_errors(guar); |
| Some(guar) |
| } else { |
| None |
| } |
| } |
| |
| /// Set the "tainted by errors" flag to true. We call this when we |
| /// observe an error from a prior pass. |
| pub fn set_tainted_by_errors(&self, e: ErrorGuaranteed) { |
| debug!("set_tainted_by_errors(ErrorGuaranteed)"); |
| self.tainted_by_errors.set(Some(e)); |
| } |
| |
| pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin { |
| let mut inner = self.inner.borrow_mut(); |
| let inner = &mut *inner; |
| inner.unwrap_region_constraints().var_origin(vid) |
| } |
| |
| /// Clone the list of variable regions. This is used only during NLL processing |
| /// to put the set of region variables into the NLL region context. |
| pub fn get_region_var_origins(&self) -> VarInfos { |
| let mut inner = self.inner.borrow_mut(); |
| let (var_infos, data) = inner |
| .region_constraint_storage |
| // We clone instead of taking because borrowck still wants to use |
| // the inference context after calling this for diagnostics |
| // and the new trait solver. |
| .clone() |
| .expect("regions already resolved") |
| .with_log(&mut inner.undo_log) |
| .into_infos_and_data(); |
| assert!(data.is_empty()); |
| var_infos |
| } |
| |
| #[instrument(level = "debug", skip(self), ret)] |
| pub fn take_opaque_types(&self) -> opaque_types::OpaqueTypeMap<'tcx> { |
| std::mem::take(&mut self.inner.borrow_mut().opaque_type_storage.opaque_types) |
| } |
| |
| #[instrument(level = "debug", skip(self), ret)] |
| pub fn clone_opaque_types(&self) -> opaque_types::OpaqueTypeMap<'tcx> { |
| self.inner.borrow().opaque_type_storage.opaque_types.clone() |
| } |
| |
| pub fn ty_to_string(&self, t: Ty<'tcx>) -> String { |
| self.resolve_vars_if_possible(t).to_string() |
| } |
| |
| /// If `TyVar(vid)` resolves to a type, return that type. Else, return the |
| /// universe index of `TyVar(vid)`. |
| pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> { |
| use self::type_variable::TypeVariableValue; |
| |
| match self.inner.borrow_mut().type_variables().probe(vid) { |
| TypeVariableValue::Known { value } => Ok(value), |
| TypeVariableValue::Unknown { universe } => Err(universe), |
| } |
| } |
| |
| /// Resolve any type variables found in `value` -- but only one |
| /// level. So, if the variable `?X` is bound to some type |
| /// `Foo<?Y>`, then this would return `Foo<?Y>` (but `?Y` may |
| /// itself be bound to a type). |
| /// |
| /// Useful when you only need to inspect the outermost level of |
| /// the type and don't care about nested types (or perhaps you |
| /// will be resolving them as well, e.g. in a loop). |
| pub fn shallow_resolve<T>(&self, value: T) -> T |
| where |
| T: TypeFoldable<TyCtxt<'tcx>>, |
| { |
| value.fold_with(&mut ShallowResolver { infcx: self }) |
| } |
| |
| pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid { |
| self.inner.borrow_mut().type_variables().root_var(var) |
| } |
| |
| pub fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid { |
| self.inner.borrow_mut().const_unification_table().find(var).vid |
| } |
| |
| pub fn root_effect_var(&self, var: ty::EffectVid) -> ty::EffectVid { |
| self.inner.borrow_mut().effect_unification_table().find(var).vid |
| } |
| |
| /// Resolves an int var to a rigid int type, if it was constrained to one, |
| /// or else the root int var in the unification table. |
| pub fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> { |
| let mut inner = self.inner.borrow_mut(); |
| if let Some(value) = inner.int_unification_table().probe_value(vid) { |
| value.to_type(self.tcx) |
| } else { |
| Ty::new_int_var(self.tcx, inner.int_unification_table().find(vid)) |
| } |
| } |
| |
| /// Resolves a float var to a rigid int type, if it was constrained to one, |
| /// or else the root float var in the unification table. |
| pub fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> { |
| let mut inner = self.inner.borrow_mut(); |
| if let Some(value) = inner.float_unification_table().probe_value(vid) { |
| value.to_type(self.tcx) |
| } else { |
| Ty::new_float_var(self.tcx, inner.float_unification_table().find(vid)) |
| } |
| } |
| |
| /// Where possible, replaces type/const variables in |
| /// `value` with their final value. Note that region variables |
| /// are unaffected. If a type/const variable has not been unified, it |
| /// is left as is. This is an idempotent operation that does |
| /// not affect inference state in any way and so you can do it |
| /// at will. |
| pub fn resolve_vars_if_possible<T>(&self, value: T) -> T |
| where |
| T: TypeFoldable<TyCtxt<'tcx>>, |
| { |
| if !value.has_non_region_infer() { |
| return value; |
| } |
| let mut r = resolve::OpportunisticVarResolver::new(self); |
| value.fold_with(&mut r) |
| } |
| |
| pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T |
| where |
| T: TypeFoldable<TyCtxt<'tcx>>, |
| { |
| if !value.has_infer() { |
| return value; // Avoid duplicated type-folding. |
| } |
| let mut r = InferenceLiteralEraser { tcx: self.tcx }; |
| value.fold_with(&mut r) |
| } |
| |
| pub fn probe_const_var(&self, vid: ty::ConstVid) -> Result<ty::Const<'tcx>, ty::UniverseIndex> { |
| match self.inner.borrow_mut().const_unification_table().probe_value(vid) { |
| ConstVariableValue::Known { value } => Ok(value), |
| ConstVariableValue::Unknown { origin: _, universe } => Err(universe), |
| } |
| } |
| |
| pub fn probe_effect_var(&self, vid: EffectVid) -> Option<ty::Const<'tcx>> { |
| self.inner.borrow_mut().effect_unification_table().probe_value(vid).known() |
| } |
| |
| /// Attempts to resolve all type/region/const variables in |
| /// `value`. Region inference must have been run already (e.g., |
| /// by calling `resolve_regions_and_report_errors`). If some |
| /// variable was never unified, an `Err` results. |
| /// |
| /// This method is idempotent, but it not typically not invoked |
| /// except during the writeback phase. |
| pub fn fully_resolve<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> FixupResult<T> { |
| match resolve::fully_resolve(self, value) { |
| Ok(value) => { |
| if value.has_non_region_infer() { |
| bug!("`{value:?}` is not fully resolved"); |
| } |
| if value.has_infer_regions() { |
| let guar = |
| self.tcx.dcx().delayed_bug(format!("`{value:?}` is not fully resolved")); |
| Ok(self.tcx.fold_regions(value, |re, _| { |
| if re.is_var() { ty::Region::new_error(self.tcx, guar) } else { re } |
| })) |
| } else { |
| Ok(value) |
| } |
| } |
| Err(e) => Err(e), |
| } |
| } |
| |
| // Instantiates the bound variables in a given binder with fresh inference |
| // variables in the current universe. |
| // |
| // Use this method if you'd like to find some generic parameters of the binder's |
| // variables (e.g. during a method call). If there isn't a [`BoundRegionConversionTime`] |
| // that corresponds to your use case, consider whether or not you should |
| // use [`InferCtxt::enter_forall`] instead. |
| pub fn instantiate_binder_with_fresh_vars<T>( |
| &self, |
| span: Span, |
| lbrct: BoundRegionConversionTime, |
| value: ty::Binder<'tcx, T>, |
| ) -> T |
| where |
| T: TypeFoldable<TyCtxt<'tcx>> + Copy, |
| { |
| if let Some(inner) = value.no_bound_vars() { |
| return inner; |
| } |
| |
| struct ToFreshVars<'a, 'tcx> { |
| infcx: &'a InferCtxt<'tcx>, |
| span: Span, |
| lbrct: BoundRegionConversionTime, |
| map: FxHashMap<ty::BoundVar, ty::GenericArg<'tcx>>, |
| } |
| |
| impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'_, 'tcx> { |
| fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> { |
| self.map |
| .entry(br.var) |
| .or_insert_with(|| { |
| self.infcx |
| .next_region_var(BoundRegion(self.span, br.kind, self.lbrct)) |
| .into() |
| }) |
| .expect_region() |
| } |
| fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> { |
| self.map |
| .entry(bt.var) |
| .or_insert_with(|| { |
| self.infcx |
| .next_ty_var(TypeVariableOrigin { |
| kind: TypeVariableOriginKind::MiscVariable, |
| span: self.span, |
| }) |
| .into() |
| }) |
| .expect_ty() |
| } |
| fn replace_const(&mut self, bv: ty::BoundVar, ty: Ty<'tcx>) -> ty::Const<'tcx> { |
| self.map |
| .entry(bv) |
| .or_insert_with(|| { |
| self.infcx |
| .next_const_var( |
| ty, |
| ConstVariableOrigin { |
| kind: ConstVariableOriginKind::MiscVariable, |
| span: self.span, |
| }, |
| ) |
| .into() |
| }) |
| .expect_const() |
| } |
| } |
| let delegate = ToFreshVars { infcx: self, span, lbrct, map: Default::default() }; |
| self.tcx.replace_bound_vars_uncached(value, delegate) |
| } |
| |
| /// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method. |
| pub fn verify_generic_bound( |
| &self, |
| origin: SubregionOrigin<'tcx>, |
| kind: GenericKind<'tcx>, |
| a: ty::Region<'tcx>, |
| bound: VerifyBound<'tcx>, |
| ) { |
| debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound); |
| |
| self.inner |
| .borrow_mut() |
| .unwrap_region_constraints() |
| .verify_generic_bound(origin, kind, a, bound); |
| } |
| |
| /// Obtains the latest type of the given closure; this may be a |
| /// closure in the current function, in which case its |
| /// `ClosureKind` may not yet be known. |
| pub fn closure_kind(&self, closure_ty: Ty<'tcx>) -> Option<ty::ClosureKind> { |
| let unresolved_kind_ty = match *closure_ty.kind() { |
| ty::Closure(_, args) => args.as_closure().kind_ty(), |
| ty::CoroutineClosure(_, args) => args.as_coroutine_closure().kind_ty(), |
| _ => bug!("unexpected type {closure_ty}"), |
| }; |
| let closure_kind_ty = self.shallow_resolve(unresolved_kind_ty); |
| closure_kind_ty.to_opt_closure_kind() |
| } |
| |
| /// Clears the selection, evaluation, and projection caches. This is useful when |
| /// repeatedly attempting to select an `Obligation` while changing only |
| /// its `ParamEnv`, since `FulfillmentContext` doesn't use probing. |
| pub fn clear_caches(&self) { |
| self.selection_cache.clear(); |
| self.evaluation_cache.clear(); |
| self.inner.borrow_mut().projection_cache().clear(); |
| } |
| |
| pub fn universe(&self) -> ty::UniverseIndex { |
| self.universe.get() |
| } |
| |
| /// Creates and return a fresh universe that extends all previous |
| /// universes. Updates `self.universe` to that new universe. |
| pub fn create_next_universe(&self) -> ty::UniverseIndex { |
| let u = self.universe.get().next_universe(); |
| debug!("create_next_universe {u:?}"); |
| self.universe.set(u); |
| u |
| } |
| |
| pub fn try_const_eval_resolve( |
| &self, |
| param_env: ty::ParamEnv<'tcx>, |
| unevaluated: ty::UnevaluatedConst<'tcx>, |
| ty: Ty<'tcx>, |
| span: Span, |
| ) -> Result<ty::Const<'tcx>, ErrorHandled> { |
| match self.const_eval_resolve(param_env, unevaluated, span) { |
| Ok(Some(val)) => Ok(ty::Const::new_value(self.tcx, val, ty)), |
| Ok(None) => { |
| let tcx = self.tcx; |
| let def_id = unevaluated.def; |
| span_bug!( |
| tcx.def_span(def_id), |
| "unable to construct a constant value for the unevaluated constant {:?}", |
| unevaluated |
| ); |
| } |
| Err(err) => Err(err), |
| } |
| } |
| |
| /// Resolves and evaluates a constant. |
| /// |
| /// The constant can be located on a trait like `<A as B>::C`, in which case the given |
| /// generic parameters and environment are used to resolve the constant. Alternatively if the |
| /// constant has generic parameters in scope the instantiations are used to evaluate the value of |
| /// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count |
| /// constant `bar::<T>()` requires a instantiation for `T`, if the instantiation for `T` is still |
| /// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is |
| /// returned. |
| /// |
| /// This handles inferences variables within both `param_env` and `args` by |
| /// performing the operation on their respective canonical forms. |
| #[instrument(skip(self), level = "debug")] |
| pub fn const_eval_resolve( |
| &self, |
| mut param_env: ty::ParamEnv<'tcx>, |
| unevaluated: ty::UnevaluatedConst<'tcx>, |
| span: Span, |
| ) -> EvalToValTreeResult<'tcx> { |
| let mut args = self.resolve_vars_if_possible(unevaluated.args); |
| debug!(?args); |
| |
| // Postpone the evaluation of constants whose args depend on inference |
| // variables |
| let tcx = self.tcx; |
| if args.has_non_region_infer() { |
| if let Some(ct) = tcx.thir_abstract_const(unevaluated.def)? { |
| let ct = tcx.expand_abstract_consts(ct.instantiate(tcx, args)); |
| if let Err(e) = ct.error_reported() { |
| return Err(ErrorHandled::Reported(e.into(), span)); |
| } else if ct.has_non_region_infer() || ct.has_non_region_param() { |
| return Err(ErrorHandled::TooGeneric(span)); |
| } else { |
| args = replace_param_and_infer_args_with_placeholder(tcx, args); |
| } |
| } else { |
| args = GenericArgs::identity_for_item(tcx, unevaluated.def); |
| param_env = tcx.param_env(unevaluated.def); |
| } |
| } |
| |
| let param_env_erased = tcx.erase_regions(param_env); |
| let args_erased = tcx.erase_regions(args); |
| debug!(?param_env_erased); |
| debug!(?args_erased); |
| |
| let unevaluated = ty::UnevaluatedConst { def: unevaluated.def, args: args_erased }; |
| |
| // The return value is the evaluated value which doesn't contain any reference to inference |
| // variables, thus we don't need to instantiate back the original values. |
| tcx.const_eval_resolve_for_typeck(param_env_erased, unevaluated, span) |
| } |
| |
| /// The returned function is used in a fast path. If it returns `true` the variable is |
| /// unchanged, `false` indicates that the status is unknown. |
| #[inline] |
| pub fn is_ty_infer_var_definitely_unchanged<'a>( |
| &'a self, |
| ) -> (impl Fn(TyOrConstInferVar) -> bool + Captures<'tcx> + 'a) { |
| // This hoists the borrow/release out of the loop body. |
| let inner = self.inner.try_borrow(); |
| |
| return move |infer_var: TyOrConstInferVar| match (infer_var, &inner) { |
| (TyOrConstInferVar::Ty(ty_var), Ok(inner)) => { |
| use self::type_variable::TypeVariableValue; |
| |
| matches!( |
| inner.try_type_variables_probe_ref(ty_var), |
| Some(TypeVariableValue::Unknown { .. }) |
| ) |
| } |
| _ => false, |
| }; |
| } |
| |
| /// `ty_or_const_infer_var_changed` is equivalent to one of these two: |
| /// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`) |
| /// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`) |
| /// |
| /// However, `ty_or_const_infer_var_changed` is more efficient. It's always |
| /// inlined, despite being large, because it has only two call sites that |
| /// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on` |
| /// inference variables), and it handles both `Ty` and `ty::Const` without |
| /// having to resort to storing full `GenericArg`s in `stalled_on`. |
| #[inline(always)] |
| pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar) -> bool { |
| match infer_var { |
| TyOrConstInferVar::Ty(v) => { |
| use self::type_variable::TypeVariableValue; |
| |
| // If `inlined_probe` returns a `Known` value, it never equals |
| // `ty::Infer(ty::TyVar(v))`. |
| match self.inner.borrow_mut().type_variables().inlined_probe(v) { |
| TypeVariableValue::Unknown { .. } => false, |
| TypeVariableValue::Known { .. } => true, |
| } |
| } |
| |
| TyOrConstInferVar::TyInt(v) => { |
| // If `inlined_probe_value` returns a value it's always a |
| // `ty::Int(_)` or `ty::UInt(_)`, which never matches a |
| // `ty::Infer(_)`. |
| self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_some() |
| } |
| |
| TyOrConstInferVar::TyFloat(v) => { |
| // If `probe_value` returns a value it's always a |
| // `ty::Float(_)`, which never matches a `ty::Infer(_)`. |
| // |
| // Not `inlined_probe_value(v)` because this call site is colder. |
| self.inner.borrow_mut().float_unification_table().probe_value(v).is_some() |
| } |
| |
| TyOrConstInferVar::Const(v) => { |
| // If `probe_value` returns a `Known` value, it never equals |
| // `ty::ConstKind::Infer(ty::InferConst::Var(v))`. |
| // |
| // Not `inlined_probe_value(v)` because this call site is colder. |
| match self.inner.borrow_mut().const_unification_table().probe_value(v) { |
| ConstVariableValue::Unknown { .. } => false, |
| ConstVariableValue::Known { .. } => true, |
| } |
| } |
| |
| TyOrConstInferVar::Effect(v) => { |
| // If `probe_value` returns `Some`, it never equals |
| // `ty::ConstKind::Infer(ty::InferConst::Effect(v))`. |
| // |
| // Not `inlined_probe_value(v)` because this call site is colder. |
| self.probe_effect_var(v).is_some() |
| } |
| } |
| } |
| |
| /// Attach a callback to be invoked on each root obligation evaluated in the new trait solver. |
| pub fn attach_obligation_inspector(&self, inspector: ObligationInspector<'tcx>) { |
| debug_assert!( |
| self.obligation_inspector.get().is_none(), |
| "shouldn't override a set obligation inspector" |
| ); |
| self.obligation_inspector.set(Some(inspector)); |
| } |
| } |
| |
| impl<'tcx> TypeErrCtxt<'_, 'tcx> { |
| // [Note-Type-error-reporting] |
| // An invariant is that anytime the expected or actual type is Error (the special |
| // error type, meaning that an error occurred when typechecking this expression), |
| // this is a derived error. The error cascaded from another error (that was already |
| // reported), so it's not useful to display it to the user. |
| // The following methods implement this logic. |
| // They check if either the actual or expected type is Error, and don't print the error |
| // in this case. The typechecker should only ever report type errors involving mismatched |
| // types using one of these methods, and should not call span_err directly for such |
| // errors. |
| pub fn type_error_struct_with_diag<M>( |
| &self, |
| sp: Span, |
| mk_diag: M, |
| actual_ty: Ty<'tcx>, |
| ) -> Diag<'tcx> |
| where |
| M: FnOnce(String) -> Diag<'tcx>, |
| { |
| let actual_ty = self.resolve_vars_if_possible(actual_ty); |
| debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty); |
| |
| let mut err = mk_diag(self.ty_to_string(actual_ty)); |
| |
| // Don't report an error if actual type is `Error`. |
| if actual_ty.references_error() { |
| err.downgrade_to_delayed_bug(); |
| } |
| |
| err |
| } |
| |
| pub fn report_mismatched_types( |
| &self, |
| cause: &ObligationCause<'tcx>, |
| expected: Ty<'tcx>, |
| actual: Ty<'tcx>, |
| err: TypeError<'tcx>, |
| ) -> Diag<'tcx> { |
| self.report_and_explain_type_error(TypeTrace::types(cause, true, expected, actual), err) |
| } |
| |
| pub fn report_mismatched_consts( |
| &self, |
| cause: &ObligationCause<'tcx>, |
| expected: ty::Const<'tcx>, |
| actual: ty::Const<'tcx>, |
| err: TypeError<'tcx>, |
| ) -> Diag<'tcx> { |
| self.report_and_explain_type_error(TypeTrace::consts(cause, true, expected, actual), err) |
| } |
| } |
| |
| /// Helper for [InferCtxt::ty_or_const_infer_var_changed] (see comment on that), currently |
| /// used only for `traits::fulfill`'s list of `stalled_on` inference variables. |
| #[derive(Copy, Clone, Debug)] |
| pub enum TyOrConstInferVar { |
| /// Equivalent to `ty::Infer(ty::TyVar(_))`. |
| Ty(TyVid), |
| /// Equivalent to `ty::Infer(ty::IntVar(_))`. |
| TyInt(IntVid), |
| /// Equivalent to `ty::Infer(ty::FloatVar(_))`. |
| TyFloat(FloatVid), |
| |
| /// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`. |
| Const(ConstVid), |
| /// Equivalent to `ty::ConstKind::Infer(ty::InferConst::EffectVar(_))`. |
| Effect(EffectVid), |
| } |
| |
| impl<'tcx> TyOrConstInferVar { |
| /// Tries to extract an inference variable from a type or a constant, returns `None` |
| /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and |
| /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`). |
| pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> { |
| match arg.unpack() { |
| GenericArgKind::Type(ty) => Self::maybe_from_ty(ty), |
| GenericArgKind::Const(ct) => Self::maybe_from_const(ct), |
| GenericArgKind::Lifetime(_) => None, |
| } |
| } |
| |
| /// Tries to extract an inference variable from a type, returns `None` |
| /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`). |
| fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> { |
| match *ty.kind() { |
| ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)), |
| ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)), |
| ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)), |
| _ => None, |
| } |
| } |
| |
| /// Tries to extract an inference variable from a constant, returns `None` |
| /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`). |
| fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> { |
| match ct.kind() { |
| ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)), |
| ty::ConstKind::Infer(InferConst::EffectVar(v)) => Some(TyOrConstInferVar::Effect(v)), |
| _ => None, |
| } |
| } |
| } |
| |
| /// Replace `{integer}` with `i32` and `{float}` with `f64`. |
| /// Used only for diagnostics. |
| struct InferenceLiteralEraser<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| } |
| |
| impl<'tcx> TypeFolder<TyCtxt<'tcx>> for InferenceLiteralEraser<'tcx> { |
| fn interner(&self) -> TyCtxt<'tcx> { |
| self.tcx |
| } |
| |
| fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> { |
| match ty.kind() { |
| ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32, |
| ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64, |
| _ => ty.super_fold_with(self), |
| } |
| } |
| } |
| |
| struct ShallowResolver<'a, 'tcx> { |
| infcx: &'a InferCtxt<'tcx>, |
| } |
| |
| impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for ShallowResolver<'a, 'tcx> { |
| fn interner(&self) -> TyCtxt<'tcx> { |
| self.infcx.tcx |
| } |
| |
| /// If `ty` is a type variable of some kind, resolve it one level |
| /// (but do not resolve types found in the result). If `typ` is |
| /// not a type variable, just return it unmodified. |
| #[inline] |
| fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> { |
| if let ty::Infer(v) = ty.kind() { self.fold_infer_ty(*v).unwrap_or(ty) } else { ty } |
| } |
| |
| fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> { |
| match ct.kind() { |
| ty::ConstKind::Infer(InferConst::Var(vid)) => self |
| .infcx |
| .inner |
| .borrow_mut() |
| .const_unification_table() |
| .probe_value(vid) |
| .known() |
| .unwrap_or(ct), |
| ty::ConstKind::Infer(InferConst::EffectVar(vid)) => self |
| .infcx |
| .inner |
| .borrow_mut() |
| .effect_unification_table() |
| .probe_value(vid) |
| .known() |
| .unwrap_or(ct), |
| _ => ct, |
| } |
| } |
| } |
| |
| impl<'a, 'tcx> ShallowResolver<'a, 'tcx> { |
| // This is separate from `fold_ty` to keep that method small and inlinable. |
| #[inline(never)] |
| fn fold_infer_ty(&mut self, v: InferTy) -> Option<Ty<'tcx>> { |
| match v { |
| ty::TyVar(v) => { |
| // Not entirely obvious: if `typ` is a type variable, |
| // it can be resolved to an int/float variable, which |
| // can then be recursively resolved, hence the |
| // recursion. Note though that we prevent type |
| // variables from unifying to other type variables |
| // directly (though they may be embedded |
| // structurally), and we prevent cycles in any case, |
| // so this recursion should always be of very limited |
| // depth. |
| // |
| // Note: if these two lines are combined into one we get |
| // dynamic borrow errors on `self.inner`. |
| let known = self.infcx.inner.borrow_mut().type_variables().probe(v).known(); |
| known.map(|t| self.fold_ty(t)) |
| } |
| |
| ty::IntVar(v) => self |
| .infcx |
| .inner |
| .borrow_mut() |
| .int_unification_table() |
| .probe_value(v) |
| .map(|v| v.to_type(self.infcx.tcx)), |
| |
| ty::FloatVar(v) => self |
| .infcx |
| .inner |
| .borrow_mut() |
| .float_unification_table() |
| .probe_value(v) |
| .map(|v| v.to_type(self.infcx.tcx)), |
| |
| ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => None, |
| } |
| } |
| } |
| |
| impl<'tcx> TypeTrace<'tcx> { |
| pub fn span(&self) -> Span { |
| self.cause.span |
| } |
| |
| pub fn types( |
| cause: &ObligationCause<'tcx>, |
| a_is_expected: bool, |
| a: Ty<'tcx>, |
| b: Ty<'tcx>, |
| ) -> TypeTrace<'tcx> { |
| TypeTrace { |
| cause: cause.clone(), |
| values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())), |
| } |
| } |
| |
| pub fn poly_trait_refs( |
| cause: &ObligationCause<'tcx>, |
| a_is_expected: bool, |
| a: ty::PolyTraitRef<'tcx>, |
| b: ty::PolyTraitRef<'tcx>, |
| ) -> TypeTrace<'tcx> { |
| TypeTrace { |
| cause: cause.clone(), |
| values: PolyTraitRefs(ExpectedFound::new(a_is_expected, a, b)), |
| } |
| } |
| |
| pub fn consts( |
| cause: &ObligationCause<'tcx>, |
| a_is_expected: bool, |
| a: ty::Const<'tcx>, |
| b: ty::Const<'tcx>, |
| ) -> TypeTrace<'tcx> { |
| TypeTrace { |
| cause: cause.clone(), |
| values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())), |
| } |
| } |
| } |
| |
| impl<'tcx> SubregionOrigin<'tcx> { |
| pub fn span(&self) -> Span { |
| match *self { |
| Subtype(ref a) => a.span(), |
| RelateObjectBound(a) => a, |
| RelateParamBound(a, ..) => a, |
| RelateRegionParamBound(a) => a, |
| Reborrow(a) => a, |
| ReferenceOutlivesReferent(_, a) => a, |
| CompareImplItemObligation { span, .. } => span, |
| AscribeUserTypeProvePredicate(span) => span, |
| CheckAssociatedTypeBounds { ref parent, .. } => parent.span(), |
| } |
| } |
| |
| pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self |
| where |
| F: FnOnce() -> Self, |
| { |
| match *cause.code() { |
| traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => { |
| SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span) |
| } |
| |
| traits::ObligationCauseCode::CompareImplItemObligation { |
| impl_item_def_id, |
| trait_item_def_id, |
| kind: _, |
| } => SubregionOrigin::CompareImplItemObligation { |
| span: cause.span, |
| impl_item_def_id, |
| trait_item_def_id, |
| }, |
| |
| traits::ObligationCauseCode::CheckAssociatedTypeBounds { |
| impl_item_def_id, |
| trait_item_def_id, |
| } => SubregionOrigin::CheckAssociatedTypeBounds { |
| impl_item_def_id, |
| trait_item_def_id, |
| parent: Box::new(default()), |
| }, |
| |
| traits::ObligationCauseCode::AscribeUserTypeProvePredicate(span) => { |
| SubregionOrigin::AscribeUserTypeProvePredicate(span) |
| } |
| |
| _ => default(), |
| } |
| } |
| } |
| |
| impl RegionVariableOrigin { |
| pub fn span(&self) -> Span { |
| match *self { |
| MiscVariable(a) |
| | PatternRegion(a) |
| | AddrOfRegion(a) |
| | Autoref(a) |
| | Coercion(a) |
| | RegionParameterDefinition(a, ..) |
| | BoundRegion(a, ..) |
| | UpvarRegion(_, a) => a, |
| Nll(..) => bug!("NLL variable used with `span`"), |
| } |
| } |
| } |
| |
| /// Replaces args that reference param or infer variables with suitable |
| /// placeholders. This function is meant to remove these param and infer |
| /// args when they're not actually needed to evaluate a constant. |
| fn replace_param_and_infer_args_with_placeholder<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| args: GenericArgsRef<'tcx>, |
| ) -> GenericArgsRef<'tcx> { |
| struct ReplaceParamAndInferWithPlaceholder<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| idx: u32, |
| } |
| |
| impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceParamAndInferWithPlaceholder<'tcx> { |
| fn interner(&self) -> TyCtxt<'tcx> { |
| self.tcx |
| } |
| |
| fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { |
| if let ty::Infer(_) = t.kind() { |
| let idx = { |
| let idx = self.idx; |
| self.idx += 1; |
| idx |
| }; |
| Ty::new_placeholder( |
| self.tcx, |
| ty::PlaceholderType { |
| universe: ty::UniverseIndex::ROOT, |
| bound: ty::BoundTy { |
| var: ty::BoundVar::from_u32(idx), |
| kind: ty::BoundTyKind::Anon, |
| }, |
| }, |
| ) |
| } else { |
| t.super_fold_with(self) |
| } |
| } |
| |
| fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> { |
| if let ty::ConstKind::Infer(_) = c.kind() { |
| let ty = c.ty(); |
| // If the type references param or infer then ICE ICE ICE |
| if ty.has_non_region_param() || ty.has_non_region_infer() { |
| bug!("const `{c}`'s type should not reference params or types"); |
| } |
| ty::Const::new_placeholder( |
| self.tcx, |
| ty::PlaceholderConst { |
| universe: ty::UniverseIndex::ROOT, |
| bound: ty::BoundVar::from_u32({ |
| let idx = self.idx; |
| self.idx += 1; |
| idx |
| }), |
| }, |
| ty, |
| ) |
| } else { |
| c.super_fold_with(self) |
| } |
| } |
| } |
| |
| args.fold_with(&mut ReplaceParamAndInferWithPlaceholder { tcx, idx: 0 }) |
| } |